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1. Introduction 

1.1. As was mentioned in the introduction of [4], to which we will refer as I, there 

are infinitesimally central extensions G” +Spin, in characteristic 2, which are 

exceptional in that the unipotent radical of G* is not commutative. (As in I we always 

assume that the Lie algebra g* of G* is perfect). Here we will construct a l- 

parameter family of such exceptional extensions and thereby fill the gap in the 

classification results of I. (Compare I: Theorem 11.21, Theorem 13.8.) 

1.2. Apart from the methods and results of I we wilI need a transfer theorem for 

rational cohomology which was proved in [3]. We reformulate it in 2.7 below. 

2. Description of the result 

2.1. First we recall some of the setting and the results of I, filling in a few details 

pertinent to the exceptional extensions considered in this paper. Unexplained 

notation and terminology is that of I. Let Spin, denote the simply connected 

algebraic group of type B3 defined and split over [F2. Suppose d: G* + Spin, is a 

homomorphism such that d4: g* -+ epin, is a universal central extension of Lie 

algebras. We are concerned with the classification of the possibilities for (G*, 4), 

with G* and d defined over some algebraically closed field K. 

Below we will introduce a structure constant c E K and a finite subgroup Q of the 

l-dimensional additive group G,, such that the pair (c, Q) characterizes (G*, d) up 

to isomorphism. We call (c, Q) the type of (G”, d) or 4: G* -+ Spin,. 

2.2. Given the type (c, Q) of the extension 4 : G* + Spin,, the methods and results 

of I allow us to give a quite detailed description of G* (in particular certain subgroups 

of G*) and d. For instance, one can derive a presentation for G* (cf. I, 13.2). In fact, 

this is how we proved in I (Sections 11, 12 and 13) for the case c = 0, that (c, Q) 

39 



40 W. van der Kallen 

determines (G*, 4) up to isomorphism. For c f 0 this uniqueness follows in the 

same fashion. We leave the details to the reader. (Some of these details are needed 

for other purposes and can therefore be found below). Here we are interested in the 

existence problem. We want to show that for each pair (c, Q) there is an extension 

4: G* + Spin, of type (c, 0). We will see in 2.5 that it suffices to consider the case 

Q = 0. Also, as we proved the existence for type (0,O) in I (Section lo), we may 

further restrict ourselves to c f 0. The case c # 0, Q = 0 turns out to be essentially 

just one case, i.e. solutions are obtained from a universal solution by specializing c 

(see 2.5). 

2.3. Definition of c. Given 4: G” -+ Spin, we choose a maximal torus T” in G* and 

we choose, for each non-zero weight y of T* in g*, generators x;(u) as in I (11.6, 

11.7). (We reserve the term “root” for the non-zero weights of +b(T*), or T*, in 

spin,.) 

Now c = ~2,2,-e,-n1,c,+ez+el is the commutator constant defined by the property 

(d(t), x;(u))= X2*,+2,(Ct2U2)Xy*+*a(f2U) 

where 

a =-&l-&2, y=e,+e2+e3. 

This constant measures the deviation from “standard” behavior, cf. I (11.25). 

(“Standard” is the case that R, = ker #J is commutative, cf. I (11.2 1). In the standard 

case c = 0). 

2.4. Definition of Q. For a short root a we define rn by 

cf. I (11.23). It follows as in I (11.27) that the image of rU is contained in the center of 

G*. One further sees as in I (Section 11) that ra is a homomorphism G, + Z(G*) 

and that TV does not depend on the choice of the root (Y. (We will often confuse 6, 

with the group of its rational points over K, i.e. with the additive group of K). For 

y = El +&2+&s put (TY(t)= (X:(t), x’“,(l)). 

Again this defines a homomorphism v’: G, += Z(G*) and we have 

Arguing as in I(11.21) cf. I(11.25) we find TU(ct2)=ay(t2+ t)for a, y, c as above. 

In particular, r*(c) is the identity of G*. If c # 0 we put x;i’ (t) = T”(ct)o’(t). Then 

Tn(ct) = x$ (t + t2) and m’(t) = x0* (t2). If c = 0 we put x0* (t) = TCL(t). 
(The difference between these two definitions has to do with the fact that the c = 0 

case differs by an isogeny from what one would get by specializing the construction 
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below, which handles the case c f 0). As in I (13.1) we now define a finite discrete 

subgroup Q of 6, by Q = ker x0*. 

2.5. The type (c, Q)of 4: G” + Spin7 depends only on the isomorphism class of G*. 

(Recall that C$ is just the composition of the quotient homomorphism G” + G*/R, 

and an isomorphism G*/RU --+ Spin,, where R, is the unipotent radical of G*. Thus 

G* is more interesting than 4, cf. 1(7.4), I(7.7)). 

If we have (G*, 4)of type (c, Q) and if Q’ is a finite subgroup of G, which contains 

Q, then 4’: G”/x,*(Q’)-+ Spin7 is of type (c, Q’). Here d’ is induced by 4. So it 

suffices to prove existence of extensions C$ : G* + Spin, for type (c, 0). 

Theorem 1. Let G denote the split form of Spin, over S = Spec([Fz[X, X-l]). There is a 

homomorphism of group schemes dx: G* + G over S such that 

(i) Any specialization homomorphism f : lF,[X, X-‘]-, K indices a homomor- 

phism &cx): G* Xs Spec(K) -+ Spin, of type (f(X), 0). In particular, d&cx, is a 

universal central extension of Lie algebras. 

(ii) As a scheme, G* is the product over S of G and afine 15-space, while c,!J~ is the 

projection onto the factor G in this product. 

In other words, there is a l-parameter family whose fibers are the desired exceptional 

extensions. One can extend the family to.a family over the projective line, but then 

one also gets fibers which do not give universal central extensions of spin, (cf. 4.4). 

2.6. The proof of Theorem 1 will occupy the remainder of this paper. For simplicity 

we will not work over S, but simply over K, choosing some non-zero c E K. It will be 

clear from the construction that it all makes sense over S too, with c replaced by the 

indeterminate X. The group G* will be reconstructed “piece by piece”. That is, we 

will prove the existence of certain structures simpler than G” (like quotients or 

subgroups) and construct G” from them. 

2.7. We will need a slight generalization of the transfer theorem for rational 

cohomology which was proved in [3]. 

Theorem 2 (cf. [3, Theorem 2.1 I). Let G be a connected afine algebraic group, B a 

Bore1 subgroup of G, M a rational G-moduk, all defined over the field k. Then the 

restriction map Hi (G, M) --+ Hi (B, M) is an isomorphism for i 2 0. 

Proof. This was proved in [3] for the case that G is semi-simple, To arrive at the 

present form of the result we note that, if R is the radical of G, 

H’(G, M) = H’(G/R, H’(R, M)) = H’(B/R, H’(R, M)) = H”(B, M), 

where the second isomorphism is an instance of the semi-simple case. Inspecting the 

proof in [3] we see that the reduction to i = 0 is still valid, whence the result. 
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Alternatively, one may jazz up the above argument for the i = 0 case. Namely, by 

the semi-simple case the spectral sequences 

Et4 = HP(G/R, H’(R, M))JE&+‘= H”+‘(G, M) 

and 

E:’ = HP(B/R, H”(R, M))JE$+:‘” = Hp+q(B, M) 

are isomorphic. (See [3. Lemma 1. l] for the spectral sequences.) 

3. Construction of H and fi 

3.1. Let 2 = {*ai, *‘F~ * &i ( 1 G i f i s 3) denote the root system of Spin, and let us 

order the weights lexicographically. (So UF, + be2 + cc3 < do, + e&2 +fej if a < d; if 

a=dandb<e;ifa=dandb=eandccf.) 

Let 2’ = {a: E 2 / a > 0). Let R be the ideal generated by the weight space of F, in 

the Lie algebra of the adjoint group SO,. Then R is an irreducible Spin,-module of 

dimension 6 with highest weight E,. Put 

P(xOyO2)=xOyOz+zOxOy+yOzOx+yOxOz 

+zoyox+xozoy. 

(All six permutations occur.) Then P defines a homomorphism of Spin-i-modules 

R @R @R -+ R @R OR. Note that P(X OX 0 Y)= 0, because the charac- 

teristic is 2. The image Im P of P is a Spin,-module with weights f Ei, f. E 1 f &2 f e3. 

Their multiplicities are 2 and 1 respectively. The irreducible Spin,-module of highest 

weight e1 + ~~ + Ed has dimension 8 (e.g. by the proof of I(5.2)). 

So Im P has three composition factors. Computing a few images under the action 

one sees that they are arranged as follows. The whole module Im P is indecompos- 

able and there is a unique maximal submodule V of dimension 14. This V is 

generated by a highest weight vector of weight F, +F~+ F~. There is a unique 6 

dimensional submodule S of V, isomorphic to R. Of course Im P/V is also 

isomorphic to R and V/S is irreducible. 

3.2. Let L be the Spin7-submodule of dimension 7 in the Lie algebra of the adjoint 

group. Note that L is generated by an element of the Cartan subalgebra that would be 

called i(H,, + He, + HF3) if the characteristic were different from 2, which it isn’t. The 

highest weight of L is E~ and L contains R as a submodule, so we have an exact 

sequence of Spin,-modules 0 -+ V -+ Im P + L + K + 0, where the field K is 

viewed as the l-dimensional Spin,-module. This resolution of K yields a map 

H’(Spin,, K) + H2(Spin,, V). Take a non-trivial 0-cocycle with values in K, or, 

more specifically, take the one which is defined over FZ. Its image in H’(Spin,, V) is 

represented by some 2-cocycle of Spin, with values in V, defining an extension 

1 -+ V -+ H -+ Spin, -+ 1. This defines H. 
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3.3. Recall that H can be described as a subgroup of the semi-direct product E of 

Im P and Spin7 (see I(9.5)). We fix a maximal torus T of Spin7 and view T also as a 

subgroup of E. It can be arranged that T E H, by choosing the cocycles conveniently 

(within their class), just as in I(10.3). There is a T-equivariant cross section s of 

H + Spin, (cf. I(10.3, (14)), so we can define elements ya(t) in H by ye(t) = s(x,(t)). 

(Here x,(t) has the usual meaning, cf. I.) Let X be the set of weights of V, so 

For y E X let v,(l) denote the unique weight vector of weight y in V which is defined 

over [F2. (The multiplicity of y is one and IF2 has a unique non-zero element.) The 

t-multiple of u,(l) can be viewed as an element of E (or H) and is then written as 

v,(t), (~EK). We now have generators y,(t) and v,(t) for H. Because the whole 

construction can be made quite explicit, as in 1(10.3), we can also find relations 

between these generators. We will list some of these relations below. But let us see 

first what happens to the generators if s is replaced by another T-equivariant cross 

section s’. Say s’(x) = s(x)f(x). Then f is a T-equivariant map from Spin, into V and 

one sees from I(1 1.8) that f(x, (t)) = 1 if (Y = f&i f &i, but f(x, (f)) = O, (C-t) if (Y = f&i. 

(Here C, E K.) Inspecting the construction of s in I(10.3) one sees that any combina- 

tion of constants C, may actually occur. So if we are not more specific about the 

choice of s, we must accept some unspecified factors in the relations between the 

generators. We do accept this but we take s so that it is defined over IF2 (cf. I(8.2) or 

I(10.3)). 

3.4. The group H being an extension of Spin, by the module V, it is clear that there 

are relations of the type 

ya(t)v,(u)ya(t)-’ = jj uy+ia(Cit’u), with Ci E E2. 
i30 

(The action is defined over IFZ.) 

Further one has y,(t)~~(~)= y,(f+ u), either by direct computation or by the 

proof of I(1 1.5). For h E T one has hy, (t)h-’ = Ycz(a(h)t), hu,(u)h-’ = v,(r(h)u). If 

(~,p~Zwith(~+pfO,then 

(Ya(‘)T YP(‘))= (II0 Yi_+j~(N,,t’u’))v,.,(1, U), 

where the Nijep are the structure constants of Spin, and ~,~(t, U) is defined as follows. 

If (Y +p&X then ~(t, U) = 1. If (Y +p = f&i, then u,p(t, U) = u,+p(C,ptu) where 

C,,EK depends on the choice of s, cf. 3.3. If LY +p =f~if~~f~3. then v,p(t, u)= 

U,+p@U). 

3.5. We need a certain central extension 1 + G, -+ fi + H -+ 1 of H. To construct 

it, we restrict to the Bore1 subgroups and then solve the problem by hand. (“Solvable 
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subgroups can be constructed by hand.“) So we now look for an extension 

l-+G, %g -%‘B+I, 

where B is the Bore1 subgroup of H (i.e. B is generated by T, the ye(t) with cy E E’, 

the u,(t) with y E X). Before indicating in 3.6 how one proves the existence of this 

extension, we now discuss it without proofs. The homomorphism &: 63, + fi, or 

K + IZ?, has its image in the center of B. Choose a maximal torus in p-‘(T) and 

identify it with T via p. For LY EZ+, y E X, there are homomorphisms qa : K - L?, 

I?, : K + L?, such that 

PGa(f))= Ya(r), p(G))= fJ&)> 

hy’,(t)h-l = jL(a(h)t), hv’,(t)hP’ = v’,(y(h)t), 

where h E T, t E K. (Compare I, Theorem 8.2.) 

Let S be a set of weights. We call it half saturated if LY E S, /3 ES, p 2 0 implies 

a + p E S. For half saturated S we let o(S) be the subgroup of B’ generated by the 

Ta(t) with cy E 2’ n S and the z?,(t) with y E (X u {0}) n S. 

Put g(S) = T. o(S). If S is half saturated and 0 @ S, then Z?(S)is isomorphic with its 

image under p. So for instance, one has (ye(f), yp(u))= fi,+B(t~) when (Y = F~, 

/~=E,-E~. (Choose S={ma+np Im ~0, n ~0, m +n >O} and recall that the 

analogous relation holds in B.) 

Similarly (qa(t), v”,(u)) = fiy+2a(t2~) when Q=&~,Y=-F~-E~+E~. Etc. Any 

element of 5 can be written uniquely in normal form 

hu”,,(tl) . . . fi,,,(t~s)Ylp,(ud . . . ?&ug) where h E T, YI < . . . < YIS, yi E X ~101, PI < 
. . * < &, pi E E’. If a factor in the normal form is equal to the identity it will often be 

deleted. The normal form of an element of o(S), for half saturated S, contains only 

non-trivial factors whose weights are in S. By means of the co-ordinates t,, Ui in the 

normal form one can identify c(S), as a variety, with affine m-space. (m is the 

number of relevant co-ordinates). Similarly B can be identified, as a variety, with a 

product of T and affine 24-space. For the group fi we get a presentation as follows. 

Generators are the h E T, the ye(t) with cy E Z” and t E K, the z?,(t) with y E X u {0} 

and tE K. 

Relations are: xy = normal form of (xy), where x and y are taken from the 

generators. For instance 

y,(t&(U)= G_,(U)fio(tU +f2U2)Ga(f2U)~a((t) for Cy =Fi; 

v,(t)v~,(U)=~~,(U)v,(t) force =Pi; 

&,(t)v’_,(u) = v’_ ~(u)z&(t~)~~(t) for y = E 1 f ~2 * ~3; 

$a(t>y’p(u)= ~L+~(tu)~~(u)~,(t) for N = ~2, B = EI -~3. 

(The last relation follows from what we said before, the other three examples explain 

how Go(t) is related to other generators). If S is half saturated one obtains a 
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presentation for B(S) simply by deleting some generators and some relations from 

the above presentation. (Retain what makes sense in g(S)). A presentation for o(S) 

can be obtained in a similar fashion. If y is a weight, let S(y) denote the set of weights 

6 with 6 2 y. Then S(y) is half saturated. If (Y E _ZZ’, then )3,(t) normalizes fi(S(y)). 

If y E X u{O}, then v,(t) normalizes fi(S(y)). Say yI, . . , yzl denote the elements 

of Z+u X u {0} in decreasing order. The subgroups Fj = fi(S(y;)) form an increasing 

filtration of 0, the unipotent radical of l?. Let Ri denote the root subgroup of weight 

yi in 0. (i.e. Ri is generated by the y”,,(f), v’,(t)if y = yi E 2’ n X; it is generated by the 

)jy(r) if y = y, E Z+, y E! X; it is generated by the c,,(t) if y = y1 E X u {0}, y &E’). 

Then Fi+r is the semi-direct product (as algebraic group) of its normal subgroup F, 

and its subgroup R,+,. (1 b i c 20). And E? is the semi-direct product of T and the 

normal subgroup 0. 

3.6. To prove the existence of E?, and the other facts mentioned in 3.5, one argues 

inductively, following the filtration F1 c F2 . . . G F2, G l?. From the presentation for 

B one can obtain explicit formulas for the action of R,+, on Fi, where elements of Fi 

are written in normal form. So one can tell inductively how to multiply normal forms, 

by explicit formulas. The question is whether the algebraic structures thus obtained 

are indeed groups and whether these groups have all the desired properties. Say one 

has written down the presentation for F,. Then the first task is to show that F, exists, 

i.e. that there is an algebraic group with this presentation and with the desired normal 

form. (The underlying structure of a variety should of course come from the 

co-ordinates in the normal form). For i G 13 existence is trivial because Fi can be 

embedded into B in the obvious way. Say i 2 13. To get from existence of F, to that of 

Fi+l one mainly needs to check that the formulas in the presentation for F,,, do 

indeed yield an action of Ri+l on FL, so that we can form the semi-direct product. To 

check that the formulas yield an action it suffices to see that they respect the defining 

relations for F,. Now these are all of the form xy = normal form of (xy). Say (Y, p are 

the weights of x and y resp. Put 

S~~S(~~~~~j+~)~{~~+~~+t~~+~j~~O~S~O,t~0,~+S+t~0}. 

If o(S,,) exists, then the action respects the relation xy = normal form of (xy), simply 

because both the relation and the action on x and y already make sense in fi(&). 

(Here “existence” of o(S,,) is to be understood in the same way as existence of F,+,). 

This way one sees that it suffices to prove existence of the fi(S(a, & y)) and the 

B(S(a, P, P)), with 

S(a,P, Y)={T(Y+sP+tY I r~O,s~O,t~O,r+s+r>0}. 

(Such a reduction to three generators is known as the Church Rosser argument, cf. [5, 

Section 31.) If S((Y, 0, y) does not contain zero, existence is trivial again. 

One still has to deal with one of the following four types (or subsystems thereof). 

Type 1. S(cu, y, - y) where cy E E’, LY is long, ycX, y is still longer than o and 

orthogonal to (Y (e.g. a = E 1 + F~, y = E~ + ~~ - Ed). 
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Type 2. S(LY, /3, -N -B) where cy = F,, 0 EC’, p is long and orthogonal to LY. (So 

P+CU and@-& are both in X.) 

Type 3. S(a, p, -a -/3) where (Y = E,, h = ok, j f k. 

Type 4. S(a, p, 0) where (Y, /3 are long roots making an angle of 120 degrees. 

For each of these types one can filter as above and construct the desired groups by 

iterated semi-direct products. The computations are straightforward and will be left 

to the reader. (The four systems are quite small and can be filtered in various ways, 

some more convenient than others.) 

The second type is the most interesting one because its structure explains the need 

for the t’u* term in the relation y’,(t)V_,(u)= ;_,(u)&(cu + t2u’)6a(t’u)fe(t), 

where (Y = Fj. 

3.7. Now that we have the central extension 1 -+ K + l? + B + 1, let us consider 

the element in H*(B, K) which represents it. By the Transfer Theorem 2 this element 

is the restriction of an element of H*(H, K). So there is an extension 

1 -+ K + fi + H --, 1 of which the above extension is a restriction. The group G is 

what we were after in this section. 

Remark. Originally we proved the existence of the extension 1 + K -+ fi + H + 1 

by giving an explicit “germ” of a 2-cocycle class, i.e. a function of two variables, 

defined generically on H and satisfying cocycle conditions (generically) in such a way 

that Weil’s theory of group germs (cf. [l]) applies. The computations needed to 

check the cocycle conditions were very tedious. 

4. The exceptional family 

4.1. We will prove Theorem 1 by “mixing” the result of Section 3 with the result of I 

(Section 10) via a Baer product construction, i.e. by adding 2-cocycles. The constant 

c will determine the “ratio in the mix”. 

4.2. Let 4: G” + Spin, denote the extension constructed in I (Section 10). (It is of 

type (0, O).) The unipotent radical of G” has, by construction, the structure of a 

Spin,-module which is called ker 7~. This ker v is the direct sum of an eight 

dimensional module and a seven dimensional one. Call the latter N. By I(5.2) one can 

obtain N from the dual L” of the module L from 3.2 by applying a Frobenius twist. In 

the notations of 1 we have generators xc(t) of G* and a maximal torus T* of G*. Let 
us identify T* with T via 4 so that T has now been identified with a maximal torus in 

Spin7, in G *, in 8 and hence in fi. 

Choose c E K, c # 0. Define an endomorphism a of N by a(x: (t)) = x$(t) for 

y =*2ei, a(xg(t))=xz(t(t-c)). Write u: N + N, where the bar symbolizes that 

cr can be viewed as a quotient map with respect to the discrete subgroup S = 
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{x,* (0) .x: (c)}. One has a commutative diagram 

l-N-G*- 

! I CJ P 

G*/N- 1 

1-N- c;*/.S -G*/N B 1 

where p is the natural projection. Note that the action of G*/N on fi is not linear. 

In fact, there is no G*/N-equivariant non-trivia1 endomorphism of N, as one sees 

using I(11.9). (Such rigidity does not occur when the action is linear. Then multi- 

plication by a fixed scalar yields an equivariant endomorphism.) As m is abelian, the 

extension 1 -+ N + G*/S + G*/N +l can nevertheless be described by a class of 

2-cocycles. (There is a cross section for G*/S + G*/N by the construction of G.) 

One may obtain a 2-cocycle g in this class by composing u with the 2-cocycle 
constructed in I (Section 10). This will make that g enjoys some nice properties, like 

being T-equivariant and vanishing on T itself. 

4.3. Let A be the abelian subgroup of g generated by the &Y(t) with y = *Ed or 

y = 0. It is easy to see from the uniqueness results of I that I?/A is isomorphic with 

G*/N [1(13.12)]. We may choose the isomorphism so that it is compatible with the 

homomorphisms T + fi/A, T + G*/N, 6/A + Spin,, G”/N + Spin7, induced by 

homomorphisms introduced before. (Then the isomorphism is unique, cf. I(1 1 .S), 

(11.17).) So we have an extension 1 + A + I? + G*/N - 1. The homomorphism T 

from A to # which is defined by ~(z?,,(t)) = x&(ct*) for y = fsi, 7(2&(t)) = x0* (c2t2), is 

a G*/N-equivariant inseparable isogeny. (Note that we use xz (t) to denote both an 

element of N and an element of N, which differ as G*/N-groups. So the same 

formula would not define a G*/N-equivariant homomorphism A + N.) 

Let us identify T with its image in G*/N. Applying I(8.2) twice, once to fi + H 

and once to H - G*/N we get a T-equivariant cross section s of J? -+ G*/N with 

s(T) = T. It gives rise to a 2-cocycle f for the extension 1 -+ A -+ 6 + G*/N -+l 

and via r we get a 2-cocycle rf of G*IN with values in &? 

4.4. We now have two 2-cocycles of G*IN with values in N, viz. g and rf (see 4.2, 

4.3 resp.). Adding them we get a 2-cocycle g +Tf which describes an extension 

l+N+G: - G*/N + 1. We claim that GT, together with the composition of 
P 

p and the projection G*/N + Spin,, yields an extension GT -+ Spin,, of type (c, 0). 

This will prove Theorem 1. 
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Remark. If one makes the above construction with c = 0 one gets of = 0. One may 

say that S = (x0” (0) x0* (c)j then degenerates to the Lie algebra ,3 of the center of G”, 

for the following reason. One gets a commutative diagram 

1----+N------,G -G”/N - 

_ 
1-N A G*/3 - G*;N - 

where p is the natural quotient map with respect to 3, cf. [2] (17.4). At the other 

extreme, let us change co-ordinates in such a way that we can put c-’ equal to zero. 

To be precise, use n;,(f)= x~,(ct) for y = fe,, n:(t)= x~(c2t2). Then a(xfy(f)) = 

n~Y(cP’t) and a(x,*(t))= n~(cP’t(cP’t+ 1)). So if we put c-’ equal to zero then (T 

vanishes, so g vanishes, and g + rf describes the extension H/a --, Spin,, where a is 

the Lie algebra of A. Thus there is a family of extensions, with the projective line as a 

parameter space, so that the fiber at zero is G*/3, the fiber at infinity is fi/a, and in 

between the fibers are of type GT with c f 0. 

4.5. We still have to see that &: GT + Spin, is an infinitesimally central extension 

of type (c, 0). Consider p: GT + G*/N. 

The action of G*/N on fi is the same as in the extension 

1 -+ 15 + G*/S + G*/N -+ 1 of 4.2, so dp is a central extension of Lie algebras. 

(Note that du and dp are isomorphisms in 4.2. Also compare 1(11.2).) Let s be the 

cross section of p for which s(x)s(y)s(~y)~’ = g(x, y)+ rf(x, y). The restriction of s to 

T is a homomorphism. We identify the torus ST with T. Then s is T-equivariant and 

wedefineelementsx:(t)inGF byx~(t)=s(x~(t)/N)foryEEory=ie’*~~*e~. 

Recall that we also have elements x* z,(t) in the subgroup fl of G,* for cy = f&i. TO 

compute an expression like (x:(t), xg (u)) in GT, where (Y =&‘+ez, B =F’-~2, all 

one has to do is compute its analogue in both fl and G*/S and then multiply the 

answers in &? This gives the identity times x,*+p(t~), so (x:(f), x;(u)) = xz+p(~). 

From this relation it follows as in I(10.3, (18)) that dp is a universal central extension. 

So d& is a universal central extension. It is easy to see that the present definitions 

of the elements x:(t) in Gr are compatible with I(Section 11) for y # 0. Computing 

in fi and G*/S again we further find (x:(t), x~(u))x~+~~(~*u)= x;,+~~(c~*u~) for 

u,=-&‘-&z, y=&~+&~+&~.SOC=CZ,Z,ol,v indeed (cf. 2.3). It is also easy to see that 

the definition of xg (t) in # is not quite compatible with the conventions of 2.4, but 

that nevertheless Q = 0 (in the sense of 2.4). This proves Theorem 1. 

Remark. The inseparability of T is the reason that g + rf leads to the same extension 

of Lie algebras as g does. 
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