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Let G be the group scheme SL2 defined over a noetherian ring k.
If G acts on a finitely generated commutative k-algebra A, then
H∗(G, A) is a finitely generated k-algebra.
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1. Introduction

Let k be a noetherian ring. Consider a flat linear algebraic group scheme G defined over k. Recall
that G has the cohomological finite generation property (CFG) if the following holds: Let A be a
finitely generated commutative k-algebra on which G acts rationally by k-algebra automorphisms.
(So G acts from the right on Spec(A).) Then the cohomology ring H∗(G, A) is finitely generated as
a k-algebra. Here, as in [3, I.4], we use the cohomology introduced by Hochschild, also known as
‘rational cohomology’.

This note is part of the project of studying (CFG) for reductive G . Recall that the breakthrough
of Touzé [4] settled the case when k is a field [7]. And [8, Theorem 10.1] extended this to the case
that k contains a field. In this paper we show that in the case G = SL2 one can dispense with the
condition that k contains a field. According to the last item of [8, Theorem 10.5] it suffices to show
that H∗(G, A/p A) is a noetherian module over H∗(G, A) whenever p is a prime number. We fix p.
To prove the noetherian property we employ universal cohomology classes as in earlier work. More
specifically, we lift the cohomology classes cr[a]( j) of [5, 4.6] to classes in cohomology of SL2 over
the integers with flat coefficient module Γ mΓ pr+ j

(gl2). We get the lifts with explicit formulas that
do not seem to generalize to SLn with n > 2. Once we have the lifts of the cohomology classes we
can lift enough of the mod p constructions to conclude that H∗(G, A) hits much of H∗(G, A/p A).
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As H∗(G, A/p A) itself is a finitely generated k-algebra this will then imply that H∗(G, A/p A) is a
noetherian module over H∗(G, A).

For simplicity of reference we use [8]. As we are working with SL2 that amounts to serious overkill.
For instance, the work of Touzé is not needed for SL2. Further the ‘functorial resolution of the ideal
of the diagonal in a product of Grassmannians’ now just means that the ideal sheaf of the diagonal
divisor in a product of two projective lines is the familiar line bundle O(−1) �O(−1). And Kempf
vanishing for SL2 is immediate from the computation of the cohomology of line bundles on P

1.

2. Rank one

We take G = SL2 as group scheme over the noetherian ring k. Initially k is just Z. Let T be the
diagonal torus and B the Borel subgroup of lower triangular matrices. Its root α is the negative root.

2.1. Cocycles for the additive group

We have fixed a prime p. Define Φ(X, Y ) ∈ Z[X, Y ] by

(X + Y )p = X p + Y p + pΦ(X, Y ).

By induction one gets for r � 1

(X + Y )pr ≡ X pr + Y pr + pΦ
(

X pr−1
, Y pr−1)

mod p2.

Put

cZr (X, Y ) = (X + Y )pr − X pr − Y pr

p
∈ Z[X, Y ].

We think of cZr as a 2-cochain in the Hochschild complex C•(Ga,Z) as treated in [3, I 4.14, I 4.20].
Then cZr is a 2-cocycle because pcZr is a coboundary. One has

cZr (X, Y ) ≡ Φ
(

X pr−1
, Y pr−1)

mod p.

Taking cup products one finds a 2m-cocycle cZr (X, Y )∪m representing a class in H2m(Ga,Z). The co-
cycle cZr lifts the (r − 1)-st Frobenius twist of the Witt vector class that was our starting point in [5,
Section 4]. Now our strategy will be to follow [5, Section 4], lifting all relevant mod p constructions
to the integers. That will do the trick.

2.2. Universal classes

Our next task is to construct a universal class cr[m]( j) in H2mpr−1
(G,Γ mΓ pr+ j

(gl2)).
Let r � 1, j � 0, m � 1. Let α be the negative root, and let xα : Ga → SL2 be its root homomor-

phism, with image Uα . For a Z-module V its m-th module of divided powers is written as Γ m V and
its dual HomZ(V ,Z) is written as V #.

Consider the representation Γ mpr+ j
(gl2) of G with its restriction x∗

αΓ mpr+ j
(gl2) to Ga . Its low-

est weight is mpr+ jα. Say eα is the elementary matrix
(

0 0
1 0

)
that spans the α weight space

of gl2, and e[mpr+ j ]
α denotes its divided power in Γ mpr+ j

(gl2). Then cZj+1(X, Y )∪mpr−1
e[mpr+ j ]
α represents

a class in H2mpr−1
(Ga, x∗

αΓ mpr+ j
(gl2)) and the corresponding element of H2mpr−1

(Uα,Γ mpr+ j
(gl2))

is T -invariant. So we get a class in H2mpr−1
(B,Γ mpr+ j

(gl2)) and by Kempf vanishing ([3, II B.3]

with λ = 0) a class in H2mpr−1
(G,Γ mpr+ j

(gl2)). Recall that one obtains a natural map from
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Γ pr+ j
(gl2 mod p) to the (r + j)-th Frobenius twist (gl2 mod p)(r+ j) by dualizing the map from

(gl#2 mod p) to S pr+ j
(gl#2 mod p) that raises a vector v ∈ (gl#2 mod p) to its pr+ j -th power. So

Γ mpr+ j
(gl2) maps naturally to Γ m((gl2 mod p)(r+ j)) by way of Γ mΓ pr+ j

(gl2). Applying this to

our class in H2mpr−1
(G,Γ mpr+ j

(gl2)) we hit a class in H2mpr−1
(G,Γ m((gl2 mod p)(r+ j))), which

is where cr[m]( j) of [5, 4.6] lives. On the root subgroup Uα mod p it is given by the cocycle
Φ(X p j

, Y p j
)∪mpr−1

e(r+ j)[m]
α mod p, where e(r+ j)[m]

α mod p is our notation for the obvious basis vector
of the lowest weight space of Γ m((gl2 mod p)(r+ j)). This cocycle is the same as the one used in [5,
4.6] to construct cr[m]( j) . But then their cohomology classes agree on B and G also. So we have lifted
the cr[m]( j) of [5, 4.6] to a cohomology group with a coefficient module Γ mΓ pr+ j

(gl2) that is flat
over the integers.

Notation 2.3. Simply write cr[m]( j) for the lift in H2mpr−1
(G,Γ mΓ pr+ j

(gl2)).

2.4. Pairings

In [5, 4.7] we used the pairing between the modules Γ m(gl2 mod p)(r) and Sm(gl#2 mod p)(r) .
We want to lift it to a pairing between representations Γ m(Xr) and Sm(Yr) of G over Z. We take
X = Xr = Γ pr

(gl2) and define K = ker(X → (gl2 mod p)(r)).
Put Y = Yr = ker(HomZ(X,Z) → HomZ(K ,Z/pZ)). Then Y → HomZ((X/K ),Z/pZ) is surjective

because X is a free Z-module. Notice that HomZ((X/K ),Z/pZ) is just (gl#2 mod p)(r) . Thus Yr is flat
and maps onto (gl#2 mod p)(r) .

We have a commutative diagram

Γ m X ⊗ SmY Z

Γ m((gl2 mod p)(r)) ⊗ Sm((gl#2 mod p)(r)) Z/pZ

and the left vertical arrow is surjective. So we have found our lift of the pairing from [5, 4.7].

Remark 2.5. Notice that we do not use the precise shape of X here. What matters is that X is free over
Z, with a surjection of G modules X → (gl2 mod p)(r) , and that, for 1 � i � r, we have an element

in H2mpi−1
(G,Γ m X), suggestively denoted by ci[m](r−i) , that is mapped to the ci[m](r−i) of [5] under

the map induced by X → (gl2 mod p)(r) .

2.6. Noetherian base ring

From now on let k be an arbitrary commutative noetherian ring. By base change to k we get a
group scheme over k that we write again as G = SL2. We simply write Xr for Xr ⊗Z k and we write
Yr for Yr ⊗Z k. We keep suppressing the base ring k in most notations, so that Xr = Γ pr

(gl2), with

classes ci[m](r−i) in H2mpi−1
(G,Γ m Xr). The commutative diagram above becomes after base change

Γ m Xr ⊗ SmYr k

Γ m((gl2 mod p)(r)) ⊗ Sm((gl#2 mod p)(r)) k mod p
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Lemma 2.7. If V is a representation of G and v ∈ V , then the subrepresentation generated by v exists and is
finitely generated as a k-module.

Proof. As k[G] is a free k-module, this follows from [6, Exposé VI, Lemme 11.8]. �
2.8. Cup products from pairings

Let U , V , W , Z be G-modules, and φ : U ⊗ V → Z a G-module map. We call φ a pairing. Comput-
ing with Hochschild complexes one gets cup products Hi(G, U ) ⊗ H j(G, V ⊗ W ) → Hi+ j(G, Z ⊗ W )

induced by φ. Note that we are not assuming that the modules are flat over k. We think of the
Hochschild complex for computing Hi(G, M) as (C∗(G,k[G]) ⊗ M)G , where C∗(G,k[G]) has a differ-
ential graded algebra structure as described in [7, Section 6.3].

2.9. Hitting invariant classes

Definition 2.10. Recall that we call a homomorphism of k-algebras f : A → B noetherian if f makes B
into a noetherian left A-module. It is called power surjective [2, Definition 2.1] if for every b ∈ B there
is an n � 1 so that the power bn is in the image of f .

See [7, Section 6.2] for some relevant properties of noetherian maps in cohomology. We are now
going to look for noetherian maps. We keep the prime p fixed. Let r � 1. Let Ḡ denote G base changed
to (k mod p), and let Ḡr denote its r-th Frobenius kernel. More specifically, take the Frobenius kernel
(Gr)Z/pZ of (SL2)Z/pZ and let Ḡr be obtained from (Gr)Z/pZ by base change Z/pZ → k mod p. Now
(SL2)Z/pZ/(Gr)Z/pZ is affine, and quotients remain affine under base change, cf. [3, I.5.5(1), I.5.4(5)], so
Ḡ/Ḡr is affine. Thus Ḡr is a (k mod p)-flat exact normal subgroup scheme of Ḡ [3, I 6.5], and we have
a Hochschild–Serre spectral sequence as in [3, I 6.6] for Ḡr in Ḡ . We use bars to indicate structures
having (k mod p) as base ring. Let C̄ be a finitely generated commutative (k mod p)-algebra with Ḡ
action on which Ḡr acts trivially. By [2, Remark 52] we may view C̄ also as an algebra with G action.
Let C be a finitely generated commutative k-algebra with G action and let π : C → C̄ be a power
surjective equivariant homomorphism.

Theorem 2.11. Heven(G,C) → H0(G, H∗(Ḡr, C̄)) is noetherian.

Proof. By [1, Theorem 1.5, Remark 1.5.1] H∗(Ḡr, C̄) is a noetherian module over the finitely generated
graded algebra

R̄ =
r⊗

a=1

S∗((ḡl(r)2

)#(
2pa−1)) ⊗ C̄ .

Here (ḡl
(r)
2 )#(2pa−1) means that one places a copy of (ḡl

(r)
2 )# in degree 2pa−1. It is easy to see that

the obvious map from R = ⊗r
a=1 S∗(Yr(2pa−1)) ⊗ C to R̄ is noetherian. So by invariant theory [2,

Theorem 9], H0(G, H∗(Ḡr, C̄)) is a noetherian module over the finitely generated algebra H0(G,R).
By [7, Remark 6.7] it now suffices to factor the map H0(G,R) → H0(G, H∗(Ḡr, C̄)) as a set map
through Heven(G,C) → H0(G, H∗(Ḡr, C̄)).

On a summand

H0

(
G,

r⊗
a=1

Sia
(
Yr

(
2pa−1)) ⊗ C

)

of H0(G,R) we simply take cup product with the (lifted) ca[ia](r−a) according to the pairing of Sia (Yr)

with Γ ia (Xr) = Γ ia Γ pr
(gl2). In the proof of [5, Corollary 4.8] one has a similar description of the map

to H∗(Ḡr, C̄) on the summand
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H0

(
G,

r⊗
a=1

Sia
((
ḡl

(r)
2

)#(
2pa−1)) ⊗ C̄

)

of H0(G, R). The required factoring as a set map thus follows from the compatibility of the pairings
and the fact that the lifted ca[ia](r−a) are lifts of their mod p namesakes. �

Recall that G is the group scheme SL2 over the noetherian base ring k. Now let A be a finitely
generated commutative k-algebra with G action.

Theorem 2.12 (CFG in rank one). H∗(G, A) is a finitely generated algebra.

Proof. Recall that A comes with an increasing filtration A�0 ⊆ A�1 ⊆ · · · where A�i denotes the
largest G-submodule all whose weights λ satisfy ht λ = ∑

β>0〈λ,β∨〉 � i. (Actually there is now
only one positive root, so that the sum has just one term.) The associated graded algebra is the
Grosshans graded ring gr A. Let A be the Rees ring of the filtration. So A is the subring of the
polynomial ring A[t] generated by the subsets ti A�i . Let Ā = A/p A. As in [5, Section 3] we choose

r so big that xpr ∈ gr Ā for all x ∈ hull∇(gr Ā). Put C̄ = (gr Ā)Ḡr . By [2, Theorem 30] the algebra
A/tA = gr A is finitely generated. Now t has degree one in the positively graded algebra A, so
A is also finitely generated. By [2, Theorem 35] the map gr A → gr Ā is power surjective. Then
so is the map A → gr Ā, because A → gr A is surjective. Now take a finitely generated G invari-
ant subalgebra C of the inverse image of C̄ in A in such a way that C → C̄ is power surjective.
By Theorem 2.11 the map Heven(G,C) → H0(G, H∗(Ḡr, C̄)) is noetherian. By [1, Theorem 1.5, Re-
mark 1.5.1] the H∗(Ḡr, C̄)-module H∗(Ḡr,gr Ā) is noetherian and by [2, Theorems 9, 12] it follows that
H0(G, H∗(Ḡr, C̄)) → H0(G, H∗(Ḡr,gr Ā)) is noetherian. Then so is Heven(G,C) → H0(G, H∗(Ḡr,gr Ā)),
hence also Heven(G,A) → H0(G, H∗(Ḡr,gr Ā)). This is what is needed to argue as in [5, 4.10] that
Heven(G,A) → H∗(G,gr Ā) is noetherian. And then one concludes as in [5, 4.11] that Heven(G,A) →
H∗(G, Ā) is noetherian. But A → Ā factors through A. It follows that Heven(G, A) → H∗(G, Ā) is
noetherian. As p was an arbitrary prime, [2, Theorem 49], or rather the last item of [8, Theorem 10.5],
applies. �
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