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1 Introduction

We exhibit a nice Frobenius splitting σ on G×B b where b is the Lie algebra
of the Borel group B of upper triangular matrices in the general linear group
G = Gln. What is nice about it, is that it descends along familiar maps
and specializes to familiar subvarieties in a manner that is useful for the
study of the singularities of closures of conjugacy classes of nilpotent n by
n matrices. In particular, we show that these closures are simultaneously
Frobenius split, are normal, and have rational singularities. The result on
rational singularities is derived from a general vanishing theorem that will
be proved in our paper [15]. Note that normality has already been proved by
Donkin in [3]. His method uses a lot of representation theory and employs
resolutions of the closures of conjugacy classes invented by Kraft and Procesi.

An alternative approach to these singularities has been given by
G. Lusztig. In [11] he showed that the same singularities occur in Schu-
bert varieties for Kac-Moody groups of affine Weyl groups. Now Schubert
varieties for such infinite dimensional groups are mastered in Mathieu’s book
[12], where Mathieu shows they are normal and have rational singularities.

In contrast with this, our work remains in finite dimensions. It relies on
explicit formulas. Indeed the formula for our splitting σ is given by a product
of principal minors and the specialization of the splitting to subvarieties is
based on an inspection of what happens to the determinants. To descend σ to
the Lie algebra g of G, (along the natural map G×Bb → g, cf. Grothendieck’s
“simultaneous resolution” [2]), we use a Galois theoretic argument. We find
that above the generic point of g the action of the Weyl group on σ is trivial.
As preparation for that computation we first spell out trivializations of the
canonical bundles of G×B b and G×T t.
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The geometry of conjugacy classes is of course simplest for the general
linear groups. It may be of interest to try and extend our method to other
semisimple groups, but there are some obstructions to this. For instance,
for the symplectic group of rank 2 in characteristic 2 there is no function
analogous to the product of principal minors. (No function that yields a
splitting.)

The first author wishes to thank Shrawan Kumar for useful and stimulat-
ing discussions. The second author wishes to thank Steve Donkin for pointing
out Lusztig’s paper [11] and T. A. Springer for showing the importance of
the Weyl group action.

2 Orientations.

We will need the relation between trivializations of the canonical bundle ω
on three different spaces.

2.1 Notations. We work over an algebraically closed field k of charac-
teristic p, p > 0. Let G be the group of n by n invertible matrices, B its
subgroup of upper triangular matrices, B = TU the usual decomposition.
The unipotent radical of the Borel group B− opposite to B we call U−.
Thus U− consists of unipotent lower triangular matrices. The Lie algebra of
G is called g and is identified with the vector space—viewed as a variety—of
n by n matrices. Similarly b is the Lie algebra of B, u− is the Lie algebra of
U−, t is that of T . The Weyl group is W . All this is viewed as being defined
over the prime field in the usual way.

2.2 Volume forms. A nowhere vanishing global section of the canonical
bundle on a variety is called a volume form. They exist only if the canonical
bundle is trivial and then they are unique up to global units. In our examples
the only global units are constants. We wish to choose volume forms on the
three varieties G×B b, G×T t and g. On g this is very easy; one just chooses
an ordered basis of g and gets a generator of the top exterior power

∧top
g

and thus a global generator v[g] of the canonical bundle ω[g]. On G×B b we
proceed as follows. A point p on this variety may be represented by a pair
(g,X) with g ∈ G and X ∈ b. Given such a pair we map the variety U− × b

into G×B b by the local isomorphism τg,X : (x, Y ) 7→ (gx,X + Y ). We fix a
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volume form v[U− × b] of U−× b and take its image in the canonical bundle
of G×B b to get a local section around p of the canonical bundle ω[G×B b].

Lemma 2.3 This procedure defines a volume form on G×B b.

Proof. Think of the canonical bundle as a variety and think of the desired
volume form as a morphism of varieties. We need to check that the results
patch when one varies (g,X). For this the key is to show that when (g1, X1)
and (g2, X2) represent the same point p of G×B b, the resulting local sections
v1 and v2 respectively of ω[G×B b] agree at p. Put b = g1

−1g2. Thus X1

equals Ad(b)X2. Identify U− in the obvious way with a neighborhood of
the ‘origin’ B of G/B. Thus we get an identification of the tangent space of
U−×b at its origin (1, 0) with g/b⊕b. Consider the automorphism of G/B×b

given by (x, Y ) 7→ (bxb−1,Ad(b)Y ). View it as a birational automorphism ψ
of U−×b. We have τg1,X1ψ = τg2,X2 , so we only need to check that the tangent
map to ψ at the origin (B, 0) has determinant 1. This determinant is the
same as the determinant of Ad(b) restricted to b times the determinant of the
map induced by Ad(b) on g/b, so it is simply the determinant of Ad(b). Now
the adjoint action of G is by linear transformations of determinant 1. (Recall
that G is generated by its center together with its commutator subgroup.)

2.4 Orientation on G×T t. The reasoning is similar to the case ofG×Bb.
Given (g,X) with g ∈ G and X ∈ t we map the variety U− × U × t into
G×T t by the local isomorphism (x, y, Y ) 7→ (gxy,X + Y ). We fix a volume
form v[U− × U × t] of U−×U × t and take its image in the canonical bundle
of G ×T t to get a local section of ω[G×B b]. Identify the tangent space at
(1, 1) of U− × U in the obvious way with the tangent space g/t of G/T at
its ‘origin’ T . This gives an identification of the tangent space of U−×U × t

at its origin (1, 1, 0) with g/t ⊕ t. The analogue of lemma 2.3 holds with a
similar proof and we get a volume form v[G×T t] on G×T t.

2.5 Comparison of volume forms. There is a natural map from G×T t

to G×B b, sending the class [(g,X)] of (g,X) to the class [(g,X)] of (g,X).
There is also a natural map from G×T t to g sending [(g,X)] to Ad(g)X. We
wish to know what happens to the volume forms under these maps. More
specifically, the pull back of a volume form is a function times the volume
form on the source, and we care about the divisor of that function. This is
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an exercise in computing determinants. We study the map from G ×T t to
g at [(g,X)] by composing with the map from U− × U × t to G×T t, which
was used for constructing the volume form v[G×T t]. Recall we identify the
tangent space of U−×U× t at its origin (1, 1, 0) with g/t⊕ t which in its turn
may be identified with g itself. The upshot is that we have to compute the
determinant of the map from g to g which sends Y +Z to Ad(g)([Y,X] +Z)
for Y ∈ u− ⊕ u and Z ∈ t. That determinant does not depend on g but
only on X. One may view it as the product of the roots applied to X. The
divisor of the function on G×T t which arises as the coefficient of the volume
form is thus twice the divisor of the reduced subvariety G ×T tirr, where
tirr is the subvariety consisting of the elements having fewer than n distinct
eigenvalues. So this is the answer when we pull back from g. Next let us pull
back from G×B b. The determinant to consider is now the determinant of the
endomorphism of u−⊕u⊕t = u−⊕b sending (Y −, Y +, Z) to (Y −, [Y +, X]+Z).
Therefore now the divisor is just once G×T tirr.

2.6 The action of W . An element w of the Weyl group acts on G×T t

through [(g,X)] 7→ [(gw−1,Ad(w)X)], with a slight abuse of notation.

Lemma 2.7 The Weyl group acts through the sign representation on the
linear span of the pull back to G×T t of the volume form of G×B b.

Proof. The map from G×T t to g is equivariant for W , when W acts trivially
on g, so the pull back of the volume form of g is invariant. We have to divide
this pull back by the function defining G ×T tirr, on which W indeed acts
through the sign representation.

3 Frobenius splittings.

3.1 A partial order. In order to describe our computations, we need to
single out a particular class of B invariant ideals of b. To this end we put a
partial order on the set I = [1, n] × [1, n] which indexes the coordinates on
g. We declare that

(i, j) ≤ (r, s) ⇐⇒ ((i ≥ r and j ≤ s) or j ≤ s− r)

If S is an ideal for this partial order, i.e. if (i, j) ≤ (r, s) and (r, s) ∈ S
imply (i, j) ∈ S, then we define b[S] to be the subspace of b consisting of the
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matrices X with Xij = 0 for (i, j) ∈ S. One easily sees that such a subspace
is a B invariant ideal. Let us agree to use the notation b[S] only when S
is an ideal for the partial order. We will find a Frobenius splitting for all
G×B b[S] simultaneously.

3.2 Subdeterminants. If M ∈ g is a matrix, let us indicate by a nota-
tion like M≤r,≥s the submatrix consisting of the entries whose row number is
at most r and whose column number is at least s.

Lemma 3.3 Let g be a unipotent lower triangular matrix and let M ∈ g be
such that M≤r,≤n−r = 0 for some integer r between 1 and n. Then

det((gMg−1)≤r,≤r) = det(M≤r,>n−r) det((g−1)>n−r,≤r)

Proof. Exercise.

3.4 The choice of σ. We choose a very particular section σ of the anti-
canonical bundle of G ×B b. Namely, if we multiply σ by our volume form
v[G×B b], which we take to be defined over the prime field, then we require
the resulting function to be the product over all integers r between 1 and n of
the pull back from g of the subdeterminant function det(X≤r,≤r). The power
σp−1 of σ defines by [13] a twisted linear endomorphism φσ of the structure
sheaf of G ×B b. Here twisted linear means that it is a morphism of sheafs
of abelian groups satisfying the rule

φσ(fpg) = fφσ(g).

If this endomorphism preserves the constant function 1, then it is in fact a
Frobenius splitting. (This is indeed what will happen.)

3.5 Specializing to a subspace. Let S be an ideal of the partially
ordered set I of 3.1, and (s, t) a maximal element of S, so that S ′ = S −
{(s, t)} is also an ideal. Assume s ≤ t so that the corresponding coordinate
does not vanish on b. If σ[S ′] is a global section of the anti-canonical bundle of
G×B b[S ′], which vanishes on G×B b[S], we wish to define a residue resσ[S ′]
of σ[S ′] such that the twisted linear endomorphism φσ[S′] of the structure
sheaf OG×Bb[S′] of G×B b[S ′], defined by the p− 1-st power of σ[S ′], induces
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on the structure sheaf of the codimension 1 subspace G×B b[S] the twisted
linear endomorphism φσ[S] defined by the p− 1-st power of σ[S] := resσ[S ′].
To this end we consider on G/B an open set V which is small enough to
ensure that the line bundle G ×B (b[S ′]/b[S]) trivializes over V . Say f is a
nowhere vanishing section over V of the dual line bundle. We choose resσ[S]
so that

resσ[S](η) = σ(ηdf/f)

for a local section η of the canonical bundle of G ×B b[S], with hopefully
self explanatory notation. One checks that this is independent of the pre-
cise choice of f , and therefore patches as we vary V . One also checks the
desired correspondence with twisted endomorphisms, using the explicit local
formulas of [13].

Remark 3.6 In 3.5 it is actually not essential that f is a section of a line
bundle. The “residue” in 3.5 is dual to a Poincaré residue (cf. [6]) restricted
to the subvariety, and thus exists in greater generality.

3.7 Formulas for the specializations. If S is as above, and r is an
integer between 1 and n, let δr[S] denote the matrix with a one at each
entry (i, j) ∈ S with i + n = j + r and zeroes elsewhere. The open subset
U− × b[S] of G ×B b[S] is isomorphic to a linear affine space, so it has—up
to a constant multiple—a natural choice of volume form. (The full space
G×B b[S] usually has no volume form.) Multiplying σ[S] by such a volume
form we claim to get a function sending (g,X) ∈ U− × b[S] to a constant
times the product over all integers r between 1 and n of the subdeterminants
det((g(X + δr[S])g−1)≤r,≤r).

Theorem 3.8 For each ideal S of I there is a sequence of specializations
(cf. 3.5) starting with σ of 3.4 and ending with σ[S] as in 3.7. The p− 1-st
power of σ[S] defines a Frobenius splitting on G ×B b[S]. This splitting is
also induced by the splitting of φσ of G×B b.

3.9 Start of proof. We argue by induction on the size of S to show that
specialization leads to the formulas indicated in 3.7, but we will go in the
other direction to prove that one has Frobenius splittings. The formula for
σ[S] is by definition correct when b[S] equals b. (Note that in this case i > j

6



for (i, j) ∈ S so that δr[S] vanishes for r ≤ n.) Therefore let us now assume
S contains a maximal element (s, t) with s ≤ t. We assume the formulas
true for S ′ = S − {(s, t)}. Put r = s + n − t. For (g,X) ∈ U− × b[S ′] the
hypotheses of Lemma 3.3 apply with M = X + δr[S

′]. Moreover M≤r,>n−r is
a block matrix α ∗ ∗

0 Xst ∗
0 0 β


with determinant det(α)Xst det(β). We may use Xst as the f of 3.5, at least
over the open subset U− of G/B. As U− × b[S] is dense in G ×B b[S], the
hypotheses for the residue construction are satisfied and we only need to
check that it replaces the factor det((X + δr[S

′])≤r,>n−r) in the product for
σ[S ′] by the factor det((X + δr[S])≤r,>n−r). Indeed one must put Xst equal
to zero in the regular function det(M≤r,>n−r)/Xst = det(α) det(β). And this
gives the same as putting Xst equal to zero in det((X + δr[S])≤r,>n−r).

3.10 The splitting of G/B. We take S = I and investigate σ[S]. It
is a section of the anti-canonical bundle of G ×B 0 = G/B. Its p − 1-st
power defines a twisted endomorphism φσ[S] of the structure sheaf, which is
a Frobenius splitting if φσ[S](1) = 1. As G/B is complete, we may try the
criterion in terms of local coordinates around a special point, given in Propo-
sition 6 of [13]. As special point we take the origin B, and we restrict to its
neighborhood U− = U−B/B. But for the coordinates of g ∈ U− we take the
matrix coefficients Yij with i > j of the inverse matrix. The product of σ[S]
with the volume form of U− is given by the product of the subdeterminants
det((g−1)>n−r,≤r). For r = 1 this gives Yn,1. Putting that coordinate equal to
zero one gets Yn−1,1Yn,2 as subdeterminant for r = 2. Putting those two co-
ordinates equal to zero too, one gets Yn−2,1Yn−1,2Yn,3 as the subdeterminant
for r = 3. Proceeding in this manner, one sees that the p − 1-st power of
the product of the subdeterminants has 1 as the coefficient of the monomial∏

i>j Y
p−1
ij . This shows that we have a splitting. (As it happens, the normal-

izing constant is automatically correct because we started with something
defined over the prime field and then took a p − 1-st power. Otherwise we
would have had to rescale φσ.)
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3.11 End of proof of 3.8. We now know that φσ induces a splitting on
G ×B 0, so φσ(1) restricts to 1 on G ×B 0. It remains to show that it is 1
on all of G ×B b. Now if c is a nonzero constant, we get an automorphism
hc of G ×B b given by [(g,X)] 7→ [(g, cX)]. Under this automorphism the
section σ goes to a nonzero constant multiple of itself, because determinants
are multilinear. This implies that the zero set of φσ(1) is invariant under hc,
for all nonzero c. As φσ(1) is 1 on the zero section of the vector bundle G×B b

over G/B, the result follows. Alternatively, one may show that σ extends to
a complete variety, by embedding b as an open subset of the projective space
P (b⊕ k). . . 2

4 Conjugacy classes of nilpotent matrices.

4.1 Partitions. Given the conjugacy class C(N) of a nilpotent element
N of g, one may associate to it two partitions of n. The first, say π[N ] =
(π[N ]1, . . . , π[N ]r), consists of the sizes of the Jordan blocks, in descending
order. The second is the dual partition π′[N ]. It may also be read off the
dimensions of the kernels of the powers of N , in an easy way. Let F be the
partial flag in kn whose i-th part is spanned by the first π′[N ]1 + · · ·+ π′[N ]i
standard basis vectors, (0 ≤ i ≤ π[N ]1), and let P [N ] be the stabilizer of
the flag F . Then P [N ] is a parabolic subgroup and the sizes of the blocks in
its Levi subgroup are exactly given by π′[N ]. Let r[N ] be the Lie algebra of
the unipotent radical R(P [N ]) of P [N ]. It has an open orbit, called r[N ]reg,
under the action of P [N ]. This orbit is the open dense subset consisting of
the elements whose powers have maximal rank, i. e. such that the i-th power
has rank π′[N ]i+1+ · · ·+π′[N ]s, where s = π[N ]1 is also the number of simple
factors of the Levi group. The regular orbit is also the intersection of the G
orbit of N with r[N ]. An element X of the Lie algebra r[N ] does not just
preserve the flag; it actually satisfies X(Fi) ⊂ Fi−1 and thus induces maps
Fi/Fi−1 → Fi−1/Fi−2. One checks that it belongs to the regular orbit if and
only if all these maps are injective.

4.2 Resolution. Let ρ denote the map from G ×B b to g given by
[(g,X)] 7→ Ad(g)(X). We want to take a “direct image” of the splitting
φσ along ρ.
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Theorem 4.3 The twisted endomorphism of ρ∗(OG×Bb) induced by φσ leaves
invariant the subsheaf Og, and thus yields a Frobenius splitting φ of g. For
each nilpotent matrix N in g this splitting is compatible with the closure of
the conjugacy class of N .

Proof. Let f be a regular function, defined on some open subset V of g. As
ρ is proper, Γ(ρ−1(V ),OG×Bb) is finite over Γ(V,Og). Moreover, g is a normal
variety, so to prove that φσ(f) ∈ Γ(V,Og), it suffices to show that it is in the
function field k(g) of g. Now the function field of G×B b is the same as the
function field of G×B breg = G×T treg, and the latter function field is a Galois
extension with group W of k(g), see [2]. Thus what we need to show is that
φσ(f) is W invariant. As f is W invariant, this will follow if the restriction
of the Frobenius splitting φσ to G×T treg is invariant. It is indeed invariant
because of Lemma 2.7 and the construction of φσ. (The p−1-st power of the
sign representation is the trivial representation, and functions that are pulled
back from g are invariant.) To prove the last sentence of the theorem, we use
that r[N ] is one of the b[S] of 3.1, because the parts of π′[N ] are ordered by
descending size. Thus by theorem 3.8 φσ leaves invariant the ideal sheaf of
G×B r[N ] and thus φ leaves invariant the ideal sheaf of ρ(G×B r[N ]), which
is indeed the closure of the conjugacy class of N .

Notation 4.4 IfN ∈ g is a nilpotent element and S is such that r[N ] = b[S],
we write σ[N ] for σ[S], b[N ] for b[S], δr[N ] for δr[S]. By ρ[N ] we denote the
restriction of ρ to G×B r[N ] with as target the closure of the conjugacy class
of N .

Proposition 4.5 If N ∈ g is nilpotent, there is a principal effective divisor
D which contains the exceptional locus of ρ[N ] : G×B r[N ] → C(N) and on
which σ[N ] vanishes.

Proof. Let us show first that σ[N ] vanishes on the exceptional locus. This
locus is the complement of G ×B r[N ]reg. As its intersection with the open
set U− × r[N ] is dense, we may restrict attention to that open set. Let us
consider (g,X) ∈ U− × r[N ] such that σ[N ] does not vanish at [(g,X)]. We
have to show that X ∈ r[N ]reg. The map Fi/Fi−1 → Fi−1/Fi−2 induced
by X is given by a submatrix α of X with π′[N ]i columns and π′[N ]i−1

rows. (2 ≤ i ≤ π[N ]1). Let β be the submatrix of α consisting of the
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bottom π′[N ]i rows. Choose r such that β is one of the blocks along the
diagonal in (X + δr[S])≤r,>n−r. Then the hypotheses of Lemma 3.3 apply
with M = X + δr[S], so det(M≤r,>n−r) does not vanish. But M≤r,>n−r is a
block matrix of the form  ∗ ∗ ∗

0 β ∗
0 0 ∗

 ,

so β has full rank and the map Fi/Fi−1 → Fi−1/Fi−2 is injective. It follows
that X ∈ r[N ]reg. To finish, check that the map (g,X) 7→ det(β) defines a
regular function on G×B r[N ].

Theorem 4.6 If N ∈ g is nilpotent, then C(N) is normal and has rational
singularities.

4.7 Start of proof. By 4.3, C(N) is Frobenius split, so normality will
follow from [14] if we find any normal variety mapping onto C(N) with
connected fibres. One may use a map from [10], but we prefer to use the
following theorem.

Theorem 4.8 (Spaltenstein) The fibres of ρ[N ] : G×B r[N ] → C(N) are
connected.

Proof. Let M ∈ r[N ] and let F be the partial flag corresponding with P [N ].
Note that X ∈ r[N ] if and only if X(Fi) ⊂ Fi−1 for all i. The conjugacy
classes of nilpotents that intersect r[N ] are those that are contained in the
image C(N) of ρ[N ]. By section 1 of [4] the criterion for X to belong to such
a class is that dim(kerX i) ≥ dim(kerN i) for all i ≥ 1. In other words, the
condition is that π[X] ≤ π[N ] in the “closure ordering” of partitions, called
“dominance” order in [5]. The fibre ρ[N ]−1(M) of M is parametrized by

{ g ∈ G | Ad(g−1)(M)(Fi) ⊂ Fi−1 for all i }/B,

which maps onto a set of partial flags

F = {F ′ | dim(F ′
i ) = dim(Fi), M(F ′

i ) ⊂ F ′
i−1 }

through a map g 7→ g(F ), which is a proper map with connected fibres.
To prove the theorem it thus suffices to show that F is connected. Now F
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maps onto a set V of linear subspaces of ker(M) by the map f which assigns
to a partial flag its first part. By an induction hypothesis we may assume
the fibres of f to be connected, as they are of the same nature as F , but
for smaller n. It thus remains to understand why V is connected. By the
remarks above V consists of the π′[N ]1 dimensional subspaces L of ker(M)
for which the map X = ML induced by M on kn/L satisfies dim(kerX i) ≥
dim(kerN i) − dim(L) for i ≥ 1. Now one can be quite explicit about the
way the Jordan type of ML—or the Young/Ferrers diagram of its partition—
depends on the choice of L. (We may now forget about N .) Let ei,j be a
Jordan basis of kn for M , with

eij 7→ ei,j−1 7→ · · · ei1 7→ 0.

One may think of this basis as indexed by the boxes of the Young diagram
of π = π[M ]. For a subspace L of kerM = span(e11, . . . , e1s) we define
a pivot to be an integer i such that L intersects e1i + span(e11, . . . , e1,i−1).
Taking vectors that realize the respective pivots gives a basis of L and the
Jordan type of ML is obtained from that of M by making the i-th block one
smaller if i is a pivot. (Exercise.) In terms of π[M ], one should subtract
1 from π[M ]i when i is a pivot, and then reorder the parts again by size,
if necessary. If L has i as a pivot, but not i − 1, then one may modify the
corresponding basis vector, and thus also L, to lower the pivot by one. Doing
this, the other pivots remain the same and dim(ker(ML)i) can only increase,
as one sees by looking at the partitions. So one does not leave V this way.
It is easy to realize such a lowering of a pivot in a one parameter family
of subspaces in which the general element has the original set of pivots and
the special element has the “lower” set. This family thus lies inside V . The
process may be repeated until the set of pivots is {1, . . . , dim(L)}, in which
case L = span(e11, . . . , e1,dim(L)). All of V is thus in the same connected
component as this particular subspace.

4.9 End of proof of 4.6. The map ρ[N ] factors through the birational
map G ×P [N ] r[N ] → C(N) and the higher direct images of OG×Br[N ] in

G×P [N ]r[N ] vanish because G×B r[N ] → G×P [N ]r[N ] is a fibration with fibre
P [N ]/B to which Kempf’s vanishing theorem applies. Further the splitting
of G ×B r[N ] is compatible with the zero set of σ[N ] and its subdivisor D
from 4.5 (see [13] Remark on page 34; observe that the scheme σ[N ] = 0
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can not contain a divisor with multiplicity > 1 because that would make the
splitting wrong in local coordinates). So by [15] it follows from 4.5 that the
higher direct images in C(N) of the structure sheaf of G×B r[N ] vanish. By
the Leray spectral sequence the higher direct images in C(N) of the structure
sheaf of G×P [N ] r[N ] also vanish. And that structure sheaf is also isomorphic
with the canonical bundle. We have thus checked the conditions stated by
Kempf on page 51 of [8]. 2
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