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ABSTRACT 

We classify the complex Laurent polynomials with the property that their powers have no constant 
term. The result confirms a conjecture of Mathieu for the case of tori. (A different case would imply 
Keller’s Jacobian Conjecture.) 

1. INTRODUCTION 

We prove a special case of a conjecture of Mathieu ([Mat]). 

Conjecture 1 (Mathieu). Let K be a connected real compact Lie group. Letf andg 
be K-finite functions on K. Assume that for all n 2 1 the constant term ofp van- 
ishes. Then for all but$nitely many n the constant term off”g also vanishes. 

Here the constant term Csty> off is defined as the average 

.I f (kfdk 
K 

off over K, the integral off with respect to the Haar measure, normalized so 
that SK dk = 1. In the canonical decomposition of @[K] in matrix coefficients of 
irreducible finite-dimensional representations of K, the constant term is given 
by the number CstCf), which explains the name. 

In this paper we prove the conjecture for commutative K. Therefore, from 
now on K is a real torus and its complexification is an algebraic torus Tof rank 1. 
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The ring of K-finite functions is the affine coordinate ring @[T] of T. The choice 
of a Z-basis zi, . . . , ZI in the character group X*(T) = Hom( T, GW), where G, is 
the multiplicative group of the nonzero complex numbers, leads to an identifi- 
cation of Twith G, l and of Z’ with X*(T), under whichp E Z’ corresponds to 
the character (Laurent monomial) z* : = nf= 1 zip>. A K-finite function h then is 
nothing else than a Laurent polynomial in the zi. And Cst(h) is just the con- 
stant term of the Laurent polynomial h. Or, if one thinks of C[T] as the linear 
span of the characters, then Cst(h) is the term corresponding with the trivial 
character. We will actually prove that ifCst(f”) = 0 for all n 2 1, then the trivial 
character does not belong to the convex hull of the characters which occur in f with 
nonzero coeficients, where we view X’(T) E Z’ as a lattice in X*(T) EJ R’ N R’. 

2. ONE VARIABLE 

We start with the case 1 = 1, where T = G, and K is the circle, as it is much 
more elementary and yet illustrates the method. 

Theorem 2. Assume that f E C[z, ZC'] is neither a polynomial in z nor a poly- 
nomial in z-l. Then f has a critical value v E C \ {0), such that 

lim s~p_~ 1 cstyy 1 ‘h = 1 v) > 0. 

Proof. We have C[z, z-l] = C[C] where C is the unit circle in @ \ (0). We con- 
sider the generating function 

f(z) dz F(t) := 5 Cst(f”)t”-’ =& _ tf(z);’ 

n=l 

where we have used that averaging over C is equal to the complex line integral 
over C with respect to &. For small 1 t I this defines a holomorphic function of 
t which is equal to the sum of the residues of the functionf (z)/( 1 - tf (z))z at its 
poles z with I z I < 1 ( or minus the sum of the residues for I z I > 1). Because 
f (0) = 00, the residue at z = 0 is equal to -l/t. As long as r = l/t is not a crit- 
ical value off and I t 1 is small, the other residues are equal to -l/(t2f’(C)c), 
where < = G(r) ranges over the solutions off (0 = r such that I< I < 1. 

Along every curve in C which avoids the critical values off, the functions 
r H <Jr) have a complex analytic extension. The idea of the proof is to show 
that the asymptotic behavior for t -+ oc, of the corresponding analytic con- 
tinuation of t ++ F(t) will lead to the conclusion that F(t) is not identically zero, 
and actually has a finite radius of convergence. 

Becausef(0) =f(m) = CO, the complex analytic extension of ‘T H c’(r) can 
neither run to 0, nor to 00, when r remains bounded. If a E @ is a critical point 
off, with corresponding critical value v, then there exists an integer m 2 2 and 
a nonzero complex number c, such that f(z) N v +c(z - a)” and y(z) - 
cm(z - a)“-’ as z + a. It follows that the solutions C near a off(C) = r satisfy 
< -a N (Y)““, with a choice of branch of the m-th root. We get that for v # 0 
the residue at C is of the order (T - v)-‘+“~. 

222 



For v = 0 the residue at < is of order ~‘+i/~, which cannot cancel the residue 
--7 at z = 0. (Take m = 1 if c approaches a simple zero a off) The conclusion is 
that F(t) = --t-l + O(t-l-l’m) for some m > 1 as t + 00, which shows that 
F(t) is not identically equal to zero. Even stronger, if around the nonzero crit- 
ical value v off the complex analytic extension of F would be single-valued, 
then the estimate 1 F(t) ) 5 C 1 t - i I- ‘+‘b for t near 1 /v in combination with 
Cauchy’s integral formula shows that F has a holomorphic extension to a 
neighborhood of l/v. If this holds for every nonzero critical value v of L 
then F extends to an entire analytic function on c=, such that 
F(t) = --tr’ + G’(t-‘-l/m) -+ 0 as t 4 co. By Liouville’s theorem we would ar- 
rive at the conclusion that F(t) = 0, a contradiction. In particular we get that 
the radius of convergence of the generating function F(t) is equal to 1 l/v 1, 

where v is a nonzero critical value off, which implies the statement of the the- 
orem. 

Remark 3. If for every n > 1 the constant term off” vanishes, then Theorem 2 
implies that eitherf E C[z] orf E @[z-l], without constant term, and we get the 
conclusion of Mathieu’s conjecture for the circle. 

In the proof we actually showed that if neither f E C[z] nor f E C[Z~'], then 
there exists a nonzero critical value v off, such that the radius of convergence 
of the generating function F is equal to I l/v 1, and the complex analytic ex- 
tension around l/v of F(t), I t I < I l/v ) , is not single-valued. 

3. ARBITARY RANK 

Recall that the Newton polytope Newton(h) of a K-finite function h is the con- 
vex hull in the vector space X*(T) & [w of the characters that occur in h. (Or, 
with coordinates given, the convex hull in [w’ of the multi-indices that occur as 
exponents in the Laurent polynomial.) We have two cases to consider. The first 
is that the f in the conjecture is such that the origin 0 is outside Newton(f). 
That case is easy. As the Newton polytope is a finite intersection of rational half 
spaces (cf. [0]), there is a cocharacter y E X,(T) = Hom(G,, T) = 
Hom(X* (T), Z) taking positive values on Newton(f). Therefore there is a basis 
of X*(T) so that in the corresponding coordinates the first variable zi occurs in 
,f with positive powers only. Then the conclusion in Mathieu’s conjecture is 
visibly true forf. 

The hard case is thus when 0 E Newton(f). In this case we may assume that 
0 is actually in the interior of Newton(J). For suppose 0 lies on the boundary. 
Then it lies in the interior of some face F, with respect to the topology of the 
smallest affine subspace L which contains F. Because 0 E F, L is a vector 
subspace. Let? be the sum of the terms infthat are in the span c[L rl X*(T)] of 
L rl X*(T). This is a Laurent polynomial in fewer variables, for which we can 
take a Z-basis of L n X*( 7’). As the rest of the Newton polytope lies on one side 
of L, we have CstCf”) = Cstp). We may replace f withf and Twith the torus T 
whose character group is L n X*(T). After these replacements the origin lies in 
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the interior of the Newton polytope. The reader will have noticed that L may 
have dimension zero. 

In the sequel we will make use of the ‘Haar form’ w : = $ A. . . A 9, which 
modulo a constant factor is the unique invariant (I, 0)-form on T. 

Theorem 4. Let f E @[T] b e such that the origin 0 lies in the interior of the 

Newtonpolytope Newton(j). Then there exists a smooth compacttfication Mof T 
such that f extends to a holomorphic mapping from M to P’, and the Haar form w 
extends to a holomorphic dtjerentialform on M \ f -’ ({ w}). 

Theorem 5. If M is as in the conclusion of Theorem 4, then there exists a nonzero 
critical value v of the mapping f : M -+ P’, such that the radius of convergence of 
the generating function F(t) = C,“=l CstCf”)t”-’ is equal to l/ 1 v 1 and the 
complex analytic extension around 1 /v of F( t), 1 t 1 < ) 1 /v 1, is not single-valued. 
In particular, limsup,,, 1 Cstv) 1 ‘/n = 1 v I > 0. 

The proof of the theorems follows the same line as its special case Theorem 2. 
When I= 1, we had no difficulty extendingf : C + @ to a mapf : [Fp’ 4 P’. We 
did not even mention it. We did use though that f had limit cc at zero and in- 
finity, which were the poles of dz/z. For general 1 a compactification with simi- 
lar properties exists, but the proof requires toroidal compactification 
([KKMD],[O]) and Hironaka’s resolution of singularities [HI. 

Proof of Theorem 4. We start by constructing an M with fewer properties and 
then improve on it. As our first attempt we take the toroidal compactification 
Mt,, associated with a fan F which is a finite nonsingular subdivision of the fan 
consisting of the cones on the proper faces of the polar polytope of Newton(J) 
in the sense of Oda [O]. Every l-dimensional cone 0 in Fis spanned by a Z-basis 
of X*(T). We use its dual basis z;, 1 5 i 5 1, as a coordinate system on T. Ex- 
tending G,’ to C’ we get the chart Y, of M,,, corresponding to g. There is a 
unique vertex m of Newton(f) c X*(T) N 22’ such that for each 
p E Newton(f) and 1 5 i 5 1 we have pi 2 m;. It follows that f (z) = 4(z) z”’ 
for a polynomial 4( ) z , such that 4(O) # 0. Moreover, the condition that 0 is in 
the interior of Newton(f) implies that, for each i, mi < 0. Therefore f is well- 
defined and equal to infinity at z = 0. 

Also, w = * $ A. . . A$, so in these coordinates w again has simple poles and 
pole (w), the divisor of the poles of w, consists of the coordinate hyperplanes of 
the chart Y,. We stratify pole(w) by repeated intersection of its irreducible 
components. We see that f : MtO, --+ P’ is well defined, with the value co, on a 
dense open subset of each stratum of pole(w), because it has this property near 
the zero-dimensional stratum, which is the origin in our chart. Now M,,, is the 
union of the charts Y,, so we may make the same remarks for the full divisor of 
poles of w on Mtor, which we call pole(w) again. 

So the thing that is still missing is that f be defined everywhere. Actually, if 
1 > 1 then for every finite value of T the level set f-‘({T}) in T cannot be a 
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compact subset of T, because of the maximum principle, applied to the re- 
striction to the level set of the coordinate functions zi. At a limit point in 
MtO, \ T of the 1 eve1 set we get alsof = 0;) at arbitrarily nearby points, sofmust 
have points where it is ambiguous. 

If we can make f defined everywhere, without spoiling the property that 
generically on each stratum of pole(w) the value off is co, then Theorem 4 fol- 
lows. Now we are in luck. Hironaka tells us in [H, $5 of Ch. 0] how to makej 
well defined everywhere by performing a finite sequence of monoidal transfor- 
mations (also known as blowups [BM, $21) with smooth centers. At each stage 
the center of his blowup is contained in the locus where f is still ambiguous. 
(This locus may be described as the scheme theoretic intersection of the divisor 
of poles off with the divisor of zeroes off: Thus, initially its ideal sheaf J is lo- 
cally, in the chart Y,, the ideal generated by the polynomials 4 and z-” for 
which f (z) = 4(z) zm.) Moreover, he appeals to his Main Theorem II and that 
means we may, apart from J, also specify a divisor Es which has only normal 
crossings, for which we take pole(w), of course. 

At the i-th stage the center will have only normal crossings with a divisor Ei, 
inductively defined in the Main Theorem II. Let wi andf;: denote w and f at the 
i-th stage, respectively. Using computations in local coordinates as in [BM, 521 
or [GH, p. 6031, one then gets by induction on i: 

(A) wi is a meromorphic differential form with at most simple poles, along a 
divisor pole(wi) with normal crossings. Each component of pole(wi) is equal to 
a component of Ei. 

(B) Each stratum S of pole(wi) is equal to the closure of the complement in S 
of the exceptional divisor and therefore, by induction on i, k = 00 on an open 
dense subset of S. 

From (A) one gets that the center at the i-th stage has only normal crossings 
with pole(wi), and from (B) one knows it does not contain any stratum S. (Re- 
call the center is contained in the locus of ambiguity off;:. The terminology 
‘normal crossings’ would still allow the center to contain a stratum, but we do 
not want this.) This is then used in the induction step. Note that the comple- 
ment of the center of any monoidal transformation is identified with the com- 
plement in the blowup of the exceptional divisor [GH, p. 6041. Property (B) 
means that pole(wi) is equal to the so-called strict transform of pole(wi_i). 

At the end of the sequence of blowups we have a smooth compactification M 
of T such that f extends to a holomorphic mapping f : M -+ P’. Moreover, 
f = CQ on a dense open subset of each stratum of pole(w), so by continuity 
f = cc on pole(w). 

Remark 6. If 0 is outside Newton(j) then the locus of ambiguity off will 
contain some stratum of pole(w). Actually, in this case the conclusion of The- 
orem 5 fails. Hence the conclusion of Theorem 4 cannot hold if 0 $ New- 
ton(f). 
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Remark 7. There is another kind of blowup which also does not spoil the 
property that generically on each stratum of pole(w) the value offis 00. Namely 
the blowup of the closure of a stratum. (Of course in this case the number of 
strata of pole(w) does increase.) Using [MO, Prop. 6.51 we can replace our M,,, 
by a toroidal compactification of Twhich also is a projective variety. Because 
the blowup of a projective variety is projective, we may therefore modify the 
proof to achieve that M in Theorem 4 is projective. 

4. RESIDUES 

We again study the generating function 

F(t) : = E Cst(f”)t”-’ = (27ri)_l 
II=1 J 

K *‘(;&, 

where K is the real torus 1 zi ( = 1, 1 5 i 5 1. For this purpose we return to a 
coordinate chart Y, g Cc” of the toroidal compactification MtO, from the be- 
ginning of the proof of Theorem 4. Thus we work with a coordinate system 

ZI,..., z/ on Tso that there is a term m infwhose zi-degree is, for each i, strictly 
negative and less than or equal to the zi-degree of each term off: The derivative 
offwith respect to zi will similarly have such a lowest monomial, so there is a 
neighborhood N of the origin where both f and this derivative are defined and 
nonzero. (Infinite value is of course allowed here.) Note that for nonzero t the 
form W 
N whfe(;;)$~’ I 

has no pole along zi = 0 in N. Take 6 > 0 so that (zt , . . . , z[) lies in 
zi 1 are no larger than E. Let S, denote the circle of radius E and 

center 0 in C and let D, be the disc it bounds. Let K, be the real Z-dimensional 
cycle (S,)’ in T. For small 1 t 1 we may replace K by K,. Putting 

we get that 

F(t) = -f-~(27ri)“J(l/r) 

for small 1 r I. W e will investigate the analytic continuation of J(r), initially 
defined for large 1 T 1, in particular for T --+ 0. 

As in the one-dimensional case, we first rewrite J(r) in terms of residues. The 
(1+ 1)-dimensional cycle D, x (A’,)‘-’ has K, as its boundary and it intersects 
the pole divisor off+ transversally in a, = f-’ ({r}) n (D, x (SC)‘-‘). Applying 
Cauchy’s integral formula to the integration over zi we get the theorem of 
Leray ([L], see also [BGVY, $16 of Ch. 3]), stating that 

J(r) = 
f 
wldf, CT? 

where we use the suggestive notation w/df for the Poincare residue off+. 
In the complement of the set of critical points off, f-‘({r}) is a smooth 
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complex hypersurface, on which w/df is the holomorphic (I - 1, 0)-form q, 
which is determined by the following property. If ~2,. . . , VI are tangent vectors 

to f-‘({T}) d ‘f an 1 v1 is a tangent vector to T at the same point such that 
(v,,df) = 1, then q(v2,. . . , vu) = W(VI, ~2,. . . , v,). The ‘relative (I - l,O)-form’ 
cJ/df can also be described as the restriction to f-‘({T}) of any smooth 
(I - l,O)-form p in an open subset of M, such that w = df A p. Locally in the 
regular set off, p can be chosen to be holomorphic. 

For integrals J(T), of relative holomorphic (algebraic) (I - l,O)-forms over 
real (/ - 1)-dimensional cycles u7 in f -‘({T}), where the cycles CJ~ move con- 
tinuously with r, and initially defined for T in a neighborhood of a given point 
in C, the following general facts are known. 

(i) The function J is of Nilsson class, which means that there is a finite 
subset Vof @ such that J has a complex analytic extension along every curve in 
C \ I’. And moreover, in each sector near each v E V, the extension can be 
written as a finite sum 

J(T) = c qq(4(T - v)“(log(r - v))4, 
“8 

where (Y E C, q E Z 20, Ci,, is holomorphic in a neighborhood of v and 

C&,(v) # 0. 
(ii) All exponents a in (i) are rational numbers. (In the case of isolated sin- 

gularities this is Brieskorn’s monodromy theorem.) 
(iii) All exponents q in (i) satisfy q 5 I - 1. 

Property (i) was proved by Nilsson [Nl]. Using a semi-algebraic triangulation 
of our cycle gT for large 1 T 1, we can write our initial J(r) as a finite sum of in- 
tegrals over the standard (I - I)-dimensional simplex of an algebraic function, 
so we can get (ii) and (iii) by applying Nilsson [N2]. Griffiths, Katz and Deligne 
showed that the use of compactifications and Hironaka’s resolution of singu- 
larities (which were not used by Nilsson) leads to simpler proofs in a more 
general framework, cf. [D, prop. 6.14 and Th. 7.9 in Ch. II, Th. 1.8 and Th. 2.3 in 
Ch. III]. 

These general results do not give much information on the set V of singular 
points for J, nor on the exponents o which may occur. We will show in the next 
section that if A4 is as in Theorem 4 then V is contained in the set of critical 
values off : M + P’. More importantly, for each v E V and exponent cx oc- 
curring in the description of J near v, we have that cx > - 1. As in the case I= 1, 
this then will lead to a proof of Theorem 5. 

5. ASYMPTOTICS 

In this section we assume throughout that M is as in the conclusion of Theorem 
4. We write MT for the level set in Mat the level T E P’, for the holomorphic 
mappingf : M -+ P”. If T E @ is not a critical value off, then M, is a complex 
analytic smooth hypersurface in M, on which we have a well-defined holo- 
morphic (1 - l,O)-form w/df. 
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Becausefis constant on each of the finitely many strata of the variety of 
critical points off, the set Vof critical values offis finite. (This could be called 
Sard’s Theorem for proper holomorphic maps.) Then over U : = C/V one has a 
locally trivial C” fibration, hence a Gauss-Manin connection on the sheaf of 
(I - 1)-dimensional (co)homology groups of the fibers I&. (Compare the dis- 
cussion in [A, 53 of Ch. 21 in the case wherefhas an isolated singularity.) To 
extend J(T) holomorphically along a path y in Uone must simply vary the cycle 
a, E M, continuously with r. (This follows from the theorem of Leray, which 
allows us to go back and forth between an integral in the fiber M, and an in- 
tegral off+ over a cycle in the boundary of a tubular neighborhood of Mr.) 

Let us choose a smooth lift V in the tangent bundle off-’ (U) of the vector 
field % on U. Say by choosing a hermitian metric on the tangent bundle of A4 
and then taking V at each point to be the appropriate complex multiple of the 
gradient off: For every path y in U which starts near 00, the transport of o, 
parallel to the path y with respect to the connection V will give an analytic 
continuation of J(T) along y. 

Lemma 8. For each exponent CY in the asymptotic expansion of J near a singular 
point, we have cx > -1. 

Such inequalities are proved in [J] and [Ma121 and, under a different guise, in 
[K]. Neither [J] nor [Ma121 applies exactly in our setting. Jeanquartier studies a 
real analytic function, so his fibers have real codimension one, and Malgrange 
works near an isolated singularity ofJ: Our proof follows [Mall, Appendice], 
the statements in which are not directly applicable to our situation either. 

Proof of Lemma 8. We have to estimate the growth of J(T) as we approach a 
critical value v along a ray. By passing tof - v, we can arrange that v = 0, and 
for the ray we can take the positive real axis, which simplifies the notation. 

Let 7-0 > 0 be such that [0, Q] c U and observe that there is a deformation 
retraction off-’ ([0, TO]) onto MO, say by [Loll. Therefore gTO is homologous in 
f-t ([0, TO]) to a cycle in MO. By Lojasiewicz [Lo21 one may put a semi-analytic 
triangulation on f-l ([0, TO]), or rather on the pair cf -'([O, TO]), MO u MT,,). 

Then cTO is homologous in MT0 to a cycle rrO in the triangulation. As we have 
seen that it is homologous inf-’ ([0, 701) to a cycle in MO, there is a chain A in 
the triangulation with dA = T,, - TO, where I’0 c MO. By Herrera [He] we can 
integrate over semi-analytic chains and this has the usual properties with re- 
spect to homology. And one has a Stokes’ Theorem. 

The ‘chain’ A7 =f-‘([O, ~1) n A is semi-analytic for T E [0, TO]. To make it 
into a true chain in the triangulation one must subdivide the triangulation, 
using [Lo21 again, so that M, =f-’ ( ) T is a subcomplex. Then dA, = rT - TO 
with r7 c M,. And a(A - A,) = PTO - r,, so r7 represents the same homol- 
ogy class as r,, or cTO inf-’ ([T, ~1) N (MT0 x [T, 701). Thus 

J(r) = 
s 

wldf. 
r, 
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Write 

A+‘) := Anf-‘([7,7/l), 

Z(T) : = 
J 

w. 
4’~) 

Then Z(r) is bounded on [0, ~~1 because the semi-analytic chain A has finite l- 
dimensional Euclidean volume, cf. [He, II.A.2.l(c) and I.C.1.1. By Lemma 9 
below, 5(r) is the derivative with respect to r of the bounded function Z(T). 
Then the leading term in the asymptotic expansion of J(T) must have exponent 
cx > - 1, as claimed. It thus remains to prove: 

Lemma 9. J(T) = z’(T)for 7 l ]o,To[. 

Proof. In the (open) complement of the set of zeros of df in M there exists 
a smooth (I - 1, O)-form ~1 such that w = df A p . This is obvious locally and 
the global statement follows by means of a smooth partition of unity. 
Let T, T' E]~,To[. Integrating w = d(Cf - ~)p) + (T -f)dp over A(T, T'), 

and applying the formula of Stokes in the version of Herrera [He] to the inte- 
gral of the first term in the right hand side, we get Z(T') -Z(T) = 

(7' - T)J(T') + s+,+,( T -f)dp . Dividing by 7 - T and using that the function 

.Z is continuous, 1 2 ) < 1 in A(T, T') and the Z-dimensional Euclidean vol- 

ume of A(T, T') converges to zero as T' -+ T, cf. [He, II.A.2.l(c) and I.C.11, we 
get that lim++ w = J(T). 

Remark 10. It follows that Z(TO) = Jlo,701 J(T)dT, which is a Fubini-type of for- 
mula ‘the integral is equal to the integral over the base of the integral over the 
fiber’ for the fibrationf; note that (w/df)dT = w when T = f. 

As in [Ma12, p. 131, the estimates along rays lead to an independent proof that 
.Z is of Nilsson class, with the additional property that for every exponent a we 
have Re Q > - 1. This is sufficient for the proof of Theorem 5. 

Remark 11. In the proof of lemmas 8 and 9 we did not need to assume that MO 
has normal crossings. Let us assume that now. One may think offw/df as a 
holomorphic section of the sheaf of relative differential (1 - 1)-forms with 
logarithmic poles along (MO),,,+. This section vanishes along (Mo),,~. By ap- 
plying Mumford’s Semi-stable Reduction Theorem [KKMD, Ch. 21 one could 
further arrange that MO is a reduced divisor with normal crossings, so that the 
section w/df also extends over MO. In any case, one may now check that the 
smooth representative f ,LL of fw/df can be chosen to extend over MO such that 
its restriction to MO vanishes. That may be used to give a proof of Lemma 8 that 
is even closer to [Mall, Appendice]. Alternatively, if one seeks a more algebraic 
geometric proof of Lemma 8, one may combine the above extendability of w/df 

with the monodromy theorem of Katz [K]. 
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Proof of Theorem 5. Using the fact that J is of Nilsson class with exponents a 
such that Re Q > -1, the proof proceeds as in the case I= 1. Indeed, it then 
follows that J can be holomorphically extended to a neighborhood of every 
critical value around which J is single-valued. If this happens for all nonzero 
critical values off then Jis a single-valued hoiomorphic function in @ \ {0}, so 
extends to an entire analytic function on C. Considering the asymptotic be- 
havior of F(t) = - i - i (27ri)‘-‘J( l/t) near t = 0, we then see that F is a non- 
zero entire analytic function on C, which moreover converges to 0 when t 4 co, 

in contradiction with Liouville’s theorem. 
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