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Introduction 

In these notes we study the connection between infinitesimally 

central extensions of Chevalley groups and universal central 

extensions of their Lie algebras. Here an infinitesimally central 

extension is a morphism of algebraic groups % : H ~ G such that, 

if ~, ~ denote the Lie algebra of G, H respectively, 

(i) ~ is surjective and separable, 

(ii) the kernel of the derivative d~ of ~ is contained in the 

centre of the Lie algebra h. 

We will restrict ourselves to the case that ~ = [~,h] . 

Assume that ~ = [~,~] . Then a universal central extension 

: ~* ~ ~ exists. It may be characterized as a homomorphism 

: ~* ~ ~ such that 

(i) ~ is surjeetive, 

(ii) ~* = [~*,~*] , 

(iii) the kernel of ~ is contained in the centre of ~*, 

(iv) ~* is universal with respect to (i), (ii), (iii). 

Condition (iv) is equivalent to 

(iv)' If T : ~' ~ ~* is a homomorphism satisfying (i), (ii), 

(iii) with ~ replaced by ~ and ~* replaced by ~', then T is an 

isomorphism. (See section i of these notes or [22]). 

Let G be a Chevalley group with Lie algebra ~ such that 

= [$,~] . If the characteristic is not 2 or 3 then the universal 

central extension ~ : ~* ~ ~ is trivial, i.e. ~ is an isomorphism. 

This was proved by Steinberg in [ 23] . In section 3 we complete 

this result. We determine the structure of ~* in arbitrary 

characteristic by solving the analogous problem over Z. (see 

Theorem 3.5 and Proposition 1.3 (vi)). 



VI 

In describing ~* the notion of a degenerate sum in the lattice 

spanned by a root system is helpful. A degenerate sum is a sum 

of two linearly independent roots which is itself a p-multiple 

of a weight. (p is the characteristic). These degenerate sums 

are classified in section 2. It is seen that they only occur in 

characteristics 2 and 3. If there are no degenerate sums then 

~* = ~. (This generalizes Steinbergs result). 

Let ~ : H ~ G be an infinitesimally central extension with 

= [h,h] . Then ~ is isomorphic to a quotient of ~*. If ~ = ~* 

then ~ = ~ and the connected eomponent of H is a quotient of 

the simply connected covering of G. (See Springer-Steinberg, 

[2] E, §2). So the simply connected covering is a universal 

element in the class of extensions under consideration. Now we 

assume that ~ ~ ~*. Then we look for an extension ~ : H ~ G as 

above such that ~ is isomorphic to ~* and we ask whether this 

extension is a universal element. The existence of an extension 

with ~ ~ ~* is proved in section 10 for a simply connected almost 

simple Chevalley group G. The proof is based on the construction 

(case by case~ of a suitable 2-cocycle of G in ker 7. (There is 

a natural action of G on ~* which gives ker ~ the structure of 

a G-module). One gets a Hochsehild-extension ~ : G* ~ G which 

satisfies the requirements. Note that its radical is isomorphic 

to ker ~ and is hence commutative. Now we deal with the question 

whether ~ is universal in the class of infinitesimally central 

extensions H ~ G with h = [h,h] . The answer is affirmative if G 

is not of type B3 in characteristic 2. (In the case of type B3 

in characteristic 2 the class also contains extensions with non- 

commutative radicals. We don't give a proof of this fact). More 

generally, if G is Chevalley group with ~ = [~,~] and if G has no 
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factor of type B 3 in characteristic 2, then there is a universal 

solution ~i : G~ ~ G. (see Theorem 13.9). It is obtained by 

applying the solutions from section 10 to the simply connected 

coverings of the almost simple factors of G. Here it should be 

noted that ~ ~ ~* implies that G has a simply connected factor 

(see 7.1, Remark). The proof of the fact that ~i is universal 

resembles the proof of the "Th~or~me fondamental" in [12], 

Expos~ XXIII: We construct a set of generators and defining relations 

for G~ and prove that the same relations hold in all extensions of 

the class under consideration. (They are not defining relations for 

all these extensions). The generators and relations are very similar 

to Steinbergs generators and defining relations for a simply 

connected Chevalley group (see [22] or [23]). The analogy with 

simply connected Chevalley groups is also stressed by results about 

the group of automorphisms of G* (see Corollary 13.7) and about 

embeddings of groups of distinct types into each other (see Theorem 

13.14 and compare with [22] or [24]). 

I feel indebted to professor T.A. Springer for his frequent advice 

and to professor F.D. Veldkamp who suggested the search for the 

groups G*. I owe much to Mark Krusemeyer and Roelof Bruggeman for 

many useful discussions. I wish to thank miss A. van Hoof and 

mrs. P. van der Kuilen for careful typing. 



CONVENTIONS 

We will use mainly the same terminology as Borel in [1] and 

Steinberg in [22].There are some modifications: 

1. All algebraic groups are assumed to be affine. 

2. All Chevalley groups are considered as algebraic groups. 

So a Chevalley group is an algebraic group that is obtained by 

the Chevalley construction from a faithful representation of a 

complex semi-simple Lie algebra. It is not necessarily of adjoint 

type. In fact we shall usually consider the simply connected 

types. 

In dealing with varieties (not necessarily irreducible), 

we shall, as usual, write V for the set V(K) (or V K) of K-rational 

points in V, K being an algebraically closed field. A map V ~ W 

shall be called a morphism, if it is a morphism of varieties. 

3. In order to avoid ambiguities, a morphism of algebraic groups 

will be called a homomorphism and not just a morphism. 

So we shall speak of morphisms between algebraic groups that are 

not homomorphisms, but just morphisms of varieties. 

4. If only one root length occurs in a root system then all roots 

are called long and not short. 



§1. Universal central extensions. Central trick 

In this section we introduce universal central extensions 

of Lie algebras, cf. [22]). 

1.1. Let R be a ring. (Rings are commutative and have a unit). 

A Lie alsebra over R is an R-module ~, together with an R-bili- 

near composition 

[ ,] : ~ x ~ ~ ~ that satisfies 

(i) [X,X] = 0 for all X e ~ (anti-symmetry). 

(ii) [X,[Y,Z]] + [Z,[X,Y]] +[Y,[Z,X]] = 0 for all X,Y,Z • ~. 

(Jacobi-relation). 

So a Lie algebra over R is not necessarily a free R-module. 

Homomorphisms are defined as usual. The centre of ~, i.e. 

{X • ~I[X,Y] = 0 for all Y • ~}, is denoted z(~). An extension 

of ~ is a surjective homomorphism of Lie algebras 7: ~ ~ ~.A central 

extension is an extension ~:k~, satisfying ker 7 C z(k) 

A universal central extension is a central extension 7:~* ~ 

with the property: 

If ~ : ~ ~ ~ is a central extension, then there is exactly one 

homomorphism 4: ~* ~ ~ such that ~0~ = 7. Note that ~ is not ne- 

cessarily surjective. Henceforth ~: ~* ~ ~ will always denote a 

universal central extension of ~. A Lie algebra ~ is centrally 

closed if id: ~ ~ ~ is a universal central extension. 

1.2. LEMMA (central trick). 

l_~f 7: ~ ~ ~ is a central extension, and if X,X',Y,Y' • ~ are such 

that ~X = ~X' and 7Y = ~Y', then [X,Y] = [X',Y']. 

PROOF. Y-Y' E ker 7 C z(k), so [X,Y] = [X,Y']. In the same way 

[X,Y'] = [X',Y'] , whence the lemma. 



The central trick is an important tool for lifting properties 

from ~ to ~. Its usefulness was demonstrated by R. Steinberg 

in [ 23] . 

1.3. PROPOSITION. (cf. [22], §7). 

(i) If ~: g' ~ g and ~: g" ~ g' are central extensions, 

and [g", g"] = g'~, then ~0~: g" ~ g is a central extension. 

(ii) g has a universal central extension if and only if 

~ :  [ ~ ,  ~ ] .  

(iii) Universal central extensions of g are isomorphic. 

(iv) If 7: g* ~ g is a universal central extension, then 

[g*, g*] = g* and ~* is centrally closed. 

(v) If ~: g* ~ g is a universal central extension, ~: g ~ k 

a homomorphism, ~: k' ~ k a central extension, then there is 
^ 

exactly one 4: g* ~ k' such that ~0~ = ~Q~. 

If ~ is surjective then $(g*) = [k', k']. 

(vi) Let R,S be rings, S an R-algebra. 

Let g be a Lie algebra over R with universal central extension 

~: ~* -~ ~. 

Then ~ @ id: g* ®R S -~ g ®R S is a universal central extension 

of Lie algebras over S. 

PROOF. 

(i) From Jacobi it follows that 

[ker(~), [g", g"]] C [g'~, [ker(~), g"]]. 

And 

~[ker(~), g"] C [ker ~, g'] = 0, so 

[g", [ker(~), g"]] C [g", ker 4] = 0. 

(ii) 0nly if part. 

Set r = projection of g on g/[g, g] Suppose ~: g* -~ g exists. 



If ~: A ~ B and T: A ~ C, then we denote o O T the map 

x ~ (o(x), T(x)). So we have ~ • r~: ~ ~ ~ • ~/[~,~] and 

~ 0: ~* ~ ~ • ~/[~,[]. The projection of ~ @ ~/[~,~] on the 

first factor is a central extension Pl of ~. As pl(~ O r~) = 

pl(~ @ 0), we have r~ = 0 by unicity, so g = [~,~] . 

If part. 

We give a construction of ~: ~* ~ ~, supposing that [ = [~,~]. 

In the R-module ~ % ~ we define the bilinear composition [,]by 

IX ® Y, X' ® Y'] = IX,Y] ® IX' ,Y'] . 

Let N be the submodule generated by 

(i) [P,P] , 

(2) [P,[Q,R]] + [R,[P,Q]] + [Q,[R,P]], (P~Q,R e [ ®~), and put 

~* = ~ ® ~ /N. Then [* is a Lie algebra. 
R 

Choose ~: [* ~ such that ~{X ® Y} : [X,Y]. (Here {X ® Y} denotes 

the residue class of X ® Y). 

It is easy to check that ~ is well-defined. Then it is seen from 

: [[,[] that ~ is an extension, which is central because of the 

definition of [ ,] in ~ ~ ~. 

Now let %: ~ ~ ~ be a central extension. 

Choose a seetions of ~, i.e. a mapping s such that %0s = id. Using 

the central trick (Lemmal. ~, we see that (X,Y) ~ [sX,sY] is bili- 

near, so a mapping ~ ~ ~ ~ ~ is induced. Using the central trick 

again, we see that it is a homomorphism of non-associative algebras. 

Therefore a Lie algebra homomorphism ~: ~* ~ ~ is induced, satis- 

fying ~{X ®Y} = ~[sX,sY] = [X,Y] = ~{X ®Y}. 

Now suppose ~' is a homomorphism satisfying %0~' = ~. Then 

~'[P,Q] = [~'P, ~'Q] =[~P,~Q] : 9[P,Q] by the central trick. As 



= [~, [], we see that every {X ® Y} E ~* is of the form 

[ P,Q] . 

So we are done, and we also have proved that ~* = [~*, ~*]. 

(iii) Use abstract nonsense. 

(iv) By the last remark in the proof of (ii) we only have 

to prove that ~* is centrally closed. Let ~** ~ ~* be a univer- 

sal central extension. Using (i) we see that K** ~ [ is a 

central extension. So the extension ~** ~ ~* splits, and we 

have K** ~ K* ~ ! where ~ denotes the abelian Lie algebra 

ker (~** ~ K*). As K** = [K**, ~**] this implies that i = 0. 

(v) As in the proof of (iv) we choose a section s of ~ and 

see that (X,Y) ~ [s~X, s~Y] is bilinear. Again a Lie algebra 

homomorphism is induced, and again it is unique by the central 
^ 

trick. Now suppose ~ is surjective. Then ~* = $[~*, ~*] = 
^ ^ 

= [~*, ~*] = [~', ~'] by the central trick. 

(vi) The coDstruction of K* we gave in the proof of (ii) 

commutes with the base transformation from R to S. (The functor 

- ®R S is right exact). 

§2. Degenerate sums. The extension r : ~' ~X" 

In this section we shall introduce degenerate sums. Besides 

that we derive some technicalities involving root systems and their 

classification (see [ 4 ]). Omitting some defining relations for KZ 

we construct a central extension r : ~' ~ ~z" 

2.1. NOTATIONS. 

We are going to consider Lie algebras of simply connected almost 

simple Chevalley groups in characteristic p > 0. So let k be a 

field of characteristic p > 0, K its algebraic closure, G a simply 

connected almost simple Chevalley group viewed as an algebraic 

group defined over k, [ the Lie algebra of G. The set of k-rational 



points in ~ is denoted ~k" 

It is a Lie algebra over k. We use the following standard nota- 

tions (see [ 22] ). 

i = rank of G, 

~ = the complex Lie algebra corresponding to ~, 

= the (irreducible) root system. (It is assumed to be ordered). 

W = Weyl group, 

{X , H le e ~} = set of Chevalley generators in ~, or the corres- 

ponding set of generators in ~. 

{N B} = the corresponding set of structure constants, 

{x (t)I~ • ~,t • K] = the set of generators of G. 

w (t) = x (t) x_ (-t -1) x (t), for ~ • ~, t • K x = KX{0}. 

ha(t) = w (t) w (1) -1 × , for ~ • ~, t • K . 

= the open cell, consisting of the elements 

H x (u) H h (t) H x (u), where 
~<0 ~ simple ~>0 

x 
u S • K, t~ • K (see [ 8 ] , Proposition 1). 

(x,y) = xyx-ly -1 if x,y are group elements, 

(x,y) = the inner product of x and y if x,y are elements of a real 

vector space. 

The notation may also be u:sed for an element of a direct product 

of varieties. 

~ = ~ - Lie algebra generated by the X ~ H a in ~. 

F = lattice of weights, 

F0 = sublattice generated by the roots. 

<~,B> = 2(~,~) for ~,B in the real vector space with inner product 

whieh is generated by Z. (8 ~ 0). 

If ~,8 • Z, then <~,B> E ~ . If e,6 are (linearly) independant 



roots with I sl ~< I~I then I<~,6>I <~ 1. 

{~1"'''~i } : set of simple roots, numbered as in [ 4 ], 

{e i} = orthonormal basis that is used in [ 4 ] to describe the 

root system, 

{6 i} = set of fundamental weights. 

So we have g ~ gz~ • K, 

r = { ~ ] < ~ , ~ >  c z~ } .  

The ordering of E induces an ordering of F defined by: ~ ~> ~ if 

e-6 is a positive linear combination of the simple roots (see [ 4 ] , 

Ch. VI §1.6). 

2.2. PROPOSITION. gk = [gk' gk ] if and onlz if E N pr = ~. 

PROOF. E N pF consists of those roots e for which <e,E> C p 2Z . 

So if E N pF = ~, then for every a E E there is ~ C E such that 

= <~ ~>-I[HB X ] in gk" The elements X generate gk as a Lie 

algebra. Conversely, suppose E n pF ~ 6. Since E n pF consists of 

W-orbits, it contains a simple root e. For all simple roots 6 one 

has <~,~> ~ p Z . Taking ~ : ~ one sees p = 2. Taking roots corres- 

ponding to neighbours in the Dynkin diagram for ~, one concludes 

that E is of type CI, I >~ 1 (C I = A1, C 2 = B2). One now checks that 

gk ~ [~k' gk ] in these cases (see [17] , Lemma 7). 

COROLLARY. 

(i) gk = [gk' gk ] if and only if E is not of type 

C I (1 /> 1), or p > 2. 

(ii) g2z = [g~ , gZZ] if and only if E is not of type 

C I (i i> 1). 



PROOF. We have to prove (ii). 

If part. 

For every p we have (~ mod[g~ , ~]) ®~ IFp = 0 by (i). 

So ~ mod[~ , ~ ]= 0 

0nly if part. 

Take p = 2 and use (i). 

2.3. LEMMA. Let ~,$ be independent roots. 

Then there is y • ~ such that N1 = (~e+~6+~Y) N N is an irre- 

ducible root system. 

If rank ~ > 2 then y may be chosen such that rank ~1 = 3. 

PROOF. 

Let X0,...~X q be a sequence of roots such that X 0 = ~, (Xi,~i+l)~0, 

= 6. Such a sequence exists because ~ is irreducible. Now suppose 
q 

q is minimal and q > 2. As <~1' X2 > ~ 0, we have X 1 - ~2 E ~ or 

X1 + X2 E ~. Say ~1 + X2 E ~. As q is minimal, we have (~2,~0) = 0. 

And (~0' ~1 ) ~ 0, so (~1 + X2' ~0 ) # 0. In the same way 

(X1 + ~2' X3 ) @ 0. But then ~0' ~1 + ~2' ~3''''' Xq is a shorter 

sequence, which is a contradiction. So we may take q < 2. Define 

Y = XI" Then every irreducible component of ~1 which contains y 

contains ~ and 6. So ~1 is irreducible. If rank ~ > 2, then we 

have to consider two cases: 

First suppose N2 = (~ + ~6) A ~ is a reducible root system (i.e. 

of type A 1 × A1). Then we choose y as above. 

Secondly suppose ~2 is irreducible. 

Then we choose y E ~ such that y is not orthogonal to ~2 and y is 

not in ~2" We always get an irreducible N1 of rank 3 this way. 



2.4. DEFINITION. Let y E F, n E ~ , n > 1. Then y is called a 

degenerate sum with respect to n if 

(i) There are independent roots e,B with e + B = y. 

(ii) ~ E nF. This means that<y,~> C n~ . 

If n = p then we just say that ¥ is a degenerate sum, or that y 

is degenerate. 

2.5. LEMMA. Let Z be as above, Z1 a subset of Z. 

If Z1 is an irreducible root system, and e,6 ~ Z1 are independent, 

such that ~ + 6 is desenerate with res.pect to n i__nn Z, then e + B 

is a degenerate sum with respect to n i__qn Z 1 too. 

The proof is trivial. 

REMARK. The converse does not hold, as one can see from 2.8., 

Table 1. 

2.6. LEMMA. 

(i) If n > 3 then no degenerate sums with respect to n 

exist. So degenerate sums may only occur if p = 2 or p = 3. 

(ii) If p = 2, e,6 e Z are independent, ~ + 6 is degene- 

rate, . then (~,B) = 0. 

(iii) If e,6,y,6 are distinct roots, while ~ + 6 = Y + 6 is 

a desenerate sum, then p = 2 and the same root lengths occur in 

both . pairs of roots. 

PROOF. If ~,6 are independent, ]el ~ I61, then 0 < 2 + <e,~> <4, 

so that i < <~+6,8> ~ 3. This implies (i). If furthermore 

<e+B,6> E 2~ then it follows that <e,6> = 0, whence (ii). 

(iii) Let 6 have a largest length in the set {e,8,y,8}. Then 

I<y+~,6>l ~ 2. 

And <¥+8,6> : <~+~,6 > is again strictly positive. 
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So p = 2 and ~ I 6, y ± 6. 

So I~12 + 1612 : 1~+612 : Iy+612 = ITI 2 + I~12 

As, for fixed ~, there are at most two possibilities for the 

values of the root lengths, there are at most four possibilities 

for the value of 

I ~ ' 1 2  + I~, , I  2 ~, ~ , , • z  , , ° 

These values correspond to the occurrence of root lengths in 

the pair ~', ~". 

2.7. We are now going to classify degenerate sums. We may restrict 

ourselves to one representative for each orbit under the action 

of W. Results will be given in 2.8., Table 1. 

EXPLICIT DETERMINATION. 

Aoeording to lemma 2.6. we may restrict ourselves to p = 2 and 

p = 3. First let p = 3. 

Choose a normalisation of the inner product such that the shortest 

roots have lengths 1. Recall that F 0 is the lattice generated by ~. 

For y E F 0 we have (y,y) E ~ . Set n : order of F/F 0 (= "indice de 

connexion"). (See [ 4 ]). Then n 2 (y,y) E ~ for every ~ e F. 

Now let ~,6 • Z with ~+B degenerate, I~I < 161. Then ~+B • 3F, so 

n2(~+8, ~+6) • 92 . And (~+6, ~+~) = (~,~) + <~,6>(6,6)+(6~6) 

3 + 3 + 3 = 9. So either n is divisible by 3 or (~+B, ~+6) = 9. 

In the latter case,Z is of type G 2 and ~,6 are two long roots 

making an angle ~/3. This yields a degenerate sum indeed, because 

the sum is p times a root. 

In the case that n is divisible by 3, Z is of type A3m_l or E 6. 

So now we may assume that all root lengths are equal. As 

<e+6, 6> • 3~ , we see that <~,6> = 1, which means that they 

make an angle ~/3. In A this yields two orbits of degenerate 
2 

sums. Now suppose ~ is of type A3m_l, m > 1, or E 6. Using lemma 2.3 
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we get a root system ~1' containing ~ and 6, with rank ~1 = 3. 

In this system ~+6 should be degenerate too. (lemma 2.5.). 

But we have seen that no root system of rank 3 yields degenerate 

sums. So we are done for p = 3. 

Now let p : 2. As we know from lemma 2.6, we have ~ I 6. 

Consider ~2 = (~+~6) n ~. It is a root system, so we can choose 

a system of simple roots in it, containing ~ (see [ 4 ], Ch. VI, §1, 

Prop. 15). (If possible, we choose this system of simple roots in 

such a way that B is simple too). According to [ 4 ], Ch. VII, §1, 

Prop. 24, there is a system of simple roots in ~, containing the 

one chosen in ~2" 

Now there are two possibilities: 

1). ~2 is reducible. 

In this case B has also been chosen to be simple, and we 

have to deal with Dynkin diagrams. Say ~ = ~r' 6 = a s, 

where ~1,...,~i are the simple roots. As (e,~) : 0, the 

points r and s are not neighbours in the Dynkin diagram. 

So ~ has rank > 2. Now consider such a pair r, s in a 

Dynkin diagram, consisting of two points that are not 

neighbours. The fact that e+B is degenerate may be expres- 

sed by the relations 

<~r,~i > ~ <as, ~i > mod 2, i : 1,...,1. 

For i = r and i = s the relation is always satisfied and 

it is also satisfied if i is adjacent to neither r or s in 

the Dynkin diagram. So we have to look at neighbours of 

r and s. For a common neighbour i the relation is satis- 

fied if and only if ~i has maximal lenght in the set 



~2 

{~i,ar,~s}. For other neighbours, say neighbours i of r 

that are not adjacent to s, the relation is equivalent 

to (~r' ~r ) : 2(~i' ei )" There is at most one place in a 

Dynkin diagram where (~j, ~j) : 2(~i, ~i ) is satisfied 

for neighbours i,j, so there is at most one non-common 

neighbour. 

It is easily seen that these requirements for the behaviour 

of neighbours select one pair r,s if Z is of type A 3 : D3, 

DI(I > 3), B3, B4, and don't permit any pairs in other 

cases. 

2). Z 2 is irreducible. 

As (~,6) = 0 we have Z2 of type B 2 or G 2. 

First let Z2 be of type G 2. Up to the action of the Weyl 

group, there is just one pair of orthogonal roots. 

This pair e,6 yields a sum that is twice a root. Hence it 

is a degenerate sum. 

Now let Z 2 be of type B 2. 

There are two possibilities for an orthogonal pair: 

Both roots are short or both roots are long. If they are 

short, their sum is a long root. So we have to do with 

the case ~ N pF ~ ~. That is,Z is of type C I (see 2.2.). 

A long root is degenerate in this case indeed. Finally, 

if both roots are long, their sum is twice a root, so it 

is a degenerate sum again. This situation occurs in BI, 

C I , F 4 • 

2.8. Summing up, we can list results as in Table i. In this table 

all W-orbits of degenerate sums and of elements in ~ n pF are given. 

A notation like ~1 + ~3 [6'2~2] means that there is an orbit con- 



Type 

A 1 

A 2 

A 3 

B 3 

B 4 

BI(I>4) 

21(192) 

D 4 

DI(I>4) 

F 4 

G 2 

others 

13 

sisting of 6 elements, with ~1 + e3 and 262 as representatives. 

The number 6 and the fundamental weight 62 are found with the 

help of the "Planches" in [ 4]. 

Table i. 

Dynkin diagram 

o I 

O----<) 

1 2 

O----<>----O 

1 2 3 

i 2 3 

o---o---o=~=3 
1 2 3 4 

o ........ o ~) o 
1 i-2 i-i i 

O- ...... 0 0 ~ 0 

i 1-2 1-1 i 

n pF 
p=2 lp>2 

~112,2611 

1 2 ~  3 
4 

i i-3 1 _2"-~o i 

o ~  
I 2 3 4 

o ( o 
1 2 

some 

~i [ 21,281] 

Degenerate ..... sums 
p=2 

~1+c~3 [ 6 , 262 ] 

f 2c~3[ 6,261 ] 
c~1+o~3[ 8,263 ] 

1 2~4[ 8,261 ] ~1+~3 [16,254] 

2~i[ 21,261 ] 

t 2c~1[ 212-21,2~ 2] 
~i [ 21,281] 

I 
~1+~3 [ 8,264 ] 

~1+~4 [ 8,283 ] 

0~3+~4[ 8,261 ] 

c~1_1+o~1 [ 21,261] 

2c~3[ 24,264 ] 

2c~1[ 6,261 ] 

p=3 

I 2c~1+c~2[ 3,361 ] 

2c~2+~,1[ 3,362 ] 

3~1[ 6,36 1] 
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2.9. LEMMA. 

(i) If y is a desenerate sum with respect to p then p-ly 

is in the orbit of a fundamental weight. 

(ii) If Z is not of type Cl, I > 2, then the fundamental 

weight in (i) is a minimal dominant weight in the sense of the 

order defined in 2.1. 

(iii) Let Z be of a type such that desenerat e sums with 

respect to p occur and let ~ be a short root. Then p~ is a 

degenerate sum. 

PROOF. 

(i) See Table 1. 

(ii) Some cases are discussed in ([ 7 ] , p. 20-03). Let 

be the fundamental weight that is found in (i). If it is not 

minimal, then there is a dominant weight ~ such that 6 - a > 0. 

We may suppose that e is fundamental because fundamental weights 

are positive and ~ is a sum of them. It is easy to check, using 

the "Planches" of [ 4 ], that for each fundamental weight 6. ~ 
1 

the difference 6 - 6. is not positive. (Use the description of 
l 

6. in terms of the e.). Hence e does not exist, except in the 
l 3 

cases C I, where the check doesn't work. 

(iii) See Table 1. 

REMARK. 

If the minimal dominant weight in (ii) is not a root, then it is 

a "Poids minuscule" in the sense of ([ 4 ], exercice 24, p. 226). 
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2.10. LEMMA. 

i_ff ~ has degenerate sums, then the order of F/F 0 is a power of p. 

2 In fact it is 1, p o__rr p . 

PROOF. 

Compare Table 1 with the Planches again. 

2.11. LEMMA. 

Except for the cases B 3 and CI, i ~ 2, all desenerate sums (i_/!n F) 

with respect to the same p have the same lensth. 

2.12. PROPOSITION. 

Let p be prime, y E pF A F0, y ~ 0. 

Then y is a degenerate sum with respect to p if and only if there 

is a lon~ root ~ with (y,y) ~ p(~,~). 

PROOF. 

Suppose y is a degenerate sum. Choose a long root a such that 

(~,y) > 0. If p = 3 then it is seen from the table that 

(y,y) = p(~,~). 

If p : 2 then it follows from lemma 2.6, (ii) that 

(y,y) ~ 2(~,~). 

Conversely, suppose (y,y) ~ p(~,~), y C pF N F0, y ~ 0. Recall that 

is a long root such that <y,~> > 0. Then <y,~>2 ~ p2, so 

4(y,y)(~,~) ~ p2 p~ 
2 , and hence p(~,~) ~ (y,y) ~ (e,~). It follows 

that p~ 4, whence p = 2 or p = 3. 

1). First suppose ~ is of type C I. Then there is an orthogonal 

base (Bi) , consisting of long roots. As <y,6i> @ p~ , we have 

y = ~ ~ n. E ~ . 
i niSi' 1 
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p2 n~ 
So (y,y) = V- (~ ) (~'~)" 

i l 

It follows that ~ n~ ~ 4 
i ~ P 

3 
There is no solution for p = 3, because y = ~ B i is not 

in F 0 . 

For p = 2 there are two solutions, up to the action of 

the Weyl group. As there are also two orbits of degene- 

rate sums, these solutions are degenerate sums. 

2). From now on we exclude type CI(I > I). First let p=3. 

Recall that ~ has been chosen such that <y,~> is strictly 

positive. The root ~ is the sum of two long roots. 

(Type C 1 is excluded). Let B be one of them, such that 

(y,8) > 0. Then we have: <y~e> > p, <y,6> > p, and hence 

< ( Y - ~ - 6 ,  y - a - 6 )  = ( ¥ ' Y )  + 2 - < y , ~ >  - < ¥ , 6 >  + 1 0 (~,~) ~,~) 

p+2-p-p+l = 0. 

It follows that y = ~ + 6, hence y is a degenerate sum. 

Finally let p = 2. 

We may suppose that y is a dominant weight. Then y=2 ~. ni6i:~mi~i, 
l 1 

where mi, n i E ~ , m i > 0, n i > 0. (Recall that y E pF N F0). 

As <y,~i > > 0 for each i, all m i are strictly positive. (Consider 

an index in the Dynkin diagram adjacent to an index i where mi>0). 

Now 2n i = <y,~.> = 2m. + Z m. <a.,~i > < 2m.. So 
l i j~i 3 3 l 

(1) m. > n,+l. 
1 1 

Hence 

(2) 2(~,~) > (y,y) = Z mini(~i,~ i) > Z (ni+l) ni(ei,ei). 
i i 

Suppose there are two indices r and s such that n > 0, n > 0. 
r s 

Then 2(~,e) > 2nr(~r,~ r) + 2ns(~s,~s). It follows that ~r and a s 

are short, so ~ is of type F 4. (Again we use that type C I is ex- 

cluded). Say s is the one that has two neighbours in the Dynkin 
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diagram. As m > 2, we have 
r 

: + ~ m. <~j,~s > < 2m s - 2. 2ns <Y'~s> = 2ms j~s 3 

Hence m s > 2, and it follows from (2) that 2(e,e)>3(es,Ss)+2(~r,~r) 

which is nonsense. 

We may conclude that there is only one index r such that n r > 0. 

Suppose n r > 1. Then 2(a,a) > (y,y) = mrnr(ar,a r) > 6(er,~ r) (see 

(1) and (2)). 

So ~ is of type G2, mrn r = 6, mr = 3, nr = 2. This is nonsense, 

because 6 r i s  a r o o t  i n  e a s e  G 2.  W h a t  i s  l e f t  i s  t h e  c a s e  y = 2~ r .  
m .  

Then we have y/2 = ~ ~. ~i' mi 6 ~ , mr(~r,~r) ~ 2(~,~). All we 
z 

have to do now, is to look in the Bourbaki Planches for such funda- 

mental weights ~r" For each type, there are as many of them as 

there are orbits of degenerate sums. 

REMARK. In fact the proof gives another method to classify 

degenerate sums in characteristic 2. It also explains Lemma 

2.9.(i), in characteristic 2. 

2.13. The Lie algebra ~ is defined as a vector space by the 

following generators and relations: 

Generators: X , H (~ E ~). 

Relations: 

(1) H + H : 0 for ~ E ~. 

(2) H a + (~,~)($'~) H~ + (~,~)(Y'Y) Hy = 0 for ~,~,y E ~, ~+B+y=0, 

(~,~) ~ (B,~), (~,~) < (¥,¥). 

These relations follow from the fact that the left hand sides 

act trivially on roots. Every H can be expressed by means of 

relations (1), (2) in terms of the Ha . (ei simple). So relations 
i 

(1), (2) are sufficient to define ~, for reasons of dimension. 
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For a,B,y as in (2), we have the Jacobi identity 

Ix a,  [x  B, xyl l  + [x  B, [Xy, xa l l  + [Xy, [x  a ,  xBll = o, 

which yields: 

(3) NByH ~ + NyaH B + NaBH Y = 0. 

As B+y = -~ is a root, NB, Y ~ 0 and H6, Hy are linearly inde- 

pendent. So relation (3) is obtained from relation (2) by mul- 

tiplying with the nonzero factor NB, Y. 

2.14. DEFINITION. 

Let i'~ be the ~ - module with generators X , H (a E E) and 

relations (1), (3) of 2.13. (So relation (2) is omitted). 

We define the bilinear anti-symmetric composition [ , ] on ~' 

by the usual relations: 

[X a, X B] = NaB Xa+ 6 if a+B e E. 

[X a ,  X_ a] = H a. 

Ix , X B] : O if a+B ~ E u(o). 

[H a,  X 61 = <B,a> X B. 

[ Ha, H B] = O. 

It is easily seen that this composition is well-defined. We now 

claim that ~' is a Lie algebra. We only have to check Jacobi 
Z 

relations for the generators. 

If ~,$,y ~ E, ~+B+Y = O, then the Jacobi relation for X , XB, Xy 

is just relation (3) of 2.13. For other combinations of the 

generators the three terms in the Jacobi relation are multiples 

of one generator. So for those combinations the Jaeobi relation 

follows from the fact that we use the same structure constants 

in ~' as in [~ .Let r: ~' Z ~ be the canonical homomorphism 

of ~ - modules. An element of kerr is a combination of H's a 
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which acts trivially on each X6, because its image acts tri- 

vially on X B. So r is a central extension and kerr is the 

centre ~(~'~ ) of ~'~ because ~(~ ) = 0. 

2.15. PROPOSITION. 

The centre of K'~ is a direct sum of cyclic groups of prime 

order. Its order is: 

2 for BI(I > 2) 

21-1 for CI(I > 2) 

4 for F 4 

6 for G 2 

1 for other types (i.e. for types with one root length). 

PROOF. 

We use the following lemma. 

2.16. LEMMA. 

Relations (2) and (3) of 2.13. are equivalent, except for the 

case that ~,6,Y are short roots in G 2, in which case (3) is 

obtained from (2) by multiplication with a factor 2. 

PROOF of LEMMA. 

We know that (3) is a N6y-multiple of (2) (see 2.13.). If IN6y 1 = 1 

then we are done. Let IN6y I be larger than 1. Then B-Y e ~. 

As 6+y E ~ too, and (~) = (6+7, 6+Y) ~ (6,6) ~ (Y,Y), we see 

from inspection of rank 2 root systems that ~ and y are short 

roots in G2, making an angle 2~/3. In this case (3) states that 

2H + 2H~ + 2Hy = 0. 

Now we proceed with the proof of the Proposition. If every 

H a is expressable in the Ha. (~i simple) by means of the relations 
i 
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(1), (3), then kerr : 0. Using the lemma we see that this is true 

if root lengths are equal. So we only have to worry about types 

B I , C I , F 4 , G 2 • 

We use the description of ~ in terms of the e i (see [4 ], cf. 2.1), 

except in case G 2. 

1). Let Z be of type BI, E = {~ e i ~ ej, ~ el}. 

Relations (2) (or (3)) yield 

(i) Relations involving only long roots. 

(ii) Relations of the type H + H + 2H = 0. 
e I e 2 -el-C 2 

So after reduction mod 2 no interaction between long roots and 

short roots exists, i.e. every relation ~ n {H } = 0 implies a 

relation 
short 

Set 

n {H } e ~ and {H } : H + 2~' : 0, where n ~ ~ ~ • 

H=H +H +H 
el+e2 el-e2 -e 1" 

As {H } ~ 0, we see that {H] ~ 0, hence H ~ 0. On the other 
-e 1 

hand 2H = (2H + H + H ) + (2H + H + H ) = 0. 
el+e2 -el -e2 el-e2 -~1 e2 

Now we add relation H = 0 to relations (1), (2). Then every H 

is expressible in the H B with ~ long, and hence in H 
el-e2''" 

.., H H i_l+el" 
el_l_el, This implies that we have got a full set 

of relations for ~ from those for ~'~ , in adding relation H = 0. 

We may conclude that H generates the centre of ~'~ , which is of 

order 2. 

2). Let ~ be of type C I. ~ = {~ ~i ~ ej, ~ 2el}. Now relations 

(1), (2) yield 

(i) Relations involving only short roots. 

(ii) Relations of the type HEI+e 2 + H l_e 2 + 2H_2el = 0. 
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Again there is no interaction between long roots and short roots 

after reduction mod 2. We see that the elements 

H i = H2e i + H 2 + H (1 < i ~ 1-1), induce independent 
gi+l -ei-ei+l 

elements {H i } in ' mod ~ 2~'~ . 

And again 2H i = 0. After adding relations H i = 0 to (1), (2) we 

can get rid of all H B with 8 short, which proves as above that 

the H. generate the centre. 
l 

3). Let Z be of type F4, ~ = {! s i ! cj, ! e i, !el!e~ !~3!e4}' 

el+e2+e3+e4 
Set ~ = 2 

Relations (2) yield 

(i) Relations involving only long roots. 

(ii) Relations involving only short roots. 

(iii) Relations of the type H + H + 2H 
e I e 2 -~1-e2 

Set H 1 = H + + + H . 
el ~2 Hel-C2 -el 

= 0. 

H 2 = H_Sl_e2 + H_e3_¢4 + HI. 

As in the case of BI, we see that H i ~ 0, 2H i : 0, H 1 + H 2 ~ 0. 

We want to show that adding relations H. = 0 to relations (I), (2) 
1 

yields a full set of relations for [Z . As in the case of BI, it 

is sufficient to show that every H with ~ short is expressible in 

Hs's with ~ long. So we divide out these Hs's too, and we look what 

H~ = 0, H±e i = 0, • + H. is left One gets: H_s I = ~ O, Hei q 

0 = H_e i + H~ = H~_g i and so on. 

We conclude that H i and H 2 span the centre. 

4). Let ~ be of type G 2. Put ~ = ~I' ~ = ~I + ~2' Y = -~-8. 

Then ~ : {!~, Z6, ZY, ! (~-~), i (8-Y), ! (Y-~)}" 
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After dividing out relations (1), relations (3) yield: 

(i) Ha_ 6 + H8_ Y + Hy_ a = 0 

(ii) 2H a + 2H B + 2Hy = 0 

+ H + SHy a = 0. (iii) Relations of the type H a -Y _ 

Set H : Hy_ a + HS_ a + H a. 

After reduction mod 3 no interaction between long roots and short 

roots exists, so we may conclude as above that 2H ~ 0. 

After reduction mod 2 we see that {H }, {H6}, {Hy} are independent, 

so {3H} = {H a + H E + Hy} ~ 0 and hence 3H ~ 0. 

: + H + 3H6_ a) + But 6H 2(H a + H_y + 3Hy_ a) + 2(H -B 

+ (2H a + 2H6 + 2Hy) = 0. We conclude that H generates a cyclic 

group of order 6, hence a direct sum of two cyclic groups of 

prime order. 

The fact that H generates the centre is checked as above. 

2.17. COROLLARY. 

(i) If ~ is of type F 4 or B I (i ~ 2), then 

H + H + H is an element of the centre that has a 
el+~ 2 el-e2 -E 1 

nonzero image in ~ '  ~ mod 2 ~  • 

(ii) l_~f E is of type G 2, then Hy_ a + HB_ a + H a is an element 

of the centre that has a nonzero image in ~' mod 3~ , and 

HI_y6 + H'a is an element of ['Z that has a nonzero image in 

~'~ mod 2~'~ . 

§3. The action Ad. Structure of gz' ~R" 

In this section we describe the universal central extensions 

of ~ and ~k' over ~ and k respectively. Because of Proposition 

1.3 (vi), knowledge of the universal central extension 

~ of ~ implies knowledge of that of ~R for any ring R. 
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We can't apply this remark for type C I however, because of the 

fact that in this case ~ has no universal central extension 

(see Proposition 1.3, (ii), and Corollary 2.2, (ii)). But type 

C I is not very interesting, because its ~R is centrally closed 

as soon as the universal central extension ~ ~ ~R exists. (see 

3.13) .  

3.1. Assume that we are in the situation of 2.1 and suppose that 

= [K, ~]. G acts on ~ by the adjoint representation Ad. 

According to Proposition 1.3, (v), every automorphism Ad (x) of 

induces a unique automorphism Ad (x) of ~* . So we have a re- 

presentation Ad of G(K) in ~*. As ~ ~ ~k induces ~: ~* ~ ~ (see 

Proposition 1.3,(vi)), we can take K* to be defined over k in a 

natural way. Then ~ is defined over k. 

3.2. REMARK. 

There is exactly one k-structure of Lie algebras on ~* such that 

is defined over k. 

PROOF. 

* denote the We make use of the central trick (1.2) again. Let ~k 

k-structure from above, and (~*)k another one such that ~ is 

defined over k. Then (K*)k C [ (~*)k' (~*)k ] = [K~' K~] = ~" 

It follows that (~*)k = Kk' because both are k-structures. 

3.3. PROPOSITION. 

Ad: G ~ GL(~*) is ~ homomorphism~ defined over k (i.e. a k-mor- 

phism of alsebraic sroups). Its derivative d Ad (denoted ~d) is 

q,haracterized by 

ad Q ~ = ad, 

where the risht-hand side is the adjoint representation of ~* i_n ~*. 
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PROOF. 

We use the construction of ~*, given in the proof of (ii), Propo- 

sition 1.3. Define the surjective homomorphism of K-modules 

r: ~ ~ ~ ~ ~* by r(X ® Y) = {X ~ Y}. (Notations as in loc. cit). 

G acts on [ ~ ~ by Ad ® Ad. As kerr (= N) is invariant under this 

action, an action Ad' of G on ~ is induced, with Ad'(x) {X ® Y} = 

{Ad(x) X ® Ad(x) Y} . Now Ad'(x) is a Lie algebra automorphism, 
^ 

satisfying ~ 0 Ad'(x) = Ad(x) Q ~, so Ad' = Ad. As Ad ~ Ad is a 

k-homomorphism, and kerr is defined over k, the representation 
^ 

Ad' = Ad is a k-homomorphism. 

As r is a homomorphism of G-modules, we have 

r Q (d(Ad ® Ad) (X)) : ad (X) 0 r for X • ~. 

So [d (X){Y ® Z} = ~d(X) r(Y ® Z) = r(d(Ad ® Ad)(X)(Y ® Z))= 

{Ix,Y] ®z + Y ®Ix,z]}. 

Hence ad (n{X ® X'}) ([Y,Y'] ® [Z,Z']} = 

{[[X,X'], [Y,Y']] ®[Z,Z'] + [Y,Y'I ®[[x,x'],[z,z'11} = 

= [{X ® x'}, {[Y,Y'] ® [z,z']}] because of Jacobi for {X ~ X'}, 

{Y ® Y'}, (Z ® Z'}. Now the Proposition follows form the fact 

that & = [&, ~]. 

3.4. The action Ad makes ~ ~ into a G-module. The maximal torus 

in G~, corresponding to the Caftan decomposiZion in K~, gives 

r~se to a k-split maximal torus T in G. The G-module ~ has a 

weight decomposition with respect to this torus. As, for x • G, 

Ad(x) is a Lie algebra automorphism, we see that the weight 

decomposition in ~ yields a structure of graded Lie algebras. 

This grading can give information about the structure of ~ as 

a Lie algebra. We are going to exploit an analogous grading for 

K~" ~ We shall also use unipotent automorphisms of the type Ad(x) 

(see 3.10). 
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3 5. THEOREM. (Structure of ~* ) Assume that Z is not of type CI, 

I ~ 1. The structure of the universal central extension 

~ is as follows. 

* is defined by the following gene- (i) As a ~ -module, ~ 

rators and relations: 

GENERATORS: 

a) X* H* (~ e E). 

b) Z* (y degenerate with respect to some n, which we denote n ). 
Y ] 

(See 2.6, (i)). 

RELATIONS: (See 2.13). 

(1) H* + H* : 0 for ~ 6 E. 

H* + N N6 Y (3) Nfly ~ Y~ H~ + H* : 0 for ~,$,y E E with ~+~+y=0. 

(4) n Z* = 0. 
Y Y 

(Relation (2) of 2.13 has been omitted). 

(ii) The Lie algebra structure on ~ is defined by: 

i x~ ,  x ; l  : N ~ x*~+~ i f  ~+~ e z .  

[ x ~ ,  x_~l = H*. 

[X~, X~] = e(~,~) Z~+$ if ~,~ are independent and ~+~ is degenerate 

with respect to some n. 

[X~, X~] = 0 in other cases. 

[H~,  X~l : <B,~> X* 6" 

t h e ,  : o. 

[Z}, YI : 0 if Y e Ii . 

Here e is a map E x E ~ {1,-1} that satisfies e(~,$)+e($,~) = 0 

for ~,6 E E. (Every such ............. map will do). 

(iii) ~(X*) = X , ~(H~) = Ha, ~(Zf) = 0. 
y 
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PROOF. Let ~: &* ~% be the universal central extension, as 

constructed in the proof of (ii), Proposition 1.3. We have to 

show that, given e: ~ x ~ ~ {1,-1}, there are X~, H'e, Z*y as in 

the Theorem. There is a grading on ~ ® ~ with values in F, 

corresponding to the weight decomposition with respect to Ad ® Ad. 

There is also a grading on ~%, corresponding to the weight decom- 

position with respect to Ad. Let r: ~% ® ~ ~ ~ be defined by 

r(X ® Y) = {X ® Y}. (cf. proof of Proposition 3.3). Then kerr is 

homogeneous with respect to the grading on ~ ® ~ , and we may 

choose a grading on ~* compatible with r. This grading is also 

compatible with ~. 

So we have a grading ~ = ~ (~)y satisfying 
Y 

[ (~) , (&~)6] C (~)~+6' which says that it is a grading, (5) 

and 

(6) 

As g2z is a free ~- module, we can choose a ~- - linear section s 

of ~. (We may even choose s compatible with the gradings, but we 

don't need that). 

We see from (5), (6) and the central trick: 

(7) [s(g~) , S(gZ~ )6] C (g{) +ft. 

Using the central trick again, we get 

( 8 )  ~ .~  = [ & ~ ,  s-~z] = [ z s ( ~  ) , ~ s(s.z~)~] = 
~ezo( o ) 6e~u( o ) 

Z [s(gz) , s(g~ )6]. 
~,6eDJ(0) 

3.6. REMARK. 

It is easily seen from the above, that there is exactly one grading 

on g2g* satisfying (6). After reduction mod p it yields the grading 
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mentioned in (3.4), for the same reasons. 

3.7. We are going to show now that the grading on ~*~ is a weight 

decomposition with respect to the analogue of the action ~d (see 

(3.3)). Let X e (~) , y e (~)8' ~,8 e ~U(0), ~ e ~. 

Then we get from the Jaoobi relation and the central trick: 

[sH6, [sX, sY]] = [[sH~, sX], sY] + [[sY, sH~], sX] = 

[<~,~> sX, sY] + [-<~,~> sY, sX] : <~+~,~> [sX, sY]. 

Combining with (7), (8) we see: 

(g) ad(sH~) acts on (~)y as scalar multiplication with <y,~>. 

(Compare with Proposition 3.3). 

So [s(~ )0' s(~)0 ] = 0. 

As (~) is a ~ - module of rank 1 for ~ e Z, [s(~ ) ,s(~ ) ] = 0 

for all ~ E % U(0). We conclude that (8) can be sharpened to 

= ~ [s(~ ) , s(~ )81. (i0) K~ ~,Se~u(o) 

As ~ is compatible with the gradings, ker ~ is homogeneous, i.e. 

(ii) ker ~ = Z (ker ~)y. 
Y 

Let y 6 F. If y = 0, set ny = 0. If y ~ 0, set ny = max{nly 6 nF}, 

or, equivalently, set 

ny = g.c.d, of the <y,~>, 6 6 Z. 

It is easily seen from lemma 2.6, (i), that this new definition of 

n is an extension of the old one (see (i)). 
Y 

We see from (9) that 

(12) ny(ker ~)y = 0 (ker ~ C £(&*)). 

As we have excluded the types CI, i > 1, we have Z N pF = 4 for 

every p (see 2.2). Hence 

(13) n = 1 for y E ~. 
Y 

We see from (10) that in ~* the only possible degrees are elements 
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of ~ U(0) and sums of independent roots. As ker 7 is contained 

in ~k , we conclude, using (12), (13) that 

(14) ker ~ = (ker ~)0 + ~ ~ (ker 7) . 
n y degenerate Y 

sum with res- 
pect to n 

Here we see how degenerate sums come into the picture. 

Let ~ 6 Z. As (ker ~) = 0, we have an isomorphism 

Call it ~ . 

(15) We choose X* to be the inverse image of X under z . 

(16) Define H*~ = [X ,* X~] (~ e ~), and define Z*~,6 = 

= * X ~ independent moots such that ~+8 is ~(~,8) [X , ~] , if ,B are 

degenerate with respect to some n. 

We have to show that Z* depends only on ~+8. It is clear that 

Z* = Z* (We require s(~,B) + e(8,~) : 0). Hence we consider ~,8 ~,~" 

the case that ~,8,y,6 are distinct roots, while ~+8 = Y+~ is 

degenerate with respect to some n. 

In this case n = 2, (~,8) = (Y,~) = 0, and we may suppose 

(~,~) = (Y,Y) < (8,8) = (6,~). (See Lemma 2.6, (iii)). 

Then <y,8> ~ 1, <~,8> ~ 1, <y+6,B> = <~+8,8 > = 2. So <y,8> = i, 

and we have y-6 E ~. 

Now suppose y-28 E Z, to get a contradiction. 

We have <y-28,8> = -3, so ~ is of type G2, ~ is short in Z. 

Then (~,8) = 0 shows that (~,~) > (8,8), a contradiction. 

It follows that Ny_8, ~ : ! 1. For the same reasons 

N6,~_~ = -N _~,6 : ! 1 and N6_8, B = ! 1. Then 8+~ £ Z, since 

<6,~> = 1 and N6_8, 8 : !1. Now we can compute the Jacobi relation 

for X6, X* XS, using the central trick: Y-8' 
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o : [ x ~ ,  Ix* x [ l l  + I x [ ,  [ x ~ ,  x 611 + Y-6' 

Ix* I x ; ,  x~l l  = [ x ~ ,  x¥1 + ~-~ '  Ny-6,  6 * 

N6,~_ ~ i x ; ,  x; l  , o : + z~ ,~  + z* 

= a Z ~ . As n = 2, or n + 6 = ny+ 6 2, it follows from (12) that Z~,~ d,y 

Hence 

( 1 7 )  z*~+6 : s ( ~ , 6 )  [x*~, x~l 

is a good definition. 

Next we have to prove that X~, H*~, Zy* behave as described in the 

Theorem. Part (iii) is obvious. 

* X* follows from (5) and (15). The relation [X , X~] = N ,~ ~+B 

Relations [X~, X2~l : H*~ and IX ,* X~l = Z*y follow from the defini- 

tions (16), (17). 

For other cases [X~, X~] = 0 because it is an element of (ker ~)~+6' 

which is the zero module (see (14)). 

Relations [Z* Y] = 0 are obvious, and the action of H* is the same y' 

as that of sH , which is described in (9). 

This proves (ii). 

Using the central trick, we see from (10) that [* is generated 

as a ~ - module by the elements [X,Y] where X,Y • {X , H~]~ • E}. 

* is generated as a ~ - module by Then we see from (ii) that ~Z 

* H* Z* We still have to prove now that (1), (3), the elements X , ~, y. 

(4) are defining relations. 

It will be sufficient to look for defining relations of all compo- 

nents (~)8' because ~*~ is the direct sum of the (~)8" 

First we prove that relations (1), (3), (4) are satisfied. Relation 

(4) is a special case of (12). Relation (1) is obvious. Relation (3) 

is the Jacobi relation for X* X6, X*. (See (ii) and see 2.13). ~' y 
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3.8. PROOF CONTINUED. 

We still have to prove that relation (1), (3), (4) are sufficient 

* Consider the central extension r: ~' to define gzz " ZZ gTz of Lie 

algebras over 2Z (see 2.14). 

' such that r 0 Y = ~. There is a homomorphism T: g~ ~ g2z 

The central trick proves 

So there can't be more relations between the H~, then there are 

f between the H a in gz~ " 

This proves: 

(18) The subspace (g~)0' generated by the H a, has (1) and (3) as 

defining relations. 

s The other components of the grading of g% are Z- modules with 

one generator. If ~ E %, then (g~) is generated by X*.~ It is a 

free 7Z.- module, because (g~)~ is free. If 6 is degenerate with 

* = Q respect to n, then (g~)6 has Z~ as generator, and nZ~ = n6Z6 

(see (12)). As n is prime (see lemma 2.6, (i)), (g~.)6 is either 

zero or n-cyclic. 

(19) So if we prove that Z~ ~ 0, then all components of the grading 

satisfy description (i), which proves the Theorem. 

3.9. REMARK. 

It is possible to check that the % - module with bracket-operation 

[~ , that is described in (i), (ii), is in fact a Lie algebra. 

This yields a central extension of [Z , that we can use in the same 

way as we used the extension [' ~" 

We won't pursue this line; we will exploit the action Ad instead 

(see 3.1), which is a more instructive way. 
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3.10. Fixing 6, we take p : n6, k = ~ P and return to the 

notations of 2.1, 3.4. 

The universal central extension ~: [{ ~ [k is obtained from 

~ by reduction mod p. So we have in ~k the images of 

X* H* ~, ~, Z~ (~ E Z, y degenera te )  

We denote them by X*~, H ,* Z*.y 

Now it is sufficient to prove that Z~ ~ 0 in ~{. We are going 

to give this proof case by case, using the classification of 

degenerate sums. 

case 1. p = 2, types B I (i > 4) and type F 4. We have a natural 

grading on ~*(see 3.4 and 3.6). 

* all we have to show is that ~ has non-zero As Z~ generates ~, 

multiplicity in the G-module ~*. For the types under consideration 

there is one orbit of degenerate sums (see 2.8 Table 1). Multi- 

plicities are invariant under the action of the Weyl-group, so we 

may suppose ~ = 2¢ 2. (Notations as in 2.1, 2.16). 

Using the central trick and the fact that p = 2 we see (cf.[ 2 ], 

(4.5) (2)) 

~d (x e2(1)) Z~a 2 = lad (x s2(11) X*el+¢ 2, Ad (x_~2(1)) XI¢2+¢21 

: [ X *  + + X* + X* , X* + X* + X ~ e l _ ¢ 2 1  = 
el ¢2 ¢1 ¢1-¢2 -¢1+e2 -¢1 

Z* + H* + H* + H* + Z* , which has non-zero component 
2~2 ¢1+¢2 -¢1 ¢1-¢2 -2¢2 

in ~. (See Corollary 2.17 and use the part of (i) that has been 

proved above). So Z~¢ 2 has non-zero image, which shows that Z* 
2¢ 1 

itself is non-zero. 

case 2. p = 2, type B 4. We denote ~X the Lie algebra ~ of type 

X, and G X the (simply connected) Chevalley group G of type X. 
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In (~{)F4 there is a subalgebra generated by the weight components 

([{)+e.' ([{)+e.+e. (i ~ j). This subalgebra is a semisimple alge- 
- -  1 -- l-- ] 

bra of type B 4 (see [14], § 5). The Chevalley basis in (K¢)F4 ob- 

viously induces a Chevalley basis in this subalgebra (KC)B4. Hence 

there is an inclusion map (~)B4 ~ (~)F4 which induces a homo- 

~B 4 ~F 4 and X+~.+e. to morphism of into , sending X e i to X g i -- l-- 3 

X+e.+e.. So there is a homomorphism K~ 4 ~ If4 sending Z*+2e. to 
-- l-- ] -- i 

Z* and Z* * . 
+2£ l . . . . . .  _ . +Sl+e2+e3+e4 to Z+el+e2~e3~e4 

These Z* cover all possibilities (see 2.8, Table 1). So the image 
Y 

of Z~ is non-zero, which proves that it is itself non-zero. 

case 3. p = 2, type D 4. 

Use the "trivial" homomorphism ~ that is analogous to the 
~D 4 ~B 4 

homomorphism 
~B 4 ~F 4" 

ease 4. p = 2, type B 3. 

In this case we use a less trivial homomorphism. 

3.11. DIGRESSION. 

Let ~ be a graph automorphism of GD4 that has order 2. Say o inter- 

changes ~3 and ~4" The fixed point group (GD4) o of o is an almost 

simple group of type B 3. This is easily seen from Theorem 8.2 in 

Steinberg [241, step (2) in the proof of this Theorem, Remark (b) 

following the proof. 

The group (GD4) o has a maximal torus To, consisting of fixed points 

in the torus T = TD4. So there is a homomorphism GB3 ~ GD4, mapping 

TB3On~o To,whose image is (GD4) o. (See [ 7 ], Expos@ 23, Th@orSme 1). 

We make it more explicit. Let V be a complex vector space of dimen- 
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sion 8, with a non-degenerate symmetric bilinear form B of 

maximal Witt index. Say Vl,... , v4, V_l,.. , v_4 is a basis of 

V such that B(vi, vj) = 6i,_j. (Kronecker 6). 

In the Clifford algebra associated to B, the elements v.v. 
13 

span a Lie algebra of type D 4 (see [16], Theorem 7, p. 231). 

The elements v.vi-l'-V -3 3"v" = [viv j, v_jv_ i] (lil ~ lJl) span 

a Cartan subalgebra. 

Let ~ be a root in ZD4, say ~ =SlS i + s2e j where s k = ! 1, 

i ~ j. If sli < s2J , then we put X = vsl i Vs2 j. If sli > s23 ," 

then i has to be interchanged with j. We get a Chevalley basis 

this way. 

The counterpart of ~ in characteristic 0 interchanges v4, -v_4 

and fixes the other vi's. (So it maps X = VlV 4 to 
el+e 4 

-VlV_4 = v_4v I = Xel_e4). Its fixed points in the Clifford al- 

gebra form an algebra that is generated by v 0 = v 4 - v_4 and the 

v i with lil < 4. This is a Clifford algebra again, associated to 

the subspace V 1 of V generated by v0, V+l, v+2, v+3 (see [ 9 ] , 

2.1, II. 1.4). Put X+s ' v+iv 0. 

The elements X+e , X+g.+e. , i,j : 1,2,3, i # j, generate a Lie 
-- i -- l-- j 

algebra of type B3, and yield a Chevalley basis again. The v i 

generate a ~ - form of the larger Clifford algebra. If we apply 

the construction of Chevalley groups from admissible lattices to 

the representations (by left multiplication) of ($~)B3 and 

in this ~ - form, then we get a Chevalley group that 
(K~)D4 GB 3 
is contained in a Chevalley group GD4. The inclusion map is 

given by 

x (t) ~ ) ) (i < 4) 
~e i x~ei+~4(t x~i-e4(t 
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x+e.+e.(t) ~ x+s.+e.(t) (i,j < 4). 
-- l-- 3 -- i-- 3 

We get a homomorphism ~ given by 
KB 3 KD 4 

(21) X+e ' ~ X+e.+ 4 
-- i -- i 

- X+ei_e4, 

X+C.+E. ~ X+£.+E.. 

-- i-- ] -- l-- 3 

Note that the same can be done for all pairs BI, DI+ 1 (i ~ 2). 

3.12. PROOF THEOREM 3.5 (CONCLUDED). 

We return to the proof of case 4. 

Consider the homomorphism ~ that is described by (21) 
~B 3 ~D 4 

in 3.11. Note that it is easy to check directly that this is 

a homomorphism, because p : 2. The homomorphism [B3 ~ ~D4 that 

is induced, sends Z e1~2~ 3 to Ziel~2~e3+E4 + Ziel~2~e3_E4 

a n d  s e n d s  Z + 2 e .  t o  Z* . A g a i n  t h e s e  Z* c o v e r  a l l  p o s i b i l i t i e s .  
+2~. ' y 

-- l -- l 

case 5. p = 2, types A 3 = D 3 and D I (i > 4). 

Use the "trivial" homomorphism ~D I ~ ~BI, cf. 3.10, case 3. 

case 6. p : 2, type G 2. 

In characteristic 2 there is a surjective homomorphism ~A 3 ~ ~G2, 

having the centre of ~A 3 as kernel. 

It sends X to Xpr(~), where pr is the projection of the root 

system of type A 3 on a plane through a subsystem of type A 2. 

The image of this projection is a root system of type G 2. 

(Say ~A3 = {ei-~jli ~ j, i,j ~ 4} and project e I on ~1' s 2 on 

~1+~2 , E 3 on -2~1-~2, e 4 on 0). 

The existence of the corresponding homomorphism is easily checked. 

As gA 3. ~ gA3 ~ ~G2 yields a central extension (see Proposition 1.3, 
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* ~ [~3" This homomorphism sends (i)), there is a homomorphism ~2 

Z~ to a nonzero element Z~, so we are done. 

REMARKS. 

1) In fact g~3 ~ --G2 g* . This is easily proved from the generalities 

in 1.3, using the fact that gA3 ~ gG2 is a central extension. 

Then one can see again that g ~ 0, from the dimensions of ~G 2 

and g~3" 

2) Case 6 can also be handled like case 4. There is a homomorphism 

~G 2 ~ gD4 , reflecting the fact that the graph automorphism of 

order 3 in Spin 8 has a fixed point group of type G 2. (see [24], 

§ 8 and [22], p. 176, (c)). 

also exists in other char- Note that this homomorphism ~G 2 gD4 

acteristics, contrary to the homomorphism gA3 ~ ~G 2. 

3) Finally, case 6 can also be handled like case 1. 

case 7. p = 3, type G 2. 

We proceed as in the case of p = 2, type F 4, using the same 

notations for the roots as in 2.16, case 4. 

It is sufficient to show that Z* ~ 0. Using the central trick 
3~ 

we see 

L (x_~(1)) Z*3~ : 

Ix*  + x* + + x* x* + x* + x* + 
~-Y - -Y - - B-~' ~-6 -- -6 - ¥ - 

So its component H* in ~ is 

H* + ClH ~ + * + * c i E ~ . ~-y e2H6 c3Hg-a' 3 

As a special case of relation (3) (see 3.5), we get 



36 

= H*y_B + N_y,y_6 ~ Ny_B, B -Y H~ + H*. 0 NB,_y HI + H* : + 

(One also can use Lemma 2.16). 

In the same way _+ H*~ _+ H*y = 0. So H* = H*~_y + c 3H.6_~ + c4H*.~ (c4E~3). 

Suppose H* : 0. Then H _y + o3HB_ ~ + c 4 H = 0 in g, so c3=c4=-1. 

(In fact these relations hold without the assumption). But 

H* - H* - H* ~ 0 (see Corollary 2 17 (ii)). So Z* ~ 0. 
~-y 6-0~ ~ " ' 3o~ 

case 8. p : 3, type A 2. 

Use the "trivial" homomorphism [A 2 ~ ~G2, cf. 3.10, case 3. 

It is seen from 2.8, Table 1, that we have dealt with all possi- 

bilities for 6. 

3.13. PROPOSITION. Let ~ be of type Cl, i ~ 1. Let R be a ring. 

If [~R' ~R ] = JR' then ~R is centrally closed. 

PROOF. 

The finitely generated Z - module ~ /[~ , ~ has 2-torsion, 

because all 2X =[H , X ] are in [~ , ~ , while some X are 

not. (see 2.2, Corollary). So if ~R = [~R' ~R ] ' or, equivalently, 

if (~ / [~Z , [~]) ®Z R = 0, then 

(0) ½ e R. 

Now we proceed as in the proof of Theorem 3.5 with Z replaced by R. 

Starting from the grading on ~R ®R [R we get a grading on ~. 

Again we choose a section s of ~, and we get the formulas 

(10) ~R* = ~,~E~U(0)~ [s(gR) ~ _  S(~R) B] (see 3.7, relation (10)), 

(11) ker ~ = ~ (ker w)y (see 3.7, relation (11)), 

(12) ny (ker ~)y : 0 (see 3.7, relation (12)). 
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Now ny is either 1 or 2 for y @ 0, (g~)y @ 0. (Use (10) and 

see 2.8, Table 1). So relations (0), (12) imply (ker w) = 0 for 
Y 

y @ 0. Relations (1), (3) of 2.13 or 3.5 hold again, for the same 

reasons as in 3.7. (Define H* in the same way). 

There is a canonical surjection g'% ~2~ R ~ ~ ( s e e  2 . 1 4 ) .  

As the centre of g' is a group of order 21-1 (see 2.15), 

g'~ ® R is canonically isomorphic to gR (Use (0)). So 

' @ R ~ g~ ~ gR is an isomorphism, and w is an isomorphism. g~ 

3.14. COROLLARY. 

Let ~ A pF = ~ (see (2.2)). 

(i) ~k is centrally closed if and only if there is no 

degenerate sum. 

(ii) For each degenerate sum~ its multiplicity in ~* i__ss 1. 

(iii) Every non-zero weight of ker ~ is de.generate. 

(iv) ~. If root lensths are e~ual, then (ker ~)0 = 0. 

b. If ~ is of type F 4 and p = 2, then dim (ker ~)0 = 2. 

c. If ~ is of type B I and p = 2, then dim (ker ~)0 = 1. 

d. If ~ is of type G 2 and p = 2 o_~r p = 3, then 

dim (ker ~)0 = 1. 

(Note that cases a, b, c, d cover all possibilities for the 

occurrence of degenerate sums). 

PROOF. See 2.15, 3.5, 3.13 and 2.8, Table 1. 

3.15. COROLLARY. 

is centrally closed for all types. 

3.16. COROLLARY. 

Let ~ A pF = ~. Then 6 ker(~ : ~*~ ~ ~) = 0. 
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PROOF. See 2.6, 2.15, 3.5. 

3.17. Put i* : dim ~ and d*= dim K*. 

We get the following list: 

p = 2 type A3 I* = 3 d* = 21 

type B2 i* = 4 d* = 36 

type B4 i* = 5 d* = 61 

type B I (i > 4) i* = 1+1 d* = 21"2-1 * 

type D4 i* = 4 d* = 52 

type D I (i > 4) i* = i d* = 212+1 

type F4 i* = 6 d* = 78 

type G2 i* = 3 d* : 21 

p : 3 type A2 i* = 2 d* = 14 

type G2 i* = 3 d* = 21 

Put d = dim ~. Then we have the following partial list: (note 

the resemblance) 

type B3 i = 3 d = 21 

type B4 i = 4 d = 36 

type D I (i > 5) i = i d = 212-1 

type F4 i = 4 d = 52 

type B I (i > 4) i : i d : 212+1 

type E6 I : 6 d = 78 

type G2 i = 2 d = 14 

Question: Why is the pair 5,61 not present in the second list? 
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§4. Admissible lattices and the category £V" Z-connected components. 

In the sequel we shall make a frequent use of the construction 

of Chevalley groups from admissible lattices. So it will be con- 

venient to list in this section some properties and notations. 

4.1. NOTATIONS AND DEFINITIONS. 

Let p, k, K, K, G, T,... be as above (see 2.1, 3.4). Let ~ be the 

universal enveloping algebra of K~ over ~. The Z - form gene- 

rated by the xn/n!e (e EZ, n > 0) is denoted ffZ " 

Let p be a faithful representation of &~ in a complex vector 

space V. (All dimensions are finite). 

The canonical extension of p to Z~ will also be denoted p. 

A lattice in V is a ~ - form of V, an admissible lattice M in V 

is a lattice that is invariant under p(~). (See [ 8 ]). If V is 

irreducible, then a standard lattice in V is a lattice p(~ )v, 

where v is a highest weight vector (see [ 2 ], Proposition 2.4). 

Let M be an admissible lattice. 

The K-module which has 5 -structure M ®~ ~p is denoted L M. 

So L M is obtained by reduction mod p. The action of ~ on L M 

and the representation of G in L M are both denoted PM" So 

(1) PM(X (t)) = ~ t n n , PM(X /n.) (~ e ~, t e K). 
n>0 

(see [ 2 ] , 3.1). With the notations of loo. cit. one may 

= F . Then G = G , K and choose a representation ~ such that F sc 

its representation in L M is I . 
P,~ 

REMARK 1. The action PM of G on L M is defined over IFp. (See 

[ 2 ] , 3.3 (2)). 

If M' is another admissible lattice in V, such that M C M', 

then this inclusion induces a homomorphism of K-modules L M ~ LM,, 

defined over ~ . It is a homomorphism of ~-modules too, so it 
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is a homomorphism of G-modules. We denote the quotient LM,/M. 

This notation is justified by the right exactness of the tensor 

product, which yields 

(2) LM,/M -= (M'/M) ®2Z K. 

(So LM,/M is also obtained by reduction mod p). 

Note that M'/M is a ~ -module, and that the action OM,/M of G 

on LM,/M is related to the action PM'/M of ~2Z on LM,/M by the 

formula 

= Y~ t n (xn/n[) 
n~>0 0M'/M ~ " (3) 0M,/M(X (t)) 

REMARK 2. 

The action 0M,/M 

and L M ~ LM, 

of G on LM,/M is defined over 

are defined over 
P 

p, because both 

An element of LM,/M, corresponding to x E M' will be denoted 

PM' 

(4) 

{X}M,/M, or {x}. 

We shall usually denote 0M,/M(X~/n!) {x} as X~/n! • {x}. 

Analogous conventions hold for L M. 

Let V be fixed. 

The category of G-modules of type LM,/M with morphisms induced 

by inclusions of lattices is denoted d V. 

(So a morphism LM~/M I ~ LM~/M 2 sends {X}M~/M i to {X}M~/M 2, where 

M~ C M~, M 1 C pM~ + M2). 

4.2. LEMMA. 

Let p: ~ ~ V, p': ~ ~ V' be complex representations. Let p ® p' 

be the tensor representation in V ® V'. Then 
n 

(p ® p') (xn/n!)~ a ® b = i=0Z (~)~ p(X~/i!) a ~ p'(X~-i/(n-i)~)b 

(S E E, n ~> 0, a E V, b E V'). 
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PROOF. 

This lemma is an easy consequence of the definition 

(p ® p')Y = p(Y) ® 1 + 1 ® p'(Y). (cf. [22], Lemma 7). 

4.3. LEMMA. 

If M, M' are admissible lattices in V, V' respectively, then 

M ® M' is an admissible lattice in V ® V' and M ® M' is an 

admissable lattice in V • V'. 

4.4. LEMMA. 

Let M', M, V, LM,/M be as in 4.1. Let A be a linear subspace 

of LM,/M. Then A is ~- invariant if and only if A is G-inva- 

riant. 

PROOF. 

Let A be ~ - invariant. Then A is G-invariant because of 4.1, 

formula (3). Conversely, let A be G-invariant. As T is K-split, 

we have A = Z A . 
Y 

Y 

If a 6 Ay, ~ E Z, then Z (xn/n:)~ a E A. (Use 4.1, formula 
n>~0 

(3) again). Taking homogeneous parts we see (xn/nl) • A C A. 

4.5. LEMMA. 

(i) If A is a G-submodule of LM,/M, defined over F p, then 

the inclusion map A ~ LM,/M is a morphism in the category ~V' 

(ii) If # is a morphism in fV' then its cokernel and its 

kernel are in ~ V. 

PROOF. 

(i) Let r: M' ~ LM,/M be the canonical map. Then A is 

spanned by r(r-l(A)). We have M C r-l(A) C M', so r-l(A) is a 

lattice. It is an admissible lattice because of lemma 4.4. Now 



42 

we have the injection of ~ -modules r:r-l(A)/ker r ~ A, that 
P 

induces an isomorphism L ~ A. 
r-l(A)/ker r 

The map L ~ LM,/M is in ~ V. 
r-l(A)/ker r 

(it) From (i) it is clear that kernels are in ~. The 

eokernel of LM[/M I ~ LM~/M 2 is LM~/M2+M[. 

4.6. NOTATION. Let A be a G-submodule of L M, defined over F 

1 MI {PV}M E A} is denoted M A. Then {v e 

P 

LEMMA. 

Let A, M be as above. 

(i) M A is an admissible lattice containin$ M, such that 

A : ker(L M ~ ~A ). 

(ii) If M' is another admissible ~lattice, containin$ M, 

such that A = ker(L M ~ LM,) , then M C M A C M'. 

PROOF. 

(i) As M C MA, M A is a lattice. It is obvious that it is 

an admissible one. In order to prove that A = ker(L M ~ LMA) we 

first note that both sides are defined over F . So both sides 
P 

are spanned by elements {v} M. Now 

{V}M E A ~ [1 v E M A ~ {V}M E ker(L M ~ LMA) 

(ii) If v e MA, then {pyre A, so {PV}M, = O. If follows 

that pv E pM', whence v E M'. 

4.7. REMARK. 

If V is the direct sum of two proper G-submodules V1, V2, then 

@~V ~V " (The notion of a there is a natural embedding ~V1 2 ~ 
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direct sum of two additive categories is obvious). But this 

embedding is not always an isomorphism. (There is no "complete 

reducibility" over ~ . ) 

EXAMPLE. 

Let ~ be a root system such that degenerate sums (with respect 

to p) exist. In ~ the lattice ~ is admissible (see [ 2], 

Proposition 2.6). So ~ ® ~ is admissible in ~C ®~ 

(see 4.3). 

There are homomorphisms of ~-modules 

~: ~ @ ~C ~ ~¢' defined by ~(X @ Y) = [X,Y] , 

4: ~ ®~ ~ ~*, (see proof of Proposition 1.3, (ii)), 

X: ~ ~, 

~: ~*~. 

Note that ~* = L ~ ® ~ /ker ~" 

Set N = ker }. 

Then ~ ®~ m N • ~, bec&use of complete reducibility over ~. 

But it is not possible to decompose ~ @ ~ in the same way. 

Suppose it were: Say ~ ® ~ = M 1 • M2, where M 1 C N, both M i 

are ~-modules. Then (~ 0 ~)M 1 = (X 0 ~)M I : 0. So ~ (~ • ~) 

must be spanned by ~M 2. 

The span of ~M 2 is a G-module (see Lemma 4.4). So it is invariant 

under ~d (see Proposition 3.31. Then it is clear from the des- 

eription of ~* that ~M 2 spans ~* and not only the [~ (~ • ~). 

But this is nonsense, because M 2 is an abelian group of rank 

equal to dim [, which is less then dim ~*. 

It is easy to see from this example (and many others), that there 

may be "indecomposable" lattices in decomposable ~ - modules. 

(Definitions as below). 
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4.8. DEFINITION. 

A G-module is called indecomposable if it is not the direct sum 

of two non-trivial G-submodules. 

4.9. LEMMA. 

Every (finite dimensional) G-module L is the direct sum of inde- 

composable submodules L i. 

4.10. DEFINITION. 

The L i in Lemma 4.8 are called the indecomposable components of L. 

REMARK. There is some "abuse of language" here: The L. are not 
1 

unique, but there is a Krull-Schmidt-Theorem (see [i0], (14.5)). 

4.11. LEMMA. 

Let (@,V) be an irreducible representation of K~. Let Mst be a 

standard lattice in V (see 4.1). 

Then for every admissible lattice M C Mst , the G-module LMst/M i__{s 

indecompqsable. 

PROOF. 

Let v be the highest weight vector that generates Mst. Let i be 

the highest weight. Suppose L = LMst/M has decomposition A • B. 

As I has multiplicity 1 in V, it has at most multiplicity I in L, 

so {v} 6 A 1 or {v} E BI. As {v} generates L, we have A = L or B : L. 

4.!2. DEFINITIONS. 

Let ~,~ 6 F (see (2.1)). Then ~,8 are called directly Z-connected 

if there is y 6 Z, n 6 Z , such that ~-~ = ny. 

Now let A be a subset of F. We say that ~,~ are directly Z-conqec- 

ted in A if they are in A and are directly Z-connected. (So y 

need not be in A.) The transitive closure of the relation 
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"directly ~-connected in A" is called "~-eonnected in A". 

Equivalently, ~,~ are called E-connected in A if there is a 

sequence ~I''''' ~n of elements of A, such that 

(i) ~1 = ~' ~n = 6 

(ii) For 1 ~ i < n the elements ~i' {i+1 are directly E-connec- 

ted in A. 

The equivalence classes with respect to the relation "E-connec- 

ted in A" are called the ~-eonnected components of A. 

4.13. LEMMA. 

Let L be a G-module, Aits set of weights. 

Let A1,... A be the E-connected components of A. 

• = ~ L). Put L I lEA. 
l 

Then 

(i) Each indecqmposable G-submodule of L is contained in 

some L.. 
l 

(ii) The L. are G-submodules. 
I - -  

(iii) L : ® L.. 
i l 

PROOF. 

(ii) If X E A., v E LX, ~ C E, then x (t).v E E LX+j~ 

(see [ 2], Lemma 5.2). 

As the X+j~ are directly ~-connected to ~, we see that x (t).LiC Li, 

so G.L i C L i. 

(iii) is obvious. 

(i) Let L' be an indecomposable G-submodule of L. As 

L' = E) ' we have L' = ® (L' N L.). 
I LI' i ± 

But L' is indecomposable, so there is only one non-trivial term 

in @ (L' N L.). 
i i 
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4.14. NOTATION. 

Suppose LM,/M has a composition series LM,/M = L 1 D L 2 D .. 

.. D Lk+ 1 = (0) whose elements are defined over • p, hence are 

in ~V (see 4.5). Then we denote this composition series by 

{v i} ~Li+ 1 - vl/v2/.../Vk, where v i e M', such that {Vi}M,/MELi , M'/M 

(So L i is generated by {vi} , {Vi+l},..., {Vk}). 

REMARK. 

Such a composition series always exists (see [27], Corollary 3F). 

§5. The G-module ker ~. 

In this section we will study the restriction of Ad to ker 7. 

5.1. There is a Frobenius endomorphism Fr of G, sending x (t) to 

x (t p) (see [ 7 ] , Expos~ 23, Th~or~me 1). Let 61,..., 6r be the 

fundamental weights such that p~± is a degenerate sum (see Lemma 

2.9, (i)). Let (Pi' Vi) be the irreducible representation of 

with highest weight 61, Mi a standard lattice in V i. 

5.2. PROPOSITION. 

Assume % n pF = ~. Let G act on ker ~ by the action Ad, and let 

R be an i ndec0mposable component of ker ~ (see 3.1, 3.3). Then 

there is a fundamental weight ~i as above~ suqh that 

i 
(i) All non-zero weights of R are in the orbit of p6 , 

(ii) R 0 ~ 0 if and only if $i E %, 

(iii) The representation of G in R is ~ -isomorphic to 
__ __ p 

(Pi)M. 0 Fr, 
I 

(iv) R is irreducible, except for the case that p = 2 and 

6i is a short root in B I or G 2. 

Then R 0 is a 1-dimensional G-submodule, and R/R 0 is irreducible. 
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PROOF. 

Let A be the set of weights of ker ~. 

We know that each nonzero element of A is a degenerate sum (see 

Corollary 3.14, (iii)). 

(1) We claim that the E-connected components A. of A (see 4.12), 
l 

are sets of the following types: 

type a. An orbit of p6 i, where 6 i is a fundamental weight, 6 i ~ N. 

type b. The union of (0) and the orbit of p~i, where ~i is a fun- 

damental weight, ~i 6 N. 

Proof of (1). 

First we note that for every ~ C N, y ~ &, the weights y and 

way = y - <y,~>~ are directly N-connected. So the N-conneeted 

components are invariant under the action of W. 

If ~i is a root, then 0, p~i are directly E-connected. We see 

that sets of type a or b are E-connected. Their union is A, so 

we have to prove now: 

If ~,~ E A(~ ~ 6) are directly E-connected, then they are con- 

tained in the same set of type a or b. Say ~-$ = ny, y E N, n E ~ . 

If ~ or ~ is zero, then it is easy. So suppose both are degenerate 

sums. The reflection Wy leaves invariant the line L ,$ through 

~,~. It interchanges vectors of equal length. So if ~,~ have 

equal lengths, then Wy~ = B and we are done. 

If ~,~ have different lengths, then N is of type B 3. (See 2.11 and 

use 2.2 to show that N A pF = ~ excludes type CI). 

Hence we have N = {~ei, ~i ~ej}, A = {0, ~2ei, ~el~a2~e3}. Put 

&a = {0, 12ei} ,  ~ = {&e1~e21e3}. 
The sets Aa, ~ are of type a,b respectively. As ~,~ have diffe- 

rent lengths, one is in ~a' one is in ~b" We see that ~,~ differ 
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in all coordinates with respect to the e i. This yields a contra- 

diction, as e,8 are directly Z-connected. 

We have proved claim (1) now. 

(2) Next we claim that every indecomposable G-submodule of 

ker ~ is of type L i = Z (ker ~)~. 
~eA. 

1 

It is sufficient to show that these L. are indecomposable (see 
l 

Lemma 4.13). 

If A. is of type a, then L. is irreducible because its weights 
1 i 

lie in one orbit and have multiplicity 1 (see Corollary 3.14). 

Obviously, there is at most one A. of type b in A. We now use 
l 

the classification of degenerate sums again, for handling the 

case of type b. 

Note that 6 i is a short root (see 2.8 or 2.12). 

case 1. Z is of type F , p = 2. 
4 

In the irreducible representation ~ of G, with heighest weight 

6i short roots have multiplicity 1 and zero has multiplicity 2 

(see [26], Table II). Comparing the multiplicities of the irre- 

ducible representation ~ 0 Fr (cf. [2 ], Theorem 7.5) with those 

of the representation in Li, we see that L i is irreducible again. 

case 2. Z is of type G2, p = 3. 

As in case 1, we see that L. is irreducible, using ([21], 4.9). 
1 

case 3. Z is of type BI, p = 2. 

In this case all multiplicities of weights in L. are 1 (see 
1 

Corollary 3.14). We have noticed earlier (see 3.10, case 1) that 

Z* generates a submodule having zero as a weight. 
2e 2 

As in the proof of Lemma 4.11 it follows that L. is indeeomposable. 
i 

case 4. Z is of type G2, p = 2. Put ~ = e 1, $ = ~1 + e2' 

y = -e-B (cf. 2.16, case 4). As p = 2, we have 
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Ad(x_6(1)) Z2B 
^ 

[Ad(x 6(1)) X* Ad(x (1)) X~] = 
- 8-~' -6 

Ix* * x~ , x* , x* x* , x ~ _ s l .  B-Y y ~ s-B' -~ 

* is H~ + H*, which is non-zero (see Corol- Its component in ~0 -Y 

lary 2.17, (ii)). 

So we can argue as in case 3, with Z* replaced by Z28. 
2e 2 

Cases 1,2,3,4 cover all possiblities, whence (2). Properties (i), 

(ii) in the proposition follow from (1), (2). Next we prove (iv). 

The first irreducibility statement in (iv) has been proved above 

(see proof of (2)). 

i 
Now consider cases B I, G2; p : 2, 6 short. 

In L i the weight zero has multiplicity 1, and Z . generates L. 
2~i i 

(see 3.14 and the proof of (2)). 

Choose a non-zero element H ~ in (ker ~)0" (See 2.17). Calculation 

shows that x (t) fixes H* for some short root e. Then H ~ is fixed 

by aii x6(t), 6 short, because of the action of W. (Wpreserves ~). 

If 6 is a long root, then H* is also fixed by x6(t), because no 

weight of L. is a multiple of 6. (Use [ 2 ], Lemma 5.2). 
i 

We see that (Li) 0 is a G-submodule. 

The quotient Li/(Li) 0 has one orbit of weights, with multiplicity i, 

hence is irreducible. 

Finally, we have to prove (iii). 

Let R = Li, L i as in (2). 

, L!)  d e n o t e  Let Ad i denote the restriction of Ad to L i and let (o i, l 

the r e p r e s e n t a t i o n  (Pi)M1. 0 Fr  i n  LM . (So L!z d e n o t e s  t h e  v e c t o r  
l 

space LM. , viewed as representation space of oi). 
i 

The h i g h e s t  w e i g h t  ~i  o f  Pi i s  a m i n ima l  d o m i n a n t  w e i g h t  ( s e e  Lemma 

2.9). 
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So every non-zero weight of Pi is in the orbit of ~i, and has 

multiplicity 1 (see [ 7 [, Expos@ 20, Proposition 1 and Expos@ 

16, Proposition 4). 

Suppose zero is a weight of Pi" Then 6 i is Z-connected to 0 in 

W6 i U (0), so 6i is a multiple of a root. In fact ~i has to be 

a root, because it is a minimal dominant weight. 

So, if 6i ~ Z then the multiplicity of zero in Pi is zero. If 

6i 6 Z, this multiplicity can be obtained from Weyl's dimension 

formula, or from [25]. It is seen that this multiplicity is the 
^ 

same as that of Ad i in 0. (See (3.14) for the latter one). 

Ad i and ~. have the same multiplicity in zero. They also Hence 
i 

have the same multiplicity in non-zero weights. 

For both representations all weight components are defined over 

. If Ad. is irreducible, then it follows that Ad. ~ ~.. 
p l 1 i 

So we only have to consider the cases BI, G 2 (p = 2), mentioned 

in (iv). 

From the definition of (~i' L!)l it follows that L!l is generated 

by its heighest weight vector. Hence there is a homomorphism of 

G-modules L!l ~ Li/(Li)0~ defined over 

The kernel of this homomorphism is (Li) 0. 

We see: 

(3) The representations in Li/(Li) 0 and LI/(LI) 0 are isomorphic 

over ~2 " 

(4) The representations in (Li) 0 and (L!)01 are also isomorphic 

over ~2" 

L!, One gets aT-equivariant isomorphism of vector spaces 4: L i ~ 1 

defined over ~2 (i.e.h.~(v) = ~(h.v) for h e T, v • Li). 

We have to show that ~ is an isomorphism of G-modules. Or, what 
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amounts to the same, @ has to be an isomorphism of ~Z -modules. 

(see 4.1, formula (3)). From (3), (4) it follows that the only 

case that might cause any trouble is the case 

E ~, ~ short, v 6 (Li)_2~, where we have to prove 

(X~/2). ,v = ,((X~/2) - v). 

As everything may be taken to be defined over ~2' the problem is 

solved if both sides are proved to be non-zero. (Note that multi- 

plicities are 1). 

Suppose (X~/2) • v = 0. Then (X~/2) (Li)_2 6 = 0 for all short 

roots, contradicting the fact that L. is generated by a highest 
1 

weight vector. In the same way (X~/2) . ~v is non-zero. 

§6. G-invariant [p]-structures. 

In this section we prove uniqueness of a [p]-structure on ~* (~) 

that is invariant under Ad (Ad).We will see later (see Corollary 

10.2) that such a [p]-structure on ~* exists. (It exists on K of 

course). 

6.1. Recall that a [p]-structure on a Lie algebra gl over k is a 

mapping X ~ X [ p] such that 

(i) ad(X [p] ) = (ad X) p, (X e gl ). 

(ii) (~X) [p] = ~P X [p] (X e ~I' X e k) 

(iii) (X+Y) [p] = x[p] + y[p] + p~l ti (X,Y), where t i is an ex- 
1 

pression given in [ 1], (3.1). 

We specify t. for p = 2,3: 
i 

p = 2: tl(X,Y) : IX,Y]. 

p = 3: tl(X,Y) = [Y, [Y,X]], 

t2(X,Y) = [ X, [ X,Y] ] . 

A Lie algebra with [p]-structure is called a p-Lie algebra. 
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6.2. PROPOSITION. 

Assume ~ N pF : ~. 

(i) There is at most one [p]-strueture on ~* which is 
^ 

invariant under Ad. 

(ii) There is exactly one [p]-structure on ~ which is 

invariant under Ad. 

(iii) If ~* has a [p]-structure as in (i), and ~ has the 

[p]-strueture of (ii), then (ker ~)[P] = 0 and ~: ~* ~ [ is a 

homomorphism of p-Lie alsebras. 

PROOF. 

(i) A [p]-structure is fully determined by its values on 

a basis. Suppose [p] is as in (i). 

We shall prove that (X*) [p] (H~) [p] (Z*) [p] are computable ' , y 

and hence unique. If X C g6, then we have X [ P] C gP6' 

because of property (ii) in 6.1. It follows that (Z*) |pj = 0 
Y 

f ~ 

(y degenerate), and (X*) |pj = 0 (~ a long root). 

Let ~,8, ~+8 E ~, ~+6 short, ~ long. 

Then 
^ 

0 = hd (xB(t)) (X~) [ p] = 
n )[p] • 

(X~ + t &d (X 6) X* + ~ t j Y. , where Yj E [~+jB" 
c~ j = 2  ] 

n 

So 0 : (X~) [p] + (t ~d(X~)X ) [p] + Z (t j Y.)[P] + R, where R 
j=2 ] 

is some computable expression in commutators. Taking homogeneous 

parts with respect to weights, we see that -(t ~d (X6)X)[P] is 

the component of R in gp~+pB" 

Now 

(t a-d (X6)X~)[P] = t p N6~ (X* .~.~)[ P] , and N6~ : _+ 1. 
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, [ p ]  
It follows that (X + 6) is computable. (It is easy to check 

in this way, that (X~+B) [p] = £ Z~+pS). As every short root can 

be obtained in the form ~+B with e long, all (X~) [p] are compu- 

table (8 6 Z). We are done, if we prove the same for the 

(H~) [ P] . Now 
n 

Ad(x_ (t)) (X~) [p] = (X~ - tH~ + ~ tJY!) [p] = 
j:2 3 

n 
(X~) [p] - tP(H~) [p] + Z (t j Y!)[P] + R', where Y! e * 

j=2 3 3 ~-J~' 

R' is computable. 

Taking homogeneous parts again, we see that (H~) [p] is computable. 

(ii) The uniqueness is proved in the same way as for ~*, 

the existence follows from the fact that ~ is the Lie algebra 

of the algebraic group G (see [ 1], (3.3)). 

(iii) We have proved (Z*) [p] : 0, y degenerate sum. So we 

still have to prove that ((ker ~)0 )[p] : 0. As ker is abelian 

we have for short roots ~: 

0 = Ad (x ~(t)) (Z*)[P] = (Z* + tPz 0 + t2PzI) [p]= 
2 - P~ P~ 

0 + t p Z~ p] + 0, where Z i C (ker z)-ip~" 

The elements of type Z 0 span (ker ~)0 (see Proposition 5.2). 

It follows that (ker ~)[P] = 0. 

Now we define a [p]-structure on K by the relation: 

(~ x)[p] = ~ X [pl 

If ~ X = ~ Y, then X-Y is central~ (X-Y) [p] = 0, so 

X [p] = (Y+(X-Y)) [p] = Y[P~ Hence [p] is well-defined on ~(g*) = ~. 

It is invariant under Ad, so it is the [p]-structure of (ii). 

6.3. REMARKS. 

1) From the proof of (i) it follows that the [p]-structure of (iii) 
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is defined over ~' 
P 

2) Suppose that ~ has a [pl-structure as in (i). Then 

(H~) Ipl = H ~ for long roots ~, because the computation of 

(H~) [p] is "the same" as the computation of (H) [p] . 

But (H~) [ p] ~ H~ for ~ short. For suppose (HI) [p] = H*~ is 

also true for short roots. 

Then (H*) [p] = H* for all H* 6 (~*)0' hence for all H* E (ker z) 0. 

This contradicts (ii). (see Corollary 2.17). If ~ is a short root 

then H* is not a semisimple element but the sum of a semisimple 

part, spanned by the H i with 8 long, and a nilpotent part in 

ker z. (See [20], p. 119 for definitions). 

3) For e long (X*) [p] = 0, but for ~ short (X*) [p] ~ 0. One 

reason for this inequality is that otherwise the computation of 

(H*) [p] would not differ from the computation of (H)[P] which 

would contradict remark 2. 

4) The existence of a [p]-structure as in (i) can be proved along 

the same line as the uniqueness. We don't need this method. (See 

section 10). 

§7. The extension ~ : G* ~ G. 

We look for an interpretation of z : ~* ~ ~ as the differential 

d% of a homomorphism % of algebraic groups (see [1], (3.3)). In this 

section we make some remarks about such a homomorphism. 

We suppose that the codomain of ~ is an almost simple Chevalley 

group G, having K as its Lie algebra. 

Let G * denote the domain of ~. If # is such that d~ is a universal 

central extension of ~, then the restriction of ~ to the connected 

component of G * also has that property. Hence we suppose that G ~ 

is connected. In 2.1 we only considered the case that G is simply 

connected• We give a justification for that choice now. 



55 

7.1. LEMMA. 

Let G be an almost simple Chevalley sroup~ with L,$,e al~ebra K, 

such that 

(i) K = [a, &], 

(it) K ~ K*" 

The____nn G is simply connected. 

PROOF. Let G 1 be the simply connected Chevalley group that covers 

G, and let ~I be its Lie algebra. We claim that the natural homo- 

morphism x: K1 ~ K is an isomorphism. 

It is well known that the image of T contains all Ke, a 6 Z 

(see [ 2 ], 2.6). 

From (i) it follows that K is generated by these ~. So T is sur- 

jective. Then T is an isomorphism~ because dim K = dim ~1" We may 

conclude that K1 = [&l' K1] ' K~ ~ ~I" 

This situation was analysed before. We see that there are degene- 

rate sums and that the order of F/F 0 is a power of p (see Corol- 

lary 3.14 and Lemma 2.10). The Lie algebras K, K 1 are obtained 

from lattices M, M I in KC, with M D M I. The group M/M 1 is iso- 

morphic to a subgroup of F/F 0. (see [ 2 ] ~ 2.6). 

So its order is a power of p. But LM/MI = 0 because T is surjective. 

It follows that M = MI, hence G ~ G I. 

REMARK. If we don't require that G is almost simple, then the proof 

shows that ~ is the direct sum of the Lie algebras of the almost simple 

factors of G. Then it is easy to see that ~ : ~* ~ K is the direct 

sum of the corresponding universal central extensions. 

7.2. We return to the notations p, K, G, .. of 2.1. Suppose that 

there is a homomorphism %: G* ~ G as above, that is, such that G * 

is a connected algebraic group and d% is a universal central ex- 

tension of [. The Lie algebra of G* can be identified with ~*. 
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Then d~ is identified with ~. 

We will henceforth indicate this situation by the statement 

(i) d~ : ~. 

Assume (I). 

The Lie algebra [~ has a [p]-structure, which is invariant under 

Ad: G ~ ~ Aut (~). 

As ~ is surjeetive, $ is also surjective. 

For x 6 G, choose y 6 G* such that ~y x 

Then ~ 0 Ad(y) : Ad(x) 0 ~, hence Ad(y) = id(x). 

We see that the [p]-structure on K* is invariant under Ad. 

So it is the [p]-structure discussed in 6.2. 

7.3. The Lie subalgebra ker ~ of ~* is an abelian Lie algebra 

with trivial [p]-structure (see Proposition 6.2). So (ker ~)0, 

i.e. the connected component of ker ~, is the unipotent radical 

R u of G (see [ 1 ] , Cor. (8.2), (11.5)). In fact we have: 

7.4. LEMMA. 

R = ker 

PROOF. 

G*/R u is connected, and there is a separable homomorphism 

4: G*/R u ~ G. The group G is simply connected. The group G*/R u 

has the same dimension as G, the same semisimple rank, the same 

root system. We see that there is an inverse for 4, or that ~ is 

an isomorphism. (See [ 7 ], Expos~ 23, Th@or~me 1). So 

ker ~ : ker (G* ~ G*/R u ~ G) = ker (G* ~ G*/Ru) = Ru. 

7.5. Now let G ~ be a connected algebraic group with Lie algebra ~, 

~ ~ ~. Suppose that the [p]-structure of ~ is invariant under Ad. 

Let R u be the unipotent radical of G ~ with Lie algebra ~u 

Then [' = [~/r is the Lie algebra of the reductive group G' = G~/R . 
--U 

U 
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This group G' is its own commutator, because g' = [~', g'] (see 

[ 1] , (3.12)). So G' is even a semi-simple group. Now we use the 

following lemma. 

LEMMA. 

In the Lie algebra ~' of a reductive algebraic group G' there 

is no central nilpotent element. 

PROOF. Let ! be the set of central nilpotent elements. It is an 

ideal, invariant under Ad. It has no weight space with weight 

' consists of simi-simple elements. Let c be a zero, because ~0 

weight space of c. Then ~ is a root, so e = ' and c is con- - __~ ~ 

tained in the Lie algebra of a subgroup of type SL 2 or PSL 2. 

Hence it is sufficient to prove the Lemma for SL 2 and PSL2, 

which is easy. 

7.6. Applying the Lemma, we see that the image of ker ~ in ~', 

which consists of central nilpotent elements, is zero. So 

(1) ker ~ C r . 

Let ~ denote the image ~(~u ) of ~u in ~. It is an ideal that 

consists of nilpotent elements. 

We have _i = (~)~ !(~)," where (~) runs over local weights 

(i.e. ~(~) = {X e ~[[H8, X] = <~,~> X, for all 8 e ~}. Local 

weights are elements of F/pF, global weights are elements of F). 

The term ~(0) is zero, because ~ = [(0) consists of semi-simple 

elements. (Recall that ~ A pF = ~). So if ~ is a global root, 

that behaves like (-~) locally, then [X~, !(~)] = 0. On the 

other hand [XB, ~_B] # 0. We see that ! = 0. Together with (1) 

this proves 

(2) r = ker ~. 
--U 

So ~' ~ ~*l~u ~ ~. 
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Hence ~' is not the direct sum of two proper subalgebras, and G' 

is almost simple. (Use the remark in 7.1). 

Then G' is isomorphic to a Chevalley group over K (see [7 ], cf. 

[ 2 ], 3.3(6)), so we can apply Lemma 7.1. We see that G' is 

isomorphic to a simply connected almost simple Chevalley group 

with the same rank and the same dimension as G. 

Then it follows that G ~ G' (use 2.8, Table 1). 

7.7. We conclude from the above: Over K the following two 

problems are equivalent: 

(i) To find a homomorphism ~ such that d~ = ~. 

(ii) To find an algebraic group G* which has K* as its Lie 

algebra, such that the [p]-structure on K" is invariant under Ad. 

REMARK. 

We shall use the first formulation in our solution. 

7.8. DEFINITION. 

Let G,H be connected linear algebraic groups, ~: H ~ G a homo- 

morphism of algebraic groups such that d~ is a central extension 

(so ~ is surjective and separable). Then ~ is called an infini- 

tesimally central extension of G. 

7.9. Consider an infinitesimally central extension 4: H ~ G where 

G is a Cheval!ey group and H is a linear algebraic group with 

perfect Lie algebra h (i.e. h = [h, h]). It follows from Propo- 

sition 1.3, (v) that there is a surjective homomorphism of Lie 

algebras p: ~* ~ h. It is easy to see that p is a universal cen- 

tral extension. Analogously to the problem of finding a homomor- 

phism ~ with d~ = ~ (as in 7.2), there is the problem of finding 

a homomorphism X such that d X = p. This last problem will be dis- 

cussed in section 13 (see Theorem 13.9). Note that such a homo- 
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morphism X is an infinitesimally central extension and that the 

same is true for ~ 0 X. 

§8. Extensions of G by a G-module. 

In this section we discuss extensions of a group G by a 

G-module V. 

8.1. Let G be a connected algebraic group, defined over k. 

Let V be a (finite dimensional) G-module over k (i.e. V is 

defined over k and the action is defined over k). 

NOTATIONS. 

The semi-direct product of G and V is denoted fV,G ] , and its 

elements are denoted fv,g ] . 

So rv,g~ Iv',g'~ : fv+g.v' , gg'~ . 

The projections fV,G ~ ~ V, fV,G ~ ~ G, and the injections 

V ~ fV,G ~ , G ~ fV,G ~ are denoted PV' PG ' iv' i G respectively. 

Let V'be another G-module, and ~: V ~ V' a homomorphism of G- 

modules. Let ~ : G ~ G, X : G ~ V be morphisms. Then we denote 

f¢,~ the morphism that sends Cv,g~ to r~v,~g~, and fX,~ ] the 

morphism that sends g to fxg,~g ~. 

DEFINITION. 

Let G act on two varieties X and Y, and let f: X ~ Y be a morphism. 

Then f is called G-equivariant if g.f(x) = f(g~x) for all g 6 G, 

x E X. 

DEFINITION. 

An extension of G by the G-module V is a homomorphism ~: H ~ G 

with the following properties 

(i) ~ is surjective and d~ is surjective. (So ~ is separable and 

G ~ H/ker ~. See [ I], (6.8)). 
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(ii) ker % is abelian. (So the represention Int of H in ker 

factors through G). 

(iii) There is a G-equivariant isomorphism of algebraic 

groups T : V ~ ker 9. 

We say that 4: H ~ G is a k-extension if H is defined over k 

(i.e. H is a k-group) and %,~ are defined over k. 

8.2. THEOREM. (Existence of a T-equivariant cross-section). 

Let 9: H ~ G be a k-extension of G b_j{ V,T ~ k-split maximal 

torus of H. Then there is a morphism s : G ~ H, defined over k, 

such that % 0 s = id and 

(i) s(~T) : T 

(ii) Int(t)(s(g)) = s(Int(%t)(g)) for t E T, g E G. 

(S__~o s i__~s T-equivariant). 

PROOF. 

In fact we will only need the structure of V as a T-module, not 

the structure of V as a G-module. First we use the method of [ 3 ], 

9.5, to get a T-equivariant cross-section s, defined over k. 

There has to be made a slight modification in the proof of loc. 

cit. One has to put s': x ~ c(x) • s(x) instead of s': x ~ s(x) • e(x). 

With this modification the proof also works in our case. We get a 

cross-section s that satisfies (ii). 

We have to change s in such a way that it also satisfies (i). 

Hence we look for a T-equivariant morphism r: G ~ V, defined over 

k, such that 

(1) r(~(t))s(~(t)) = t for all t 6 T. 

If r exists, then rs satisfies both (i) and (ii) and we are done. 

The restriction of ~ to T is an isomorphism to ~T, because ~ is 

separable and ker ~ is unipotent. Let ~ be the inverse of this 

isomorphism. Then (I) can be written as: 
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(2) r(t) = ~(t)s(t) -I for all t e ~T. 

The righthand side of (2) is a morphism r' : ~T -~ V, defined 

over k, that is T-equivariant, hence it maps ~T into the weight 

space V 0. We claim that it can be extended to a T-equivariant 

morphism r : G -~ V 0, defined over k. 

For such a morphism r the T-equivariance means 

(3) r 0 Int(t) = r for all t E ~T. 

So consider the representation of the k-split torus ~T in the 

affine algebra A[G] of G, defined by t.f = f 0 Int(t). (So 

(t.f)(x) = f(Int(t)(x)) for x e G). 

This representation is defined over k, and each f is contained 

in a finite-dimensional subspace, stable under ~T. Hence we 

have a decomposition into weight spaces. If A[~T] is the affine 

algebra of ~T, then T : A[G] ~ A[~T] is surjeetive, defined over 

k. Let ~T act trivially on A[~T] . 

Then T is also a homomorphism of ~T-modules. (T(f) is the restriction 

of f to ~T). We conclude that T(Ak[ G] 0 ) = Ak[ ~T] . 

It follows that the righthand side r' of (2) can be extended to 

a morphism r, defined over k, satisfying (3). 

REMARK 

The condition "T is k-split" can be dropped. 

We only need that T is defined over k, because it can be proved 

without the assumption about the splitting that the weight spaces 

V0, A[G] 0 are defined over k (see [ 1 ] , 9.2, Corollary). 

§9. The Hochschild sronps. 

We will use rational eohomology to describe % : G* ~ G (see 7) 

as an extension of G. In this section we recall some facts about 

this cohomology (of. [11], Ch. II, §3). 
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9,1 DEFINITIONS AND NOTATIONS. 

Let G be a connected algebraic group, defined over k. Let V be 

a (finite dimensional) G-module over k. 

A (regular) n-cochain of G in V is a morphism G x ... × G ~ V, 

where G x ... x G denotes the direct product of n copies of the 

variety G. (If n = 0, then this product consists of 1 point). 

We put 

Cn(G,V) = {n-cochains of G in V}, 

C~(G,V) = {n-cochains of G in V, defined over k}. 

The set Cn(G,V) can be viewed as a vector space in a natural way. 

The subset C~(G,V) is a k-structure on this vector space. 

The boundary operator sn : Cn(G,V) ~ cn+I(G,V) is defined by 

(~nf)(gl,...,gn+ 1) = gl.f(g2,...,gn+ 1) + 

n • (_l)n+lf(g 1 
(-1)if(gl , .... gigi+l .... ,gn+l ) + ,...,gn ). 

i~1 

The boundary operator is defined over k. 

The n-th Hochschild group of G in V is the group Hn(G,V) = 

= (ker ~n)/(Im ~n-1). It is denoted Hn(v) if no confusion is 

possible. An element of ker ~n is called an n Fcocycle, an element 

of Im ~n-1 is called an n-coboundery. 

n The class mod(Im ~n-1) of an n-cocycle f is denoted T. Let ~k 

denote the restriction of ~n to C~(G,V). Then we put 

H~(G,V) = (ker ~)/(Im ~n-l). 
k 

It is also denoted H~(V), and it may be identified with the 

k-structure of Hn(v), consisting of classes mod(Im ~n-1) that 

meet C~(G,V). It is easy to see that: 

9.2 LEMMA. 

If k' is a field extension of k, then 

Hk ,n (V) ~ H~(V) 8k k ' .  
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9.3 We want to give interpretations for n-cocycles and 

n-coboundaries, n ~ 2 (of. [11], Ch. II, §3 or [ 5 ], Ch. X §4, 

Ch. XIV §4). 

n = 0 The only coboundary is 0. The cocycles correspond to 

elements v of V, fixed by G. They are called invariants. 

n : 1 Let (V,G ] be the semi-direct product of V and G (see 

8.1). Every 1-coehain f defines a section s : x ~ ff(x),x ] of 

PG" This section is a homomorphism if and only if f is a eocycle. 

n = 2 Let ~ : H ~ G be a k-extension of G by V. Then there 

is a section s of ~, defined over k. (See [19], Corollary 1 to 

Theorem 1, or the remark in 8.2). So H is isomorphic to the 

variety V x G by means of x ~ (x(s$x)-1,$x). We transfer the 

group structure to V x G by means of this isomorphism. 

Put f(x,y) = s(x)s(y)s(xy) -I . 

Then (v,g)(v',g') = (v+g.v' + f(g,g'),gg') in V x G and f is a 

2-eocycle. Every 2-cocycle can be obtained in this way. Two 

2-cocycles differ a coboundary if and only if they are obtained 

from isomorphic extensions. (Or from two sections in the same 

extension). 

9.4 Let ~ : 0 ~ A T~ B P~ C ~ 0 be an exact sequence of G-modules 

over k. Then there is a long exact sequence 

H° H° (0) H o 6 0 (~) H I H l 0 ~ H°(A) (T) > HO(B) ~ (C) ~ (A) (T) ~ 

H l (p) ~ H 1 ~1 (8)~ H 2 H l (B) - (C) - (A) ...... 

where the connecting homomorphisms 6i([), also denoted 6i, may 

be defined as follows: 

Choose a section ~ of p, compatible with the linear structures. 

(In fact we only need that o is a morphism of varieties such 

that o 0 0 : id. We just make a better choice here.) 
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Let f be an i-cocycle in C. Then o 0 f is an i-cochain in B. 

The (i+l)-coboundary ~i(o 0 f) has its values in A. So it is 

an (i+l)-cocycle in A.(It is not necessarily a coboundary in A). 

Its class in Hi+I(A) is 6i(~). 

9.5 EXAMPLE. 

Let i = 1 and let f be a 1-cocycle in C. To f corresponds a 

section s : G ~ rC,G~ of PG" (s = ff,id~). 

Let ~ be the natural homomorphism Ip,id~ : CB,G~ ~ CC,G~. Then 

an element of ~(T) corresponds to an extension that is 

isomorphic to the extension PG o ~ : ~-1(sG) ~ G. (Note that 

PG o ~ is the PG of fB,G~). That extension is a subextension, 

with kernel A, of IB,G~ ~ G. 

One may take as section of PG 0 ~ the morphism Ca 0 f,id ~ . 

(~ : C ~ B as above). 

9.6 Now we return to the case that G is a simply connected 

Chevalley group, defined over k, where k is a field of 

characteristic p > 0. 

THEOREM. (cf. Steinber$ [23]). 

Let L be a G-module over k, on which G acts trivially. Then 

H~(G,L)  = O. 

PROOF. 

We may assume that k is the algebraic closure of !Fp, because 

of Lemma 9.2.Let f be a 2-cocycle, defined over k. There 

corresponds to f a k-extension ~ : H ~ G of G by L, with 

section s. 

Now some well-known results of Steinberg (see [23], Th. 3.2, 

3.3, 4.1) show that there is a homomorphism ~ : G(k) ~ H(k) 
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with ¢ 0 ¢ = id. We shall show that ~ is a morphism. Then ~ is 

a section of ~ that defines the cocyele 0, hence T = 0. 

As ~ is a central extension (i.e. ker ~ is in the centre 

of H), we have 

(1) @((x,y)) : (~(x),~(y)) : (s(x),s(y)) for x,y e G(k). 

(Central trick for groups, cf. 1.2. See 2.1 for notations). Now 

G(k) is its own commutator group. (As k is algebraically closed, 

this follows from ~ = [[,[] . It is true in the general case too. 

See [ 2 ] , 3.3 (5)). 

So (1) determines ~. 

Take a 6 k × such that a 2 ~ 1. (cf. [23], 9.1). Let e C ~, t • k. 

Then ~(x (t)) = 9((h~(a), xa((a2-1)-It))) = (sh (a),sx~((a2-1)-It)). 

(See 2.1 for notations). We see that the restriction of ~ to 

{x (t)it • k} is a morphism. It follows that the restriction to 

{hB(t)[t • k x} is also a morphism. (8 • ~). Then the restriction 

to the open cell (see (2.1)) is a morphism, because the open cell 

is the direct product (as a variety) of the subgroups 

{x~(t)it • k}, ~•~, and {hB(t)it • k×}, B simple (see [2 ] , 

3.3 (3) and [8 ] , Proposition 1). By right translation we see that 

is a morphism locally, hence ~ is a morphism. 

§10. The existence of ~ : G* ~ G. 

We now return to the problem of finding ~ : G* ~ G such that 

d% = ~ (see 7.2). In this section we give a constructive proof 

of the existence of %. Uniqueness will be discussed later, in 

section 13. 

Let G,K*,z,p ,T,Ad,... be as in 2.1, 3.1, 3.4. 

NOTATION. 

The G-module ker 7, that is described in 5.2 is denoted [u" 
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10.1 THEOREM. 

Assume ~ A pF = ~. 

There is a k-extension % : G* ~ G of G bY Eu, such that d~ is a 

universal central extension of ~. 

10.2 COROLLARY. 

If ~ A pF = ~, then there is exactly one [p]-structure on ~* that 

is invariant under Ad (see 6.2 and 7.2). 

10.3 PROOF OF THE THEOREM. (This proof is lengthy). 

We may assume that Eu ~ 0, or, equivalently, that degenerate 

sums exist. Constructions of % will be given type by type, using 

the classification of degenerate sums. 

First we describe the general method that underlies these 

constructions. To get the extension of G by Eu' we look for a 

suitable 2-cocycle f2 of G in [u" We now describe how this 

2-cocycle is obtained and how it is checked whether it is suitable. 

I ° (SKETCHY) 

Let 

~1 : 0 ~ r ~ C ~ A ~ 0 and 
--U 

~2 : 0 ~ L 1 ~  A ~ ~ B ~ L 2 ~ 0 be exact sequences of 

G-modules over k, such that G acts trivially on L1,L2, dim L 2 = 1. 

Take a non-zero element of (L2) k. It corresponds to a 0-cocycle 

f0 of G in L2, defined over k. Using the short exact sequence 

~2,2 : 0 ~ ker T ~ B ~ L 2 ~ 0, we get an element 

~°(~2,2)(T 0) of H~ (ker T). 

The sequence 

0 ~ L 1 ~ A ~ ker T ~ 0 is exact, so the sequence 

HI(L 1) ~ HI (A) ~ H1(ker T) ~ H2(L 1) is exact. 
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As H2(L 1) = 0 (see Theorem 9.6), there is an element ~1 of 

HI(A) that is mapped to 6°(~2,2)(~0). In fact [1 is unique, 

because HI(L 1) = 0 too. (This follows from the fact that G is 

its own commutator subgroup.) 

Now we choose f2E 61(~1)(T1) , and check whether f2 is suitable, 

i.e. whether f2 defines an extension ~ such that d% is a universal 

central extension. 

2 ° (ELABORATE). 

There is some freedom in the choice of representatives and in the 

way they are constructed. In order to be able to cheek whether 

f2 is suitable, we will make these choices in a convenient way. 

We start with f0 again, 

(I) f0 E C~(G,L2) , corresponding to an element of (L2) k that we 

also denote f0" Choose a T-equivariant linear section n i of T, 

defined over k. (T occurs in the sequence ~2 ). So 

(2) T 0 n I = id. Put 

(3) 11 = $°(nlf0). It is a representative of 6°(~2,2)(~0 ) in 

H~(ker T). (See 9.4). So it corresponds to a homomomphism 

fll,id] : G ~ Iker T,G], defined over k. Let x E G, h E T. Then 

rll,id](hxh-1 ) = ((hxh-l).nlf0 - ~lfO, hxh -I] = 

f(hx).nl(h-l.f0) - nl(h.f0) , hxh -i] = 

rh.(X.~lf0) - h.(nlf0) , hxh -I] 

We see that fll,id] is T-equivariant, if T acts on G by Int and 

on (ker T,G ] by Int 0 i G. (i G is defined in 8.1). 

Now we look for a 1-cocycle fl in A, such that 

(4) o o fl = 11" (Recall that o : A ~ B.) 

Equivalently, we look for a homomorphism Ifl,id] : G ~ IA,G] such 

that fo,id] ffl,id] = fll,id]. 
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Choose a T-equivariant linear section ~2 : ker T ~ A of o, 

defined over k. So 

(5) ~ 0 n2 = id. 

Let G 1 denote the image of fll,id] and let H 1 denote its inverse 

image in fA,G ] . Then fo,id ] : H 1 ~ G 1 is a central extension with 

kernel fLl,l~. As fll,id] is an isomorphism, defined over k, the 

group G 1 is k-isomorphic to G. Furthermore H 1 is the image of 

the morphism L 1 x G ~ H1, defined by (v,g) ~ (v,1] f~ 2 0 ll(g),g]. 

This morphism is a k-isomorphism. So H 1 is also defined over k. 

We see that fo,id ] : H 1 ~ G 1 is a k-extension. Then it follows 

from Theorem 9.6 that H 1 ~ G 1 is isomorphic over k to the trivial 

extension L 1 x G 1 ~ G1 , where L 1 x G 1 denotes the direct product 

of groups. So there is a homomorphism ~1 : G 1 ~ H1, defined over 

k, such that 

(6) fo,id ] o 01 : id. 

Now we choose fl such that 

(7) ffl 'id] : ~1 o fll,id]. 

Then fl is defined over k, and it follows from fo,id ] 0 ffl,id] = 

: fll,id] that fl satisfies (4). We claim that 

(8) fl is T-equivariant. 

(9) fl(x (t)) = ~2 0 ll(X (t)) for e E ~, t E k. 

(1~) fl(T) : 0. 

Proofs: 

For h E T we have ll(h) = h.~lf 0 - qlf0 = 0. So the image T 1 of 

T in G 1 is iGT = f0,T ] . (Recall that G 1 = fll,id]G ). Let 0 A 

denote the zero element in A, 0 Bthe zero element in B. Then 

fLl,1] is unipotent and commutes with f0A,T]. So f0A,h] is the 

semisimple part of ~lf0B,h ] for h C T. 
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It follows that rfl,id~(h) = ¢ll0B,h ~ = 10A,h~. This proves (10). 

It also follows from @ll0B,h ~ = 10A,h~ that ~1 is T-equivariant. 

We have seen above that lll,id~ is T-equivariant, hence Ifl,id~ 

is T-equivariant. That proofs (8). 
n 

Now let fl(xe(t)) = Z tlv{, vi E A. (fl is a morphism with 
i=1 

f1(1) = 0). We have for h E T: 
• n 

tl(h.v) = h.fl(x~(t)) = fl(X~(h~t)) = Z tihi~v.. 
i=1 i=1 l 

(h Y denotes the image of h under y). It follows that v i E Ai . 

The kernel of ~ is contained in the weight space A 0, so the 

restriction of ~ to ~ A. is an isomorphism, with inverse ~2" 
i>O I~ 

Hence fl(x (t)) = ~2 0 ~ 0 fl(x (t)) = n2 0 ll(X~(t)). 

That proves (9). 

Finally, we choose a T-equivariant linear section n 3 of ~, defined 

over k. So 

(ii) ~ 0 n3 = id. 

We put 

(12) f2 = ~I(n3 0 fl) . 

(13) Then f2 is a 2-coeyele in ~u' defined over k, corresponding 

to the k-extension % : G* ~ G, where G* is the inverse image of 

Ifl,id~G under the map (9,id ~ : /C,G % ~ IA,G~, and ~ is the 

restriction to G of PG : CC'G~ ~ G. (See Example 9.5). It is 

seen as above (see proof of (6)) that # is a k-extension. 

Put 

(14) s = rn Q fl,id~ 3 

Then s is a morphism as in Theorem 8.2. We have to check whether 

d~ is a universal central extension. Of course, the result depends 

on ~1,~2. First we prove that d~ is a central extension. 

Put 

(15) R u = l~u,l~. 
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Then R u is the unipotent radical of G*. We identify its Lie 

algebra with ~u" The action of G on R u is of the form p 0 Fr, 

where p is a rational representation (see Proposition 5.2). As 

d(Fr) = 0, this action of G on R u induces a trivial action of 

on Eu" 

In formula: d(Ad o s)(~)([u) = O. 

The Lie algebra ~ of G* is the direct sum, as a vector space, 

of [u and (ds)~, because (v,g) ~ vs(g) is an isomorphism of 

varieties R u × G ~ G*. So ad(~*)(Eu) = ad((ds)K)(~u)+ad([u)([u) = 

d(Ad 0 s)(~)([u) = 0. This proves that d~ : ~ ~ ~ is a central 

extension• (Its kernel is [u.) 

So we have a homomorphism 2" ~ * * * ~1 with image [K1,[1 ] . (See 

• * * , ~* Proposition 1.3, (v)) Now suppose K~ = [KI,KI ] Then ~ ~ 

is a surjective isomorphism, because dimensions are equal. We 

conclude: 

(16) If [K[,~] = KI' then d~ is a universal central extension. 

Note that this condition is also necessary. 

One has d~[~,~] = [~,~] : ~. So [~,~] = ~ if and only if 

~u is contained in [~1,~1 ] . Hence we consider r N [~,~] . --U 

It is a G-submodule of r , because both r and [~1,~1 ] are 
--U --U 

invariant under Ad 0 s. Consider the following condition: 

(17) [ (ds)~,(ds)~] N [u generates ~u as a G-module. 

As [ (ds)~,(ds)J = [~,~] (central trick), condition (17) is 

equivalent to [K[,K~] = K~. The G-module --ur is generated by its 

1-dimensional weight spaces ([u)y, y degenerate sum (see 

Proposition 5.2). For each orbit of degenerate sums one ([u)y 

suffices. We have [ (ds)~,(ds)~G ] = [ (~)± ~'(~)8 ] C ([u)~+ ~, 

because d~ is T-equivariant and d% o ds = id. (Use central trick.) 
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Hence we formulate the condition: 

(18) For each orbit of degenerate sums, there is a pair of 

independent roots e,B, such that 

1) ~+6 is in the orbit, 

2) [ (ds)X~, (ds)X 8] # 0. 

It is clear that condition (18) is equivalent to (17). In the 

calculation of [ (ds)X~,(ds)XB], we need a description of the 

composition [ , ] on g~. The action of G on C induces one of g on C. 

In the Lie algebra fC,g ~ of fC,G ~ we see from differentiation of 

Ad that 

[ fv,X],fw,Y ]] = [X.w - Y.v, IX,Y]] , for X,Y e g, v,w e C. 

(See [ 1], §3 for a similar situation.) 

S The Lie algebra gl is a subalgebra of fC,g] so 

(19) [ (ds)X~,(ds)X B] ~ 0 if and only if X~.N3(dfl)X B ~ XB.q3(dfl)X e. 

It follows from (9) that (dfl)X ~ = n2(dll)X e. And ll(X~(t)) = 

x~(t).Dlf 0 - Nlf0 . So (dll)X ~ = X .nlf 0. 

Summing up we get: 

10.4 PROPOSITION. 

The sequences ~1,[2 yield a k-extension % as in Theorem 10.1 if 

and only if one of the following equivalent conditions is satisfied: 

(C2) [~,~*] A ~u generates ~u as a G-module 
~1 ~ ' 

(C3) For each orbit of degenerate sums, there is a pair of 

independent roots e,8, such that 

1) ~+~ is in the orbit, 

2) [ (ds)X~,(ds)X 8] ~ 0, 

(C4) For each orbit of degenerate sums, there is a pair of 

independent roots ~,8, such that 
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1) ~+8 is in the orbit, 

2) X~.(n3n2(XS.nlf0 )) # XB.(n3n2(Xe.nlf0)). 

10.5 The corresponding diagram is: 

(All maps are T-equivariant, but the H i are not G-equivariant). 

0 

i 
L 1 

0 4 ~ u  ~ '  C V ~A ' 0 

n3n2]~aJa 
0---+ ker T ~B 

0 

If one of the conditions (Ci) is satisfied, we say that condition 

(C) is satisfied. 

10.6 (CASE BY CASE). 

Now we have reached the point that we have to use the classification 

of degenerate sums. For each possible type we have to give ~1,~2 

satisfying condition (C). They have been found by trial and error. 

For non-exceptional types there is a non-trivial group F/F0, which 

enables us to construct non-trivial 1-cocycles from lattices in ~. 

For exceptional types we have to study other representations then 

the adjoint one. We will use the notations that are introduced in 4. 

A 2, characteristic 3. 

Root system {e1,~2,e1+~2 , -~1,-~2,-~1-~2 }. 

Put ~:~1' B=~ 2, Y= ~+B. Let Mst denote the standard lattice in ~{, 

generated by XS. It contains all X 6 and H~, ~ E E. The G-module 

A = LMs t is isomorphic to ~ and contains an invariant 1-dimensional 
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subspace L 1 generated by {H +H_B}Ms t. (It is the centre of ~, 

which is non-trivial because F/F 0 has p-torsion.) There is an 

admissable lattice M that is spanned by ~(H +H_B) and Mst. (el. 

4.6). Let o : LMs t ~ L M be the canonical homomorphism. Put 

B = L M. Then dim A = dim B, ker ~ = L1, so L 2 = B/oA is 

= .) 1-dimensional. (This is also clear from the fact that L 2 LM/Ms t 

We get the exact sequence ~2 : 0 ~ L 1 P~ A ~ B %~ L 2 ~ 0, 

where G acts trivially on L1,L 2. As A ~ ~, A fits in the exact 

sequence ~1 : 0 ~ ~u ~ ~* ~ ~ ~ 0. 

Choose f0 = {~(H~+H-B)}M/Mst" We have to check condition (C) now. 

One has 

X~.(n3n2(Xy.nlf0 )) = X~.(n3n2(Xy.{~(H +H_~)})) = 0, and 

Xy.(n3n2(X~.{~(H~+H_B)})) : -Xy.(n3n2{X~}) : -~d(Xy)(X~) = 

±Z* ~ 0. (Use Proposition 3.3). ~+y 

In the same way [ (ds)Xy,(ds)X 6] = f±Z[+y,0 ] ~ 0. It is seen 

from 2.8 Table 1 that all orbits of degenerate sums are covered 

in this way. 

10.7 REMARK. 

One can avoid L 1 by dividing out the 1-dimensional submodules 

in K* and ~(=A). Then one doesn't need Theorem 9.6. In fact one 

returns to the following classical situation: 

0 ~ ~u ~ C ~ B ~ L 2 ~ 0 is a resolution of L 2. In the same way 

the construction for D I and F 4 can be simplified. But it is not 

possible to do the same for BI, G 2 in characteristic 2. At least 

not for the constructions that will be given below. In the case 

of G 2 in characteristic 3, we will use a construction where LI=0 

automatically. So we will need L 1 just in those cases that [u has 

a 1-dimensional G-submodule (see Proposition 5.2). 
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Then we will use a sequence ~1 in which A has a 1-dimensional 

G-submodule, which is the image of an indecomposable submodule 

of C that has dimension > 1. 

10.8 A3 and DI, i > 4, characteristic 2. 

We exploit the centre of g in the same way as above. The root 

system is ~ = {-+a i +cj11 ~ i < j ~ i}. (See [4 ] "Planches" and 

use that A 3 = D3). The element Xal+¢ 3 in g¢ generates a standard 

lattice Mst, corresponding to g. (i.e. LMs t _~ g). Choose H = 
1-1 

H¢I+¢ 1 + i-~-1H¢i+¢i+1 . If i is even, then H E 2Mst ; if I is odd, 

then {H}Ms t generates a 1-dimensional G-submodule. (It is the 

centre again). Anyway, ½H and Mst span an admissable lattice M' 

In L M, the element {½H} M, generates a 1-dimensional G-submodule. 

So we can define the admissable lattice M, spanned by ¼H and Mst. 

Let o : LMs t ~ L M be the natural homomorphism, and choose 

~2 : 0 -~ L 1 -~ LMs t -~ L M -* L 2 ~ 0. 

Again we can identify A = LMs t with ~, and we put 

~1 : 0 ~ r ~ g* ~ -u ~ 0. 

Choose f0 = {¼H}. (If i is even, then there is another factor 

of the centre. But that factor does not give the right cocycles). 

We check condition (C): 

Xal+¢ 2 (q3q2(X¢l_C2.qlf0)) = 0, 

X¢1-¢2 (n3q2(x¢1+¢2 "nlf0)) = ~d(X¢1-¢2)(X*¢1÷¢2 ) = Z'2¢ 1 ~ 0. 

10.9 ~4' characteristic 2. 

If we use the same construction as above, then it appears that 

one orbit of degenerated sums is missing: 

[ (ds )Xel_¢2 , (ds )X¢l+¢  2] ~ 0 and [ (ds)Xsl_~2,(ds)X¢3+E 4] ~ O, 

but [ (ds)Xel+a2,(ds)X¢3+¢4]  = O. 
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So we have to do something about the orbit of el+e2+e3+e4 , 

Say ~u = [1 8 ~2 @ [3' where [1 is the component that corresponds 

to the orbit of 2el, ~2 to that of el-e2+e3+e4 , [3 to the last one. 

What we have now is a 2-cocycle f2 in ~u that behaves the right 

way in ~1 @ [2" We divide out [3 and obtain a 2-cocycle f~2 of 

G in ~1 @ E2" We need a complementary cocyele in [3' to get a 

eocycle f~23 in ~u" From f~2 we can get a 2-cocycle f~ in ~1 

by dividing out ~2" It is transformed into a suitable 2-coeycle 

in [3 by the automorphism of D 4 that interchanges the first and 

the third orbit. 

We will use a slightly different method now. (It is not essentially 

different.) In ~ the element Hel+e 2 + Hel_e 2 generates a 

1-dimensional G-submodule. So we can choose the admissible 

lattice M" = ½~(H l+e 2 + Hel_S 2) + Mst instead of the lattice 

M = ~(¼H) + Mst. Proceeding the same way as we did with M, we get 

a 2-coeycle for which [(ds)~,(ds)K] A [u = ~2 ~ ~3" Now we divide 

out the submodule ~1 @ ~2' and get a 2-cocycle f~ in ~3' The final 

3 in ~u satisfies condition (C) 2-eocycle f~2 @ f2 

Here one has to take for ~1 the direct sum of 

0 ~ ~1 ~ ~2 ~ ~*/~3 ~ ~ ~ 0 and 0 ~ ~3 ~ ~*/~1 ~ ~2 ~ ~ ~ 0, 

while ~2 has to be the direct sum of the two corresponding ~2's. 

Note that the sum of the cocycles that behave well in ~1 ~ ~2 

and ~2 @ ~3 respectively, is not behaving well in ~2" That is 

the reason that ~2 has to be divided out one time. 

10.10 REMARK. 

The reasoning we used for D 4 shows: 

It is sufficient to construct for each orbit of degenerated sums 

a system (~1,g2), such that there are ~,B as in condition (C3) or 

(C4). 
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10.11 BI, I ~ 5, characteristic 2. 

We have seen earlier (in 3.11) how the Chevalley group GBI can 

be embedded in the Chevalley group GDI+I. From now on we will 

suppress the subscripts i in B I and 1+1 in DI+ 1. 

The embedding G B ~ G D induces a homomorphism ~B ~ ~D' which in 

its turn induces a homomorphism of ~ into ~D' given by 

X* X* + X* and XSgi±sj I ~ X* .±~.. 
si ei+el+l ei-al+l ±sl 3 

The image of (~u)B in ~ is spanned by the elements Z* (i < i), 
2e i 

Z* + Z* . We see that it has the same dimension as (ru) B. 
2el+ 1 -2el+ 1 

Hence there is an exact sequence of GB-modules 

~1 : 0 ~ (~u)B ~ (~*)D ~ A ~ 0. 

As (~u)B is mapped into ([u)D , there is a homomorphism 

A ~ (~*)D/(Zu)D ~ KD" 

Its kernel is 1-dimensional (It is spanned by the image of Z* 
• 2£ 

For D we used an exact sequence 

0 ~ L 1 ~ ~D ~ B ~ L 2 ~ 0, where dim L 1 = 1. 

Now we replace KD ~ B by A ~ B, i.e. by the composite of A ~ KD 

and ~D ~ B, and get an exact sequence 

2 2 : 0 ~ L 1 ~ A ~ B ~ L 2 ~ 0, where dim L 1 = 2. 

We have to check condition (C) again. For that purpose we may 

use the same calculation as we did for type D itself. It is also 

possible to calculate [(ds)X~,(ds)X 6] using the fact that the 

* is isomorphic to ~D" Lie algebra of G D 

10.12 B3, characteristic 2. 

We still have an embedding GBI ~ GDI+I (i = 3 now). In the case 

of D 4 we did not use an exact sequence of the type 

0 ~ (~u)D ~ ~ ~ ~D ~ 0, but a direct sum of two sequences: 

.) 
1+1 
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0 ~ ~1 e ~2 ~ ~ / ~ 3  ~ ~D ~ 0 and. 0 ~ ~3 ~ ~ / ~ 1  ¢ ~2 ~ ~D ~ 0. 

The image of (ru) B_ in ~ is spanned by the elements Z*2s. (i=1,2,3), 
i 

Z* + Z* Z* = ±1. 
2~ 4 _2~4, Slel+S2g2+s3e3+c 4 + Z* , s i Slel+S2e2+s3e3-g4 

So (Eu)B is mapped injectively into i~/E3" There is an exact 

sequence ~1 : 0 ~ (Eu)B ~ ~/E3 ~ A ~ 0, and a natural homomorphism 

A ~ ID' with 1-dimensional kernel. In the case of D 4 there was 

used an exact sequence 0 ~ L 1 ~ ~D ~ B ~ L 2 ~ 0, corresponding 

to the sequence 0 ~ E1 $ E2 ~ i~/E3 ~ ~D ~ 0. Again we replace 

ID ~ B by A ~ B, and we get an exact sequence ~2 : 0 ~ L 1 ~ A 

B ~ L 2 ~ 0. It is easy to check condition (C) now. 

REMARK 1. 

We can't use the construction of case D 5 for the case B4, because 

(Eu)D is too small in this case. That is the reason that we will 

embed B 4 in F 4 and not in D 5. 

REMARK 2. 

For BI, i ~ 3, 1 # 4, there also is a construction where dim A = 

dim IB I. So this construction uses G-modules of lower dimension. 

(dim ~B 1 < dim ~DI+I ). In fact it uses a module A that is a quotient 

of the one used above. 

10.13 F4, characteristic 2. 

We don't have a centre in ~ now, but we do have a G-submodule, 

generated by the X~, ~ short. (See [26] Table 2). 

It is spanned by the X~, Ha, ~ short. (See also [22] page 155, 

Remark c.) 

We put Mst = ~z(Xsl+~2 )' M½ = ~z(½Xsl). Then M~ D Mst. 

There is a homomorphism of Gc-modules, hence of ~-modules, 

S : ~ ~ ~ ~ ~ ~ ~C given by S(x @ y) = x 0 y + y @ x. 
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Put 

(2) M' : 2MI ® C @ Mst Mst Mst, 

(3) M = 2M' + (M' N S(~{ ® ~)), 

(4) A = LM,/M. 

Stated otherwise, A is the G-module that corresponds to the 

lattice M'a that is the image of M' in ~{ A ~ = ~ @ ~/S(~ ~ [{). 

Now we consider the element 

(5) H = H~ @ H 1 + ~ X a @ X_a , where ~ : ½(s1+c2+~3+~4 ). 
a short 
a > 0 

It is an element of M' 

We claim that {H}M,/M spans a 1-dimensional G-submodule in A. 

Let H a denote the image of H in ~{ A ~{. We have to prove that 

{Ha}M~ spans a 1-dimensional G-submodule. First we prove that 

{H a } is invariant under W. It is clear that 

(6) ~ {X a A X_a } is invariant under W. 
a short 
a > 0 

Now we note that H A H = 0 and 

(He1 + Hsi) A : = -2H A H e 2M~ (i ~ 1). HSl 2Hsl+S 2 A Hsl el Sl+~ 2 

It follows that {Hei A He1} : 0 (i ~ 1), whence 

{H~ A He1} : {H a A H e ], for a short, (a,e 1) ~ 0. (Inspect the 
1 

'root system). Using the action of W we see that 

{H a h H 6} = {H g h H a} = {Hy A H a} if a,B,y are short, (a,6) ~ 0, 

(a,y) # 0. 

Now let w e W. Put a = w~, B = we 1. Then (~,~) ~ 0. It follows 

from inspection of ~ that (a,e 1) ~ 0 or (B,e 1) ~ 0. If (a,e 1) ~ 0, 

then {H a A H 6} : {H a g He1} = {H~ ~ He1} and if (B,e 1) ~ 0, then 

{H a A H B} : {H¢1 A H B} = {H~ A Hal}. We may conclude 

(7) {H a } is invariant under W. 

Now consider xc2(t){H a} - {Ha}. 
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We have 

( (t)-l) . {H< A + A } : xc 2 He I Xe 2 X-e 2 

t{-Xe2 A He1 + Xs2 A He2} = 2t{X 2 A H_el+e2} = 0, 

(xe2(t)-l) • (Xc1 A X_e 1} = t{2Xcl+C 2 h X_c 1} + t{2XE1 

+ 2t ~{2Xel+e 2 ̂ X_~l+e 2] = 2t{X_e I A Xel+e 2} = 0, 

(xe2(t)-l) ({X~ A X_ }+ A }) = 2{X~ A ] = 0. 
• {X~_~2 Xc2- ~ X~2-~ 

All short roots that are orthogonal to s 2 can be handled like E 1. 

The remaining terms of H a can be sorted in pairs of the type 

±X¥ ~ X_y +X XE2_y = ' - Y-~2 A . They can be handled like the case y ~. 

It follows that 

(8) x 2(t) fixes {Ha}. 

Next consider (x 2_e3(t)-l).{Ha}. Now we have 

(t)-l) {H c S } = 0, (xs2-c 3 He 1 

(t)-l) {Xsl A } : 0, (x~2-s 3 X-~ 1 

(xe2_~3(t)-l) ({X~2 A X_~2 } + {X£3 A X_~3 }) : 2t{Xs2 A X_E 3} = 0. 

Again all roots that are orthogonal to s2-e 3 can be handled like 

el, and agai}l all remaining terms can be sorted in pairs ±Xy A X_y, 

Xy_~2+s 3 A X c2-e3-y 

This finishes the proof of 

(9) {H a } (or {H]) spans a 1-dimensional G-submodule in A. There 

is an admissible lattice in [@ A ~{, spanned by ½H a and M~. 

Let B denote the oorresponding G-module, ~ the natural map 

A ~ B. We get ~2 : 0 ~ L 1 P~ A ~ B T L2 ~ 0. 

Now we return to the first definition of A, A = LM,/M , 

M = 2M' + (M' n S([{ @ ~{)). 

A X el+~2} + 
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Put 

(10) M" = 2M' + (M' N S(Mst ® Mst)). 

(11) C = LM,/M,,. 

There is a natural map ~ : C ~ A. We want to prove that there 

is an exact sequence of G-modules 

~1 : 0 ~ --ur ~ C ~> A ~ 0. 

Hence consider ker ~. First we compare 

N" = S(Mst @ Mst) C Mst @ Mst with N = (Mst @ Mst) n S(~ C @ ~). 

Choose a basis el,...,e n of Mst. Then N" is spanned by the elements 

e i @ ej + ej @ e i (i # j), 2e i @ e i. 

And N is spanned by the elements 

e i 0 ej + ej @ e i (i # j), e i @ e i. 

Now we specify the basis (e i) of Mst , taking H{, H e , H 
1 ~1-c2 ' 

H 2_E3, X~ (~ E ~). 

We can obtain a basis of M~ from it by dividing some of the e i 

by 2. We reorder the basis in such a way that ½el,½e2,... 

...,½e26 , e27,...,e52 is a basis of M½. Then M' is spanned by 

the elements 2e i @ ej (i = 27,...,52; j = 1,...,52), e i @ ej 

(i = 1,...,26; j = 1,...,52). 

Hence M' n N differs from M' n N" in the components spanned by 

the elements e i @ e i (i = 1,...,26). It follows from 

M = 2M' + (M' n N), M" = 2M' + (M' n N") that ker ~ is spanned 

by the elements {e i ® ei} , i = 1,...,26. Note that {e i @ ei}M,/M,, # 0. 

It is clear that ker ~ has dimension 26 and has a highest weight 

that is twice a short root. Then it follows from ([26], Table 2) 

that kerv is irreducible. 

From Proposition 5.2 we see that ker ~ m ~u" We have to check 

condition (C) now for ~1,~2. Choose f0 = {½Ha}" 
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We want to calculate 

(n3n2(Xe 2 e nlf0)) - X qlf0)). Xe2+e3 - 3 e2-e3 (h3q2(Xc2+e3 

In order to do this, we fix the order on ~: 

For a i £ IR we define ale I + ... + a4e 4 to be positive, if 

a I = ... = ak_ 1 = 0, a k > 0 for some k, 1 ( k < 4. (This is the 

lex{eographic order on IR4). 

+ {a 6 ~1~ short, ~+e2+e 3 e ~, 2~+c2+e 3 > 0}, Put A 1 = 

A~ = {~ 6 ~I~ short, ~+c2+e 3 e ~, 2e+e2+e 3 < 0}. 

Define A~, A~ in an analogous way, replacing 62+e3 by e2-e 3. 

Then we claim that 

X . (n3q2(X 2_s 3 e2+s 3 

X¢2+¢3 • (~q2{½X o c2-e 3 

nlf0 ) ) : 

( ~ X A X - ~ X_~ A X~ + ~ X_~ A X 
~>0 ~ -~ ~>0 ~<0 

- . !X . ( ~ X~ @ X - 
- ~ X A X ~)}) : Xa2+~ 3 {2 e2_~3 

~<0 ~>0 

- ~ X 8 X~ + Z X_~@ X - ~ X~ 8 X_~)}M,/M,,. 
~>0 -~ ~<0 ~<0 

Here the point is that the element Y inside { }M'/M" has to be 

in M'. This element Y is in the ~-span of the elements X 6 @ Xy, 

where 6,Y are short moots with 8-Y > 0. 

' of M' It is easily The image in [¢ A g{ is in the image M a 

derived from these facts (or from explicit calculation) that, 

indeed, Y E M'. The element Xe2+e3.Y of M' is a sum of terms 

IX (X @ X ) ~ short. 
±Xs2+e 3 2 e2_c3 _~ , 

For most roots ~ this term is zero. It is non-zero if 

1) ~ + s 2 + s 3 + ~2 - s3 = e + 2s2 e ~, 

2) ~ + s 2 + e 3 and -~ + e 2 - e 3 are in ~, 

3)Condition 1 or 2 holds for -~ instead of ~. 
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If condition 1 is fulfilled, then ~ = -e 
2" 

If condition 2 is fulfilled, then ~+~2+c3 is a short root such 

that ~+E2+e3-2s 2 is a root, so e+s2+s3 = ~2" 

We may conclude that ~ = ±g2,±E3 for non-vanishing terms of 

X 2+e3.Y. Now it is easy to calculate X 2+£3.(q3q2(Xe2_s3.qlf0)). 

It is 

(12) {½X s @ [Xs2+s , [Xs2_s3 ,X e2]] 2 3 

" {q3q2(Xg2+g In  the  same way Xe2_s 3 3 

. { } X s 2 + s  . (  ~ X A X_~ )}  = Xs2-s3 3 ~>0 ~ . . . .  
~eA~ 

{½Xs2 @ [ X s z _ S 3 , [ X  + ,X ]1 - s 2 c 3 -s  2 

{½X s e [ x s2 +s  , [ x  s ] - 2 3 2 - s 3 ' X - s 2  | 

Hence the difference with (12) is {X 
s 2 

,X s l @ I x  ,x e 3 l } .  + ½[Xs2-s3 3 s2+s3 - 

.nlf0 ) } = 

,x_ s ] ~ [X ,x s ]} ½[Xs2+s3 3 ~2-s3 3 

½[xs2_s3 ,×  s l e [x  ,x s31} 
3 g2+g3 - 

g X } which is non-zero. 
e 2 

10.14 B4, characteristic 2. 

There is a natural embedding of GB4 in GFq , sending x±e.(t) to 
l 

x±e i(t), and x±ei ±ej(t) to x±ei±sj(t). (See 3.10, case 2 and 4.1 (1)). 

We can exploit this embedding in exactly the same way as we 

exploited the embedding GB5 ~ GD6. We get 

~1 : 0 ~ ([u)B4 ~ CF4 ~ A ~ 0 and 

~2 : 0 ~ L 1 ~ A ~ BF4 ~ (L2)F4 ~ 0, where the subscript F 4 is used 

for modules that also occur in the construction for case F 4. 

The dimension of L 1 is 2 again, and condition (C) is satisfied. 

REMARK. 

Every GB4-module is a direct sum of two components, one component 

containing all weight spaces with weights in F 0 (the lattice 

spanned by the roots), the other component containing other weight 
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spaces (see Lemma 4.13). It follows that the system ~1,~2 splits 

into two components. The component that corresponds to F 0 

contains r and f0" The other component may be deleted, which --u 

gives a construction with modules of lower dimensions. 

10.15 G2, characteristic 3. 

We have the root system Z = {±a, ±B, ±y, -+(a-B), ±(B-Y), -(y-a)},+ 

where a = -a 1, B = 2a I + a 2, y = -a-6. 

We will need the signs of the structure constants N6, $ (6,9 6 Z). 

It is possible to choose these signs in a "symmetric" way: 

If r denotes a rotation of the root system over 60 degrees, 

then we require: 

(1) Nr6,r % = -N6, ~. (see [221, p. 150). 

We fix the signs by giving all X 6 in the 7-dimensional represen- 

tation of ~: 

2a g h -f 

2b j i f - 

(2) X 6 = 2c k I -e d , 

2d c -b -j -k / 

-c a -g - 

b -a -h -i 

where all variables 

except one are zero, 

one is I. 

(Empty entries are zero). 

The variables correspond to the roots as indicated in the 

following illustration 

y - a ~ B - y  k 

~A / X Y  < ) 

Y-B'_~_~/B~ ~-, ~" aV e ,1 

For example: 
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0 1 0 1 0 

o ; 
X~ = -1 X_B = 

0 0 

1 

-1 

It is seen that 

N6,e_ 6 = 3, N = 2 : = 1, N_B,~ ~,Y (3) N _8,y_ ~ = N _B,_~ 

R e l a t i o n  ( 1 )  f o l l o w s  f r o m  t h e  f a c t  t h a t  c o n j u g a t i o n  w i t h  t h e  

matrix /i-i 1 1 1 1 ii maps X~ tO -Xr6" 

I 

R e l a t i o n s  ( 1 ) ,  ( 3 )  d e t e r m i n e  a l l  s i g n s .  

REMARK. 

We will choose our definitions in such a way that their usefulness 

does not depend on the signs. But we need some choice of the signs 

to demonstrate their usefulness. 

NOTATIONS. 

Let (10) denote the highest weight of the 7-dimensional 

representation of ~ and (01) the highest weight of the adjoint 

representation. Put (mn) = m(10) + n(01), R mn = representation 

space of the irreducible representation of ~ with highest weight 

(mn), ~-mn = representation space of the irreducible G-module with 

highest weight (mn) (in characteristic p). 

The ~-module R 10 ~ R 01 has a direct summand of type R 11. The 

dimension of this factor is 64 (see [18], (5.9.4)). 

The matrices X 6 in (2) are given with respect to some basis 

el,e2,...,e 7 in R 10. 



85 

It is easily checked that {~nieiln i e Z} is an admissible lattice 
1 

in R 10 . 

Let M 1 denote the standard lattice in R 01 : ~{, generated by Xs_y. 

Put 

(4) v = e 5 ~ X8_ ¥. 

Then v 6 R2~_y ,11 because e 5 E R~ 0. Put 

(5) Mst = ~zv. 

Then Mst is a standard lattice in R 11 that is contained in the 

admissible lattice 

(6) M = {~e i @ AiIi i E M1] in R 10 @ R 01. 
l 

We are interested in the G-module 

(7) R = LMst+3M/3 M 

It is clear that R is a quotient of LMs t. We claim that it is in 

fact isomorphic to LMs t. After proving this claim, we will be 

able to recognize non-zero elements of LMs t. The multiplicities 

of R 11 are arranged like this: 

1 1 

1 2 2 2 

2 4 4 

2 4 4 4 

2 4 4 

1 2 2 2 

1 1 

(see [21], Table 1.) 

O 
2 1 

2 

2 1 

1 

We use the same orientation as in the display of the root system, 

so the encircled multiplicity corresponds to the weight space of v. 

Put 

(8) w = (X _~Xy_~ + Xy_ X _B)X Xyv. 

(We don't indicate the action by points now.) 
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This element w is in the weight space of weight O. 

(w = e I @ H e - e 2 8 X B + 2e 3 8 X - e 4 8 Xy - 2e 5 8 X_B + 

4e 6 8 X_~ - 2e 7 ~ X_y). 

In the following computations we put brackets around expressions 

that have the form X81...Xsi XBi+l'''X~rX , where x is in Mst and 

XBi+l...XBrx is inaweight space that does not occur in R 11. 

These expressions are zero, of course. 

Put x = X XyV. 

Then XB_ w = XB_ X 8Xy_ x - (X _6X8_ Xy_ x) + Xy_ XB_ X _Bx - 

(Xy_~X~_BX~_~x) = HB_~Xy_ x + Xy_ HB_ x = 2Xy_ x + Xy_~X, So 

(9) XB_ w : 3X¥_ x E 3M. 

In the same way 

(10) X _yw = 3X _8x e 3M. 

So [Xs_~,X _y]w = 3XB_ X _~x - (3X _~XB_ x) - 3X _yXy_ x + 

(3Xy_~X _yx) = 3H~_~x - 3H _yx = 0. 

Hence 

(11) XB_yw = O. 

2 Then 0 = Xy_BHB_yw = X - (X~_yXy_Bw) = = y-sXs-yXy-B w Hs-yXy-sw 

=-2Xy_sW , so 

(12) X w = O. 
¥-6 

Explicit calculation shows 

(13) X w E 3M. 
B 

It follows from (9)-(13) that ~.{w} = 0 in R. For ~ 6 E we get 

X w e 3M, (X~12)w e (~M) n M = 3M, (X~IS).w = 0. 

So ~zW 6 3M, hence the non-zero element {w} spans a 1-dimensional 

G-invariant subspace of R (see lemma 4.4). We want to find v i 

that describe a composition series Vl/V2/.../v k in the sense of 

4.14. 
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We have already found two of the composition factors: One is 

[11 with "generator" {v}, one is [00 with generator {w}. 

We use the following table of multiplicities of weights in the ~n: 

(00) (10) (01) (20) (11) (30) 

(00) 

(10) 

(oi) 

(20) 

(11) 

(30) 

I 

0 i 

2 1 1 

3 1 2 1 

0 0 0 0 1 

Table 2. 

This table is obtained from ([21], Table 1,2). 

In a row marked (mn) the multiplicities of the dominant weights 

in ~mn are given. These dominant weights are in the column 

headings. Using this table we will detect composition factors 

501 and ~10 of R. Then R has all composition factors of LMs t, 

which proves the claim that LMs t ~ R is an isomorphism. (The 

composition factors of LMs t are obtained from table 2 or from |21], 

Table 2). 

Put 

(14) YI = (X Xy + XyX )v. 

This element is in the weight space of B-y. One has X6Y 1 = 6v, 

but XBX 6v = 5v. In ~11 the weight 6-Y has multiplicity 1. We 

conclude that {X Bv } is mapped to a non-zero element and (Y1 } 

is mapped to zero when the G-module spanned by {v} is mapped 

onto ~11. 

We express this fact by saying that {Y1} is zero in ~11. (In 

fact ~11 = LN,/N for some N,N', and {Y1}N,/N = 0). 

But {Y1} is non-zero in R. 
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So Y1 corresponds to a composition factor ~01 of R. Put 

(15) Y2 = XyYI" 

Then {Y2 ) is non-zero in R, but ~01 does not have weight 6. So 

Y2 corresponds to a factor ~10 In summary, we get the composition 

series 

(11) (01) (10) (00) 

v / Y1 / Y2 / w . 

Note that we don't claim that Y2 generates w. 

Put 

(16) A = (R modulo the G-module generated by {Y2},{w}). 

So A has composition factors ~11, [01 Then A = LMst/N, N : 

= ker (Mst ~ A). Let Mw/3 denote the lattice spanned by Mst and 

w/3 (Recall that {w} is invariant in R m LMst.) 

Put 

(17) B = LMw/3/N. 

The natural homomorphism o : A ~ B is injective, because {w} = 0 

in A. One obtains an exact sequence ~2 : 0 ~ L 1 ~ A ~ B ~ L 2 ~ 0, 

where L 1 = 0. Next we consider another representation of ~, in 

order to get the sequence ~1" There is a homomorphism of ~{-modules 

[ ,] : ~ A ~ ~ ~, defined by [ ,] A A B : [A,B] . (Here ~ A ~ is 

the usual antisymmetric tensor product. See the case of F 4 above). 

The kernel of this homomorphism is R 30, as one sees from its 

dimension and its highest weight. We now proceed in ~ a ~{, using 

only this factor R 30 essentially. (In the same way as we only 

used R 11 essentially in the construction of ~2.) 

In [{ we had the standard lattice M 1. 

As the X~ with 6 short generate a proper G-submodule again (see 

table 2 and compare with the ease of F 4 above), we can form the 
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I i admissible lattice M±, spanned by M 1 and the TX6, yH 6. (6 short). 

(The submodu le  i s  an i d e a l  o f  t y p e  ~ 1 0 . )  

Consider S : LM1 A M}/3MI A MI" 

It is easy to see that the multiplicities of weights in S give 

the following pattern: 

1 

1 

1 3 

1 2 

1 3 

1 

1 

1 1 1 

2 3 2 O 

3 3 3 1 

3 4 3 2 1 

3 3 3 1 

2 3 2 1 

1 1 1 

The weight 2~-y has been marked by a circle again. Comparing 

with table 2, we conclude that S has composition factors ~01, 

~01, ~11, ~30. (Two times ~01.) 

Put 

(18) v' = X6_ Y A~X 6. 

This element corresponds to ~11, because the other factors don't 

have the weight 26-y. 

Choose 

(19) Y3 = (X~Xy + XyX )v', 

(20) Y4 = XB-~Y3' 

(21) Y5 = X~-~Y4" 

Calculation shows that {Y3 }, {Y4 }, {Y5 } are non-zero in S. As Y1 

was zero in ~11 in the ease of R, the element Y3 is zero in ~11 

now. (They have the same image in ~11.) So Y3 corresponds to a 

factor ~01 in S Y4 corresponds to a factor ~30 • , because its 

image in [11 (from Y3) is zero (see table 2). Then Y5 corresponds 

to a factor [01 because its image in [30 is zero (see table 2). 

We get 
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(11 

V ~ 

Put 

(22 

(23 

(01) (30) (01) 

/ Y3 / Y4 / Y5 " 

C : (S modulo the G-module generated by {Ys}), 

A'= (S modulo the G-module generated by {Y4}). 

(Note that [Y4 } generates {Ys]). 

This gives ~1 : 0 ~ ~u ~ C ~ A' ~ O. 

(~u is of type ~30 so ~u ~ ker ~) 

We have to prove that A ~ A' before we can check condition (C) 

Both A and A T have composition factors ~11, ~01 Furthermore they 

have composition series 

(11) (01) 

v / (XyX +X~Xy)v 

and (11) (01) 

v' / (XyX +X Xy)V' r e s p e c t i v e l y ,  

We prove from these facts that A ~ A'. The proof closely resembles 

the proof for irreducible G-modules (see [2 ], 5.3). 

In the G-module A @ A' we choose the G-submodule A" generated by 

{v} ~ {v'} e A ~ A'. As the G-submodules are the ~-submodules 

(see Lemma 4.4), the elements 

nl nk ( ~H ( i~ X n k + l H  X~ 2k 
XB1 XBk Bk+l 2k ({v} ~ {v'}) 

......... ... °•, _---'-"---T -°° n ! nl! nk! \ml] \ml ] nk+l" 2k" 

where B1 < ... < B2 k are the roots, ~i are the simple roots, 

span A (see [22] ~ Theorem 2). We have Xy_ (X~/2)({v} ~ {v'}) = 0. 

The element {v} ~ {v'} is a highest weight vector, ~o the weight 

space A" is spanned by X_B({v} ~ {v'}) and XyX ({v} ~ {v'}). 
B-Y 

(Note that -B < Y < ~ < 0 in the ordering that makes 2B-y dominant.) 

The weight spaces of B-Y in A and A' are spanned by the 
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corresponding elements. So the kernel of the projection of A" 

on A (or A') has no weight 6-Y. (The image of A" has dim. 2 as 
6-Y 

one sees from table 2 and these remarks.) Then it has no kernel 

at all, because all composition factors of A @ A' have 6-Y as 

a weight• We conclude that A _~ A" _~ A' 

Now we can check condition (C). 

Choose f0 = {~w}. Then XB_ ~ 

And X6_y . (n3n2(XB_ .~lf0)) 

{XB_yXy_ X XyV'}. (See (9).) 

This element is non-zero in C. (It is {-2XB_ Y 

is non-zero in S.) 

(q3q2(XB_y.qlf0)) = 0 (See (11).) 

= X6_y(q3q2{Xy_eX~Xyv}) = 

A XB_e}, which 

10.16 G2, characteristic 2. 

We use the same kind of notations R mn ~mn , as above. (But p = 2 

for ~mn, of course.) 

In R 10 we use the same basis e I . ,e 7. Put Mst i . . . .  {%nieiln i e Z}. 

In LMs t there is a 1-dimensional G-submodule, spanned by {el}. 

So we can form the admissible lattice MI spanned by ½e I and Mst. 

We need a table like table 2, but for p = 2. It is the table 

00) (10) (01) (20) 

(00) 

(10) 

(01) 

(20) 

1 

1 1 

0 0 1 

Table 3. 

The multiplicities of ~00, ~10, ~01 are calculated by hand and 

those for ~20 then follow from the Steinberg Tensor Product Theorem 

(see [22], p. 217) Note that ~10 LMst • = /2M!' and that the table 
2 

says that K has no proper invariant subspaces. (It has no centre 

because F = F 0 and furthermore X 6 generates ~ for all roots 8.) 
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In R 10 @ R 10 we have the lattices M½ @ Mst and 2M1~ @ MI,~ the 

former containing the latter. Put 

(1) S = L M 
i @ Mst/2MI @ MI 

It has multiplicities 6, 3, 2, 1, hence composition factors 

~20, ~01, ~01, ~10 ~00 ~00. Choose 

X ~ -B 
(2) Y1 = e4 ~ e5' Y2 = X-~YI' Y3 = -7- Y2' Y4 = XB-yY3" 

Note that {Y1 } e SB_ Y. 

Calculation shows that {Yi ] ~ 0 in S. The submodule generated by 

{Y1 } has at least the composition factors [01 (from Y1 ), [20 

(from Y2 ), ~01 (from Y4 ). This is seen from table 3 in the same 

way as above (see 10.15). 

If one divides out in S the G-module generated by {Y1 ], then the 

result has a factor LM½ ~ Mst/Ms t @ Ms t + 2MI @ MI" This module is 
- z 

of type [10 with generator {Z 1} where 

e 1 
(2) Z 1 = ~-- ~ e 5 + e 3 8 e 4. 

(Use multiplicities again). 

There are composition factors T OO missing still. One of them 

corresponds to Y3" Proof: 

Let S 4 denote the G-module generated by {Y4 }. As we know multi- 

plicities outside weight zero, we can check that S 4 has the 

following base outside weight zero: 

{{e i @ ej + ej @ ei~I1 ~ i < j ~ 7, j ~ i+3 or j = 4}. 

The weight space ($4) 0 is spanned by the images of this base 

under the action of the X 6. One checks that ($4) 0 has the base 

{e 2 @ e 5 + e 5 @ e 2 + e 4 @ e 7 + e 7 @ e4), 

[e 2 @ e 5 + e 5 @ e 2 + e 3 @ e 6 + e 6 @ e3} ~ which does not span {Y3 }. 

Only one composition factor is missing now. But we want to do more 

than finding this last one: We want to change the order in the 
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composition series. (Y1 is following Z 1 now, but we want Z 1 to 

follow Y1 ) " 

So consider S/$2, where S 2 is generated by {Y2 }. We know that 

{Y1 } generates a G-submodule in S/S 2 that has no composition 

factor ~10. In S/S 2 one checks that X6{Z 1} = 0 for 6 positive, 
vn 

and that ~{Z 1} = 0 for n > 1. (The last result is obtained from 

the multiplicities.) Hence {Z 1} is a highest weight vector of a 

G-submodule of S/S 2. (Use the standard base of tZ~, as in the 

case p = 3. ) 

Then {Z 1} generates a G-submodule of S/S 2 without composition 

factor ~01. Choose 

(4) Z 2 = X_6Z 1. 

Cheek that ~{Z2} = {Y2} in S. 

The conclusion is that S has the composition series 

(01) (I0) (00) (20) (00) (01) 

Y1 / Zl / Z2 / Y2 / Y3 / Y4 " 

Choose 

C = the G-module generated by {ZI} modulo the G-module generated 

by {Yq}. It has composition series 

(10) (00) (20) (O0) 

Z1 / Z2 / Y2 / Y3 " 

In C the element Y2 generates a G-module isomorphic to r u. (This 

is seen as in the proof of Proposition 5.2.) Hence one gets 

~1 : 0 ~ ru -* C ~ A -* 0" 

Then A ~_ LMs t. Choose B = LM½. That gives 

~2 : 0 ~ LI-* A -* B ~ L2 -* 0" 

We check condition (C): 

X 6 • (n3q2(X _y.nlf0 )) = 0, but 
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X _y (n3n2(XB.nlf0)) = X _¥ 

{e 3 @ e 3 } ~ 0. 

End of Proof of Theorem 10.1. 

(n3n2{es}) = {X _yZ 1} = 

10.17 REMARK. 

In the case by case part one may use more embeddings of Chevalley 

groups in Chevalley groups to get proofs like that for type B I. 

There are useful embeddings A 2 ~ G 2 (p = 3), D 4 ~ B 4 (p = 2), 

G 2 ~ D 4 (p = 2). The last one corresponds to the fixed points 

of the triality automorphism of D4, and can be described 

analogously to 3.11. In this case one has to divide out two 

of the [i in (Zu)D4 = [1 ~ ~2 g ~3' in order to get a close 

resemblance of ([u)G2 and the GD4-module .  ( c f .  c a s e  B 3. See 

10.12.) The modules C in these alternative proofs have higher 

dimensions. 

10.18 Let ~ : G* ~ G be the extension that is constructed in 

the proof of Theorem 10.1. So G* is a subgroup of (C,G ] , 

containing flu,l] ~ where C is a G-module containing [u (see 

10.3 (13)). The map % is the restriction of PG : (C'G] ~ G to 

G*. We may and shall assume that all weights of C are in F 0 

(see 10.14 Remark). Let Gad denote the adjoint group corresponding 

to G. Then there is a natural homomorphism fid,Ad ] : IC,Gi 

IC,Gad]. 

10.19 DEFINITION. 

The image of G* under rid,Adl is denoted G* and the restriction ad 

of PGad : fC,Gad ~ ~ Gad t o  Gad i s  d e n o t e d  ~ad" So ~ad : Gad ~ Gad 

is an extension of Gad by Eu. 
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10.20 PROPOSITION. 

Assume ~ N pr = ~ and [u ~ 0. 

The extension %ad is non-trivial~ i.e. there is no homomorphism 

G* satisfying %ad 0 s = id. s : Gad ~ ad 

PROOF. 

Suppose s exists. Put X = (id,Ad ]. Then ~ad 0 X = Ad 0 %, hence 

d%a d 0 dX : ado d~. Consider the inverse image ~ o± (dS)[a d in 

[*. It is a Lie algebra. If y E ~, then X~ + Zu is mapped onto 

the inverse image of ad(Xy) in ~ad' so ad(Xy) is contained in 

(d%a d o dX)(~). It follows from the central trick that ~ contains 

all [X[,X~] , with e,6 e ~. Hence it contains non-trivial elements 

of ~u (see Theorem 3.5 and Corollary 3.14). But then (dS)~a d 

contains non-trivial elements of (r_u '0] = ker(d~a d), which 

contradicts %ad 0 s = id. 

10.21 Let G* be contained in (C,G ] as above. Let NCC,G]G* 

(Zrc,Gh@*)denote the normalizer (centralizer) of G* in [C,G ] . 

Then NfC,G ]G*/Z(C,G ~G* acts faithfully on G*. We will see later 

(in 13.7) that Int(Nfc,GIG*) is a subgroup of finite index in 

Aut(G*) = {~I~ is an automorphism of G* in the category of 

algebraic groups}. At this moment we only prove: 

10.22 PROPOSITION. 

Let r be non-zero. Then 
--U 

G*/Z G*) ~ dim G*. dim (N(c,G ] (C,G ] 

PROOF. 

The proof is easy if the centre Z(G*) of G* has dimension zero. 

So we assume that the connected component of Z(G*) is non-trivial. 
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Then it corresponds to the 1-dimensional G-submodule of [u 

and Z is of type B I or G2, p = 2 (see Proposition 5.2). So Z(G*) 

is 1-dimensional. Inspection of the constructions in 10.11, 

10.12, 10.14, 10.16 shows (cf. Remark 10.7) that the inverse 

image of L 1 in C is a G-submodule that contains -ur as a submodule 

but not as a direct factor. The elements of this inverse image 

are mapped into N(C,G]G* by i C : C ~ (C,G ] , but some of them 

are not mapped into R u ZIC,G]G* (otherwise [u would 

be a direct factor). Hence dim (Nfc,G]G*/Z(c,G]G*) > 

dim (G*IZ(G*)) ~ dim (G*)-I. 

10.23 REMARK. 

There is a natural representation of fC,G ] and hence of G*. Its 

representation space is K ~ C and its action is defined by 

[v,g].(<,v ') = (~,~v+g.v'). If we assume as in 10.18 that all 

weights of C are in F0, then the image of the representation is 

isomorphic to G*ad. If, on the contrary, we replace C by a bigger 

representation (adding direct summands for instance) such that 

the weights span F, then the image is isomorphic to G*. 

Intermediate lattices of weights yield "intermediate" images. 

10.24 REMARK. 

The irreducible (rational) representations of G* correspond 

to the irreducible rational representations of G, because the 

fixed points of R u constitute an invariant subspace. 

10.25 REMARK. 

Let s be a cross section of ~ as in Theorem 8.2 (cf. 10.3, (14)). 

Then z 0 AdG.(SX) = AdG(%(sx)) 0 ~ = AdG(X) 0 ~, and hence 

AdG. o s = Ad. 
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It follows that ~d = ad 0 ds, or ~d 0 z = ad, which was proved 

in 3.3. 

10.26. REMARK. 

* is If all roots are long then the adjoint representation of Gad 

faithful. It then induces a representation of G* that is isomorphic 

to the representation obtained from 10.7, 10.23. 

§11. Relations in the open cell. 

In this section we consider an arbitrary solution % : G* ~ G 

of the problem d# = ~ (see section 7). Fixing a maximal torus T* 
Q 

in G*, we derive relations between elements in T*-stable unipotent 

subgroups of G*. These relations are the analogues of relations 

(A), (B) in Steinbergs set of defining relations for G (see [23] 

or [22], §6). As a result of these relations we will show that 

ker ~ is abelian in most cases (see 11.21). 

11.1 Let ~ : H ~ G be a surjective separable k-homomorphism of 

connected algebraic groups, where G is an almost simple Chevalley 

group with [~,[] = [. Let h denote the Lie algebra of H, T the 

usual maximal torus in G, T* a k-torus in H satisfying %T* = T. 

Assume that T* is k-split. 

If G is simply connected, let r be the G-module described in 
--U 

5.2 (cf. section 10). If not, put [u = 0 (cf. Lemma 7.1). In 

both cases r can be viewed as an H-module by means of ~. 
--U 

Now we introduce three properties (arranged in order of increasing 

strength). 

(P1) There is a homomorphism of H-modules Z : r ~ ker (d%) such 
--U 

that T* acts trivially on the eokernel of ~. 

(P2) There is an H-equivariant k-homomorphism T from Zu into ker 
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such that dT = ~ is as in (P1). 

(P3) ~(~u ) = ker ~, where T is as in (P2). 

REMARKS. 

1) In (P2) it is sufficient to assume that T maps into H, 

because ~ 0 T(~u) is a connected unipotent normal subgroup. 

2) If (P1) holds, then ~(~u ) is contained in the Lie algebra 

of Ru(H). Proof: Consider the natural projection 

: ker ~ ~ ker ~/Ru(H). As ker ~ acts trivially on ~(~u ), a 

maximal torus of ker ~/Ru(H) acts trivially on (d~ 0 ~)(~u ). 

It follows from ([ 1], Theorem (13.18)) that (d~ 0 ~)(~u ) consists 

of semi-simple elements. On the other hand it follows as in 6.2 

*) is nilpotent for y degenerate. These elements that (d~ 0 ~)(Zy 

(d@ 0 ~)(Z*) generate (d~ 0 ~)(~u ) (see Proposition 5 2) so y • , 

(d@ 0 ~)(Eu ) = 0. 

EXAMPLES. 

1) If ~ : G* ~ G is a solution of d~ = ~, as described in 

7.2, then ~ satisfies (P1). We will see in 11.21, 11.27 that 

also satisfies (P3), with one possible exception. 

2) If ~ : G* ~ G is the extension of G by ~u' constructed 

in section 10, then ~ satisfies (P3). (Then it also satisfies 

(P1) (P2), of course.) 

3) If # = PG : :~u,G ~ ~ G (see 8.1), then ~ also satisfies 

(P3). 

11.2 LEMMA. 

If ~ : H ~ G satisfies (P2), then Ad H o T is trivial (i.e. it 

maps ~u to 1). 
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PROOF. 

Let X C r . For x C H we have (x,T(X)) = ~(x.X-X), so the morphism --u 

x ~ (x,T(X)) has differential zero (see Proposition 5.2 and use 

that dFr = 01. But this differential is also equal to id-AdH(T(X)) 

(see [ 1] , (3.9)). 

11.3 In the sequel we shall derive several results about ~ : G ~ ~ G 

which do not depend on the property d~ = z, but only on (P1), (P2) 

or (P3). We shall apply those results in situations like example 3 

in 11.1. Therefore we shall label such results with the corresponding 

properties, suppressing (P1) if (P2) holds and (P2) if (P31 holds. 

So a label (P1) means that some natural modifications yield a 

result that is valid if (P1) holds in 11.1. (It doesn't mean 

that (P1) is necessary.) We give some examples of these 

modifications: 

by ~(Z ~) if necessary. Replace G* by H, replace Zy Y , 

Replace X~ by the weight vector of T * in ~ that satisfies 

(d~)X~ = X~. Omit weights that don't occur in ~. 

We shall give proofs of labeled statements only for the case 

: G* ~ G, leaving the general case to the reader. 

11.4 We return to ~ : G ~ ~ G with d~ = ~ (see 7.2). Assume that 

is defined over k and that ~u ~ 0. So G is simply connected 

almost simple, ~ ~ pF = ~ (see Proposition 1.3 (ii) and Proposition 

2.2) and F contains degenerate sums (see 3.141. We know 

that ker ~ is the unipotent radical R u of G ~ (see Lemma 7.4). 

It follows from ([1 ], (6.7) Remark) that R u is defined over k. 

The inverse image ~-I(T) of T is also defined over k (see [1 ] , 

(6.7), (6.8), applied to the action of G ~ on G/T). Hence ~-*(T) 

contains a maximal torus T ~, defined over k (see [ 1 ] , (18.2)). 

This torus T ~ is mapped isomorphically onto T. So T ~ is k-split. 
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(Note that this was assumed in 11.1.) The action Ad of G* on [* 

is given by Ad(x)(X) = Ad(~x)(X) for x e G*, X • ~* (see 7.2). 

So the weight spaces of Ad : G* ~ ~* are the same as those of 

Ad (for T*, T respectively). Henceforth we identify weights on 

T* with weights on T. 

REMARK. 

In the following Proposition short roots have to be handled 

with special care, because a p-multiple of a short root is a 

degenerate sum (see Lemma 2.9, (iii)). 

11.6 PROPOSITION (P1).(cf. [7], Exp. 13, Th. 1). 

Let y be a non-zero weight of [*. 

(i) I__[f y is not a short root~ then there is a connected 

* of G* defined over k, such that subgroup Gy __ , 

(a) The Lie al~ebra of Gy i_~s ~y. 

(b) As an al~ebraic group, Gy i_~s T*-equivariantly k-isomopphic 

t_9o ~¥. 

(ii) l_~f y is a short root ~ then there is a T*-equivariant 

k-isomorphism of varieties from ~y into G*, mapping 0 t__oo 1. 

PROOF. 

(i) The multiplicity of y is 1, and the multiplicity of ny 

is zero for n > 1 (use Lemma 2.6 (i) and Proposition 2.12). So 

it follows from ([ 3 ], Theorem 9.16), that there is a T*-stable 

subgroup Gy satisfying (a). It is the unipotent radical of T Gy. 

Now (b) follows from ([ 3 ], Theorem 9.8). 

(ii) The multiplicity of y is 1, the multiplicity of py is 

1 and those of other positive multiples of y are zero (see Lemma 

2.9 (iii), Lermna 2.6 (i), Proposition 5.2). Hence we get from 

([ 3 ] , Theorem 9.16) the existence of a connected T*-stable 
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* * + * Again subgroup G*(y) of G* with Lie algebra ~y or ~y ~py. 

G* is the unipotent radical of T'G* The centralizer of T* (y) (y)" 

has trivial intersection with G~y) (see [ 1 ], Proposition 9.4), 

so (ii) follows from ([ 3 ], Corollary 9.12). 

11.6 Let y be a weight as in Proposition 11.5, (i). We identify 

* with its Lie algebra. Then the isomorphism the additive group ~y 

* ~ G* may be normed in such a way that d0 = id. O : ~y Y 

NOTATION. 

x*(u) denotes the image of uX* (or uZ~) under the normed isomorphism 
Y Y 

* ~ G*. 
Y 

So x* is a k-homomorphism !a ~ G*, where !a denotes the 1-dimensional 
Y ¥ 

additive group, as usual. We have hx$(u)h -I = x*(hYu) for h E T* y 

u C K (h Y denotes the image of h under y). 

11.7 Now let y be a short root. We identify ~; with its tangent 

* ~ G* be the isomorphism from Proposition space in 0. Let e : ~y 

11.5, (ii). Then he(uX~)h -I = e(hYuX;). Differentiating this 

relation we get Ad(h)(de)X; = hY(de)X~. So de leaves ~; invariant 

and e can be normed in such a way that de = id (note that de is 

non-zero because e is an isomorphism). 

NOTATION. 

The image of uX; under the normed isomorphism e : ~; ~ G* is 

*(u) denoted yy . 

SO yy* is a morphism K ~ G* satisfying yy*(0) = 1 and hy;(uX;)h -I = 

y}(hYuX;) for h E T*, u E K. It is not a homomorphism because 

(X~) [p] ~ 0 (see 8.3, Remark 3). 
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11.8 LEMMA. (of. [7], Exp. 17, Lemme 1). 

Let y,y1,Y2,...,y m • F. Let f : K m ~ K be a morphism, satisfyin$ 

Ym , ... E K hYf(ul,...,u m) = f(hYlul,...,h u m) for h • T* Ul, ,u m . 

n I n m 
Then f is a linear combination of monomials u I ...u m satisfying 

y = nlY 1 + ... + nmY m. 

PROOF. Use independence of characters. 

11.9 Lemma 11.8 is usually applied in the case that f is the 

composite of a morphism and a coordinate function. More precisely, 

if V is an affine variety with coordinates yl,...,y r (so V C Kr), 

and T : K m ~ V is a morphism, then we take f = Yi 0 T, applying 

the Lemma r times. Of course this only makes sense if the Yi o T 

are nice. 

11.10 DEFINITION. 

Let ~ be the open cell in G (see 2.1). Then we call ~* = ~-I(~) 

the open cell of G*. 

11.11 LEMMA (P1). 

(i) Le t ~ • ~. Then ~(x~(u)) (or ~(y~(u))) is equal to x~(u). 

(ii) Let y be desenerate. Then ~(x~(u)) = 1. 

PROOF. 

First let a • ~. The inverse image of ~* under 8 : ~ ~ G* is 

an open T*-invariant neighbourhood of 0 in ~. Hence it is ~ 

and we have % 0 8 : ~[ ~ ~. Applying Lemma 11.8 it follows from 

the structure of ~ (see proof of 9.6 or [8 ] , Proposition 1) 

that ~ 0 8(uX[) = x~(cu), c • K. Differentiating shows that 

e = 1. Part (ii) is proved in the same way. 
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11.12 The torus T* acts in a natural way on the direct product 

of the groups ZG,(T*)and y~0~y,~ * where ZG.(T*) denotes the 

centralizer of T* in G*. The action is trivial on the first 

factor and it is AdG. on the second one. We identify the faetors 

with subspaces of the direct product in the natural way. 

PROPOSITION (P1). (cf. [7], Exp. 15, Prop. 1). 

There is a T*-equivariant k-isomorphism of varieties 

e : ZG.(T*) x ~ ~ , such that 

(i) The restriction of e to the first factor is the natural 

embedding ZG.(T*) ~ G*, 

(ii) The restriction to K~ (y ~ 0) is the normed isomorphism 

from 11.6 or 11.7, 

(iii) There is an order of the non-zero weights of K*, say 

81,...,6r, such that e(X 1 + ... + X r) = e(x 1) ... e(x r) for 

X i e ~i" 

(iv) e(x,X) = e(x)e(x) for (x,X) • ZG.(T*) x Z K*. 
y~0 Y 

PROOF. 

First we consider R u. In ([ 3 ] , 9.12) it is proved that there is 

a T*-equivariant isomorphism (over K) ~ : [u ~ Ru and a decompo- 

sition of ~u into 1-dimensionaZ T*-stable subspaces Li, such 
m 

that, if L(s ) denotes Z Li, we have 
i=s 

(a) L(1 ) = [u' 

(b) For each s, 1 < s < m, ~(L(s )) is a normal subgroup of Ru, 

(c) For each s, 1 ~ s < m, the group ~(L(s))/~(L(s+I )) is 

T*-equivariantly isomorphic to L s. 

Now we choose for each s a T*-equivariant cross section e s (over K) 

of the composite map ~(L(s )) ~ ~(L(s))/~(L(s+I)) ~ L s (see [3 ] , 

9.$3). 
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Put O(X 1 + ... + X m) = Ol(X 1) ... Om(X m) for X i E L i. It is 

clear that 0 is an isomorphism of varieties r ~ R u. If y is 
--U 

a degenerate sum, then it follows from Lemma 11.8 that 

O-1(x~(u)) : euZ~ for some c e K. Hence we may and shall replace 

the corresponding 0 i by Xy. If z ~ ZG.(T*), then it follows from 

the same Lemma that u ~ z x~(u)z -l is a morphism K ~ R u of the 

type u ~ x~(cu). Hence we may assume that zero weights correspond 

to the first O i. Then we get an isomorphism of varieties from 

ZRu(T* ) x (y~degenerate~ Y*) onto R u. This isomorphism T is 

T*-equivariant and defined over k. Choose 61,...,6 t to be the 

degenerate sums in the order they occur in the L i. Choose 

6t+l,...,Sr to be the roots in ascending order. Then define e 

by (i), (ii), (iii), (iv). It has yet to be shown that 8 is an 

isomorphism, as it is clear that O is T*-equlvarlant" ' and defined 

over k. First we note that % 0 0(ZG.(T*)) : Z G (T) = T. 

As T normalizes the subgroups {x~(u)lu E K}, it follows that O has 

its image in 2" (use Lemma 11.11). 

Note that m is a restriction of 0. The restriction of e to 

ZG,(T*) x (yXdegenerate[~) is injective because 

ZG,(T*) ~T( ~ ~ ~) : 1 (use that T is T*-equivariant). 
y aegenerate Y 

It is an isomorphism because the composite homomorphism 

ZG,(T*) ~ ZG.(T*)/ZRu(T*) ~ (ZG,(T*).Ru)/R u has a rational cross 

section (see [19], Corollary 1 to Theorem 1 and [1 ] , Proposition 

9.4, 6.7) The image of this isomorphism is the connected subgroup 

%-~(T). Note that %-I(T) is also connected in the situation of 11.1 

(see proof of Lemma 7.4 and use [ I ] , 13.17 Corollary 2, (d)). The 

result now follows from the structure of ~ (cf. 11.11; reconstruct 

from 6(x,X) the components of (d%)X). 
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11.13 LEMMA (P1). 

Let T* act on a yeetor space A such that 0 is contained in the 

closure of every orbit. Let T : A ~ G* be a T*-eq.uivariant 

morphism, satisfying T(0) = 1. Then the image of T is contained 

in ~*. 

PROOF. 

T-I(~ *) is a T*-equivariant neighbourhood of 0 in A. 

11.14 Let T : A ~ G* be given as in the Lemma. 

Then we may apply Lemma 11.8 as indicated in 11.9, taking V = ~*. 

We have to choose suitable coordinates on ~*. They can be 

obtained from coordinates on ZG,(T*) x y~O~ Y N  * by the isomorphism 

0 (see Proposition 11.12). On the factor ZG,(T*) we choose some 

set of coordinates and on the factor y~0~ ~ we choose linear 

coordinates corresponding to the weights. We get results like 

those in Lemma 11.11, where the same method was applied with 

instead of ~* 

11.15 PROPOSITION (P1). 

Let ~ be a short root. 

(i) (u,v) ~ y~(u)x~ (v) is a k-isomorphism of varieties 

from K 2 into G*. 

(ii) y~(* a)Xp~* (b)y~(c)x~(d)~ ~ = y*(a+c)x*~ P~(e f(a,c) + b + d) 

where se E k and f is a Witt-cocycle (i.e. f(a,c) = ae if p = 2, 

f(a,c) = a2c + ac 2 if p = 3, see [11], p. 197). 

(iii) (X) [p] -e Z* . p~ 

REMARK. 

In fact e~ ±1 in ~* = , as one sees from the proof of 6.2. But 



106 

this depends on more than (P1) as one sees from example 3 in 

11.1 where we have ~ : 0. 

PROOF OF THE PROPOSITION. 

(i) The map (u,v) ~ e-1(y~(u)x * (v)) is of the type p~ 

(u,v) ~ c~uX*± e + e2uPZ ~ + c~vZ*~ p~ (use Lemma 11.8, cf. 11.14). 

It is clear that c I ~ 0, c 3 ~ 0. Hence it is an isomorphism. 

(ii) We argue as in 11.14 and apply Lemma 11.11 (i) and the 

fact that x* is a homomorphism. As a result we get that the left 
P~ 

hand side is equal to y~(a+c)x~ (h(a,c)+b+d), where h is a 

homogeneous polynomial of degree p. It follows that h(a,o) is 

a 2-cocyele of -aG in [a (with trivial action). Hence we can apply 

([11] , II §3 n ° 4.6) to see that h is spanned by polynomials of 

the form fpr, (XYpr) pn, xn+y n - (X+Y) n, where n,r ~ 0, f is a 

Witt-coeycle. But f is the only one with degree p. 

(iii) As p = 2 or 3, we have (y~(u)) p = Xp~(* -e u p). The 

group generated by the elements y~(u), x~e(u) is solvable. So it 

can be realized in trigonalized form. In that form (iii) is an 

of the relation (y*(u)) p ~  = x* (-s uP). easy consequence 
pe 

11.16 LEMMA (P1). 

Let y ~ 0 be a weight of g*, ~y ! T*-equivariant morphism from 

• into G* ~y , mapping 0 t__oo 1. 

(i) d~y ~ ~y into itself. 

(ii) If d~y = c id, c 6 K, and y is not a short root~ then 

Cy(X) = e(eX) for all X 6 ~. Here e is the isomorphism that 

• (see 11.6) defines xy 

(iii) If dgy = Clid , c I 6 K, and Y is a short root~ then 

there is c 2 6 K such that ~.(uX~)y r = yy(c 1. U)Xpy* (c2uP). __If ~y __is 

defined over k, then Cl,C 2 E k. 
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PROOF. 

(i) See 11.7. 

(it) Note that 8 in Proposition 11.12 extends e : ~y 

The result is obtained by the argument in 11.14. 

(iii) Use the same method. 

11.17 DEFINITION. 

Let e be a short root ce E k. Then we put x[(u) = y*(u)x ~ (c uP). 
, e p~ 

We say that x ~ is obtained from ye by the normin~ ......... constant c a. 

From now on a set of norming constants is supposed to be given. 

REMARK. 

It follows from Le1~a 11.16 (iii) that the norming constants 

* (see represent the freedom of choice in the definition of y~ 

Proposition 11.5 (it) and 11.7). Hence results like Proposition 

* is replaced by x*. We will use this 11.15 are also valid when y~ 

frequently. 

11.18 PROPOSITION (P1). (cf. [22], Lemma 15). 

Let ~,B be independent weights of ~*. 

(i) (x (u),xB(v)) = ~ xt .~( iv3) where the 
i>0,j>0 l~+]~ cij~6u 

product is taken in any order and the cij~8 are elements of k 

(de pendin@ on the order). 

(it) We fix the order of the product in (i). If i,j are 

not both divisible by p, then cij~B can be determined from the 

action of the elements x$(t) (t E K, y ~ 0) on the weight spaces 

~ with ~ linearly independent from y (see 7.2 for the action). 

REMARKS. 

1) If cije~ ~ 0 and ie+j8 is a short root, then Cpi,pj,~, 6 depends 

on the norming constants. So the condition in (it) is essential. 
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2) c11~B corresponds to a commutator in the Lie algebra (cf. 

[22], Lemma 15). 

3) If x~(u) e R u or x~(v) e Ru, then we only have to use weights 

i~+j6 that are degenerate. 

PROOF OF THE PROPOSITION. 

(i) Fimst take the same order of the weights as in Proposition 

11.12, (iii). Then the result follows as above (see 11.14). For 

an arbitrary order we reason by induction on the number of weights 

i~+jB (i > 0, j > O) that occur in ~*. By induction hypothesis 

every product Hx~+.B(ui.) can be reordered using (i) for 

commutators (x~e+jB(uij)'X*r~+sB(Urs)) (cf. [22] , p.24-26). 

(ii) Let G* be realized as a linear algebraic group, G* C GL n. 

Then we can multiply matrices in G* with matrices in ~* , and we 

can differentiate morphisms K n ~ G* in the same way as we 

differentiate polynomials. (In fact they are polynomials with 

matrices as coefficients.) 

If y is a short root, then it follows from 

x*(u+V)y = x*(U)y x~y(-eyf(U,V)) x~(v) that 

(~d x~(u+vl)u=0 : X~x~(v) - ~ v p-I ZpyX¥(V)* * 

d , : (vX~ - Z~y)X~(V). So v~-~(Xy(V)) EyV p 

For long roots and for degenerate sums one gets analogous formulas. 

Now we note that xX = (AdG,(X)X)x for x E G*, X E [*. Hence 

elements of ~* can be "transported to the left" and we can apply 

the same method as Steinberg used in ([22] , proof of Lemma 11.18). 

d 
Applying u~-~ to both sides of (i) we get relations that enable us 

to determine inductively all cij~8 with i prime to p (induction 

d 
on i+j). Applying v~-~ to both sides we get the same kind of 

relations with j prime to p. 
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11.19 DEFINITION. 

Let ~,B be independent weights. Put 

G* : { ~ x~ . (vij)I e K} where the product 
(~,6) i~0,j~0 l~+3B vii ' 

i+j>0 

is taken in some fixed order, skipping i~+jB if it is not a 

weight of ~*. 

COROLLARY (P1). 

(i) G* is a k-subgroup of G* (~,~) 

(ii) There is a bijective correspondence between the elements 

of G* and their parameters vii -- (~,~) 

(iii) This correspondence is a k-isomorphism K m ~ G[~,~), 

of algebraic varieties where m = dim G* ....... (~,B)" 

PROOF. 

This Corollary may be proved in the same way as Proposition 11.15. 

Part (i) also follows from Proposition 11.18 (i), using Proposition 

11.15 (ii) and 11.5, 11.6. Parts (ii), (iii) follow from Propositions 

11.12, 11.18 (i) (cf. [22] , p. 24-26). 

REMARK. 

It follows from part (i) of the Corollary that G* does not (~,~) 

depend on the order that is used in its definition. 

11.20 Given some expression X~l(U 1) ... XSn(U n) it is often possible 

to reorder the factors such that the weights occur in some prescribed 

order. That is: x* (u 1) ... x* (u n) : x* (v 1) x* (Vr) , where 
Y1 Yn 61 "'" 6r 

the @. are ordered in the prescribed way. Applying Proposition 11.18 
i 

several times one may try to express the arguments v i in terms of 

the uj and the constants of type cij~B. It can be done for instance 

in the case that all factors are contained in a subgroup of type 
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G* We call the technique "Reordering the product". 
((2,6)" 

11.21 THEOREM. 

Let G not be of type B3, ~ : G* ~ G as above (see 11.4). Then 

R is commutative. u 

PROOF. 

R u is solvable. If ~u is an irreducible G-module, then (Ru,R u) 

has trivial Lie algebra and is connected, so (Ru,R u) = {1}. 

So we are done in the case of type F 4 (see Proposition 5.2). 

Hence we may suppose that ~ is not of type F 4. Then dim(~u) 0 < 1 

(see Proposition 5.2 again). Let Z(T*) denote the centralizer of T* 

in G*. The group Z(T*) ~ R u is a connected group of dimension < 1 

(see [1] , (9.4)), hence it is abelian. (see [1], (10.9)). If 

z • Z(T*) A Ru, and y is a degenerate sum, then uZ; ~ (z,x;(u)) 

satisfies the conditions of Lemma 11.16. Its derivative 

Ad(z) - id = Ad(~z) - id is trivial (cf. Lemma 11.2), so 

(1) Z(T*) A R u is central in R u. 

Next we consider two independent degenerate sums y,6. There is 

no degenerate sum in p2F (see Lemma 2.6 (i)), so we can apply 

Proposition 11.18 (ii) to see that the constants Cijy~ are zero. 

(They are zero in one solution of d~ = ~ because of Theorem 10.1, 

so they must be zero in any solution). So 

(2) x~(u) commutes with x~(v) if y+6 ~ 0. 

Now we have to consider the case y+6 = 0. 

EXAMPLE. 

O 
- y  

o 

(2 

0 

0y 

(2,B are long roots, p = 2, 

y,E are degenerate sums, 

see figure. 
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We apply Proposition 11.18 with explicit constants cijaB. 

These constants are obtained from known solutions of d% = ~ (see 

section 10 and use Proposition 11.18 (ii)) or as indicated in 

the proof of 11.18 (ii). We get 

x* x~(1 ))x~y(v) = Int(x~(u)) X~y(V) = Int((~(u), ) 

Int(x~(u) x~(1) x~(u))X[y(V) x*_s(v) : 

Int(x[(u) x~(1)) x*(u2v) x* (v) x[s(v) x*(u2v) = 
s -y y 

Int(x~(u)) x$(u~v) x~(u2v) x[y(v) x*_s(v) x[e(v) x~(u2v) = 

x$(u v) x (u v) x*_ycv) x (u v) : 

Int(x~(u2v)) x* ,(v) where Int(x)y = xyx -I as usual. 

Put f(u,v) = (x~(u),X~y(V)). Then f is a morphism, satisfying 

f(u,v) = f(u2v,v) and f(0,v) = 1. It is easy to see that f is 

constant (use coordinate functions). 

If p = 3 then the same method can be applied, without knowledge 

of the signs of the cij~6. If G is of type B3, then the trick fails 

however, because i,j are both even in some relevant cij~6 (p = 2). 

Then we can't apply Proposition 11.18.1t seems that this case is 

difficult because degenerate sums of two distinct lengths occur. 

If G is of type G2, p = 2, then there are also some relevant 

constants of type c2i,2j,~, 8. We shall handle this case separately 

in 11.24, 11.25. It is easily seen from 2.8 Table 1 that there is 

no other case then those mentioned above. So now we exclude types 

G and B in characteristic 2. Then it follows from (1), (2) and the 
2 3 

relation f = 1 in the example that 

(3) x~(u) is central in R u. 

The Theorem follows from (1), (3). 

The proof for case G2, p : 2, will be given in 11.25. 
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11.22 LEMMA (P1). 

(Ru,R u) is contained in Z(T*) • R u- 

PROOF. 

As in the proof of 11.21 we see that Xy(U) commutes with Z(T*) ~ R u 

and with x~(v), where y,6 are degenerate, y+6 @ 0. So (Ru,R u) is 

generated by (Ru,R u) N Z(T*) and by the commutators (x~(u),X*_y(V))~ 

y degenerate. 

× E * ~ R u (see 11.18) We use the isomorphism ZRu(T*) Y degenerateg Y 

x*(u) * v)) are and Lemma 11.8 to see that the commutators ( Y ,x_y( 

contained in ZRu(T*)G*G* or ZRu(T*)G* G* (notations as in 11.5). y -y -y y 

Suppose they are not contained in ZRu(T*). Then (Ru,R u) contains 

one of the groups Gy,G_*y(See Lemma 11.16, [ 1 ] Proposition 9.4, 

[ 3 ] Theorem 9.16, cf. proof of 11.5). But R u is nilpotent (see 

[ 1 ] , Corollary 10.5), whence a contradiction. 

11.23 LEMMA (P1). 

Let e be a short root. 

(x~(u) x* (v)) = x* (±vu2P)T~(vu p) where T ~ is morphism a 
, -p~ p~ , 

K ~ Z(T*) ~ R u 

PROOF. 

The map f : (u,v) ~ Int(x*(u))x* (v) has its image in R u- -p~ 

Applieating Lemma 11.8 as in 11.22 we see 

(1) f(u,v) = X~p~(Vfl(vuP))T~(vuP)x~(vu2Pf2(vuP)), where 

T~(vu p) C Z(T*) N R . u 

If R u i s  n o t  e o n u n u t a t i v e ,  t h e n  we r e p l a c e  G* by  G * / ( R u , R u ) .  

This makes sense because of Lemma 11.22. 

The action Int of G* on R' = Ru/(Ru,R u) factors through G. u 

This yields an action p of G on R'. u 
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Now a standard argument shows 

(2) p(w_~(t))(R').,~ Y C (R')u y-~y~ ,~ (see [2 ] , 3.3, Remark 1). 

Put g(u,v) = Int(x*_~(u))x~(v). Then 

(3) g(u,v) = X*_p~(u2Pvgl(vuP))~(vu p)×p~(* vg2 (vu p)), where a is 

a morphism K ~ Z(T*) A R u (cf. (1)). 

In the same way 

(4) Znt(x* (u))T~(v) = x* (uPh(v))T'(v), where T' is a morphism -~ -p~ 

K ~ Z(T*) A Ru . 

Substituting u = 0 one sees T' = ~. We get modulo (Ru,Ru): 

p(w ~(t))x* (u) = Int(x[ (t)x*(-t-1)x * (t))x* (u) = x* (l(t,u))r, 
- -pc ~ -~ -p~ pe 

where l(t,u) = ut-2Pf2(-t-Pu)g2(ut-Pf2(-t-Pu)) , r corresponds to 

other weights then pe. 

From (2) it follows that u ~ p(w_ (t))X[p (u) is an invertible 

homomorphism K ~ (R~)p~ (see 11.6). So I is linear in u and 

f2(x)g2(-xf2(x)) is a non-zero constant (x = -t-Pu). Then f2 is 

a non-zero constant and g2 is a non-zero constant. Similarly fl 

and gl are constant. Their values are obtained by differentiating 

f and g with respect to v. 

11.24 LEMMA (P1). 

Let G be of type G2, p = 2. 

If 6 is degenerate , ~ is a root, then c2,2,~, ~ = 0. 

PROOF. 

We use the same notations for the roots as in 10.15. 

Int(x~_e(t))x~(u) = Int((x~(t),x*_~(1)))x2~* (u). Write the right 

hand side as a product and reorder it, using Lemma 11.23 (see 11.20). 

The result has no component in G*_2y. So c 2,2,+2~,8_~ = 0. Other 

cases are of the same type. 
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11.25 We finish the proof of Theorem 11.21. 

From Lemma 11.24 it follows that we can handle G 2 in the same 

way as we handled other cases. Note that the same would be 

true in the ease B3, p : 2, if we could prove c2,2,_E1_e2,a1+¢2+¢ 3 

to be zero. 

11.26 Let R be commutative. Then the action Int of G* on R 
U U 

factors through G. 

NOTATION. 

The  r e s u l t i n g  a c t i o n  o f  G on  R 
U 

is denoted Int. 

There is also the action Ad of G on Eu' satisfying AdG.(X) = 

Ad(@x) for x e G *. The derivative of y ~ Int(¢x)(y) is Ad(@x). 

11.27 THEOREM. (cf. 11.1, (P2)). 

Let R u be commutative. Then there is a G*-equivariant separable 

k-homomorphism • fro____~m [u onto R u. Its finite kernel spans a 

G*-invariant. subspace of dimension ~ 1. 

PROOF. 

We define • in the following way. 

(1) The restriction of T toy~degenerate~ Y* is equal to the 

restriction of e (see Proposition 11.12). If there is a short 

root choose one, say ~. Define Z ~ by the relation 

(2) Ad(x (t))Z* = Z* + tPz ~ ± t2Pz * -p~ -p~ p~" 

Then put 

(3) T(uZ ~) = T~(u) (see Lemma 11.23). 

If G is of type F4, choose a short root 8, such that the angle 

2w between ~ and 6 is --~. 

Then we put 
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(4) T(uZ B) = TB(u), where Z 8 ,  T ~ are the analogues of Z~,T e. 

From (i), (2), (3), (4) we get a consistent definition of the 

homomorphism T (see Corollary 3.14 and Proposition 5.2). It is 

obvious that T is a k-homomorphism from r into R u. Next we show --u 

that T is G*-equivariant. Equivalently, we show that T is 

G-equivariant. As generators of G we take the x6(t) with 6 long 

together with xa(t) , xB(t) (if existent) with e,8 as above. 

First consider Int (x6(t)). Its action on Z(T*) N R u is trivial 

beeause of Lemma Ii.8 (cf. Ii.21 proof of (I)). If y is degenerate, 

then Int(x6(t))xy(u) can usually be determined from Proposition 

ii.18, Lemma Ii.24. We claim that the only exception is type B3, 

p : 2. To prove the claim, let E not be of type B 3 or G 2 or let 

p ~ 2. Let pi6 + pjy be degenerate (i > 0,j > 0). Then 

(y,y) = (pi6 + pjy,pi~ + pjy) = p(6,6) (see the classification 

of degenerate sums in section 2). So 

p(~,~) = 2p2ij(y,6) + p2i2(~,6 ) + p2j2(y,y) : 

p(6,~){pij< y,~ >+ pi 2 + p2j~} which is nonsense. 

So we may assume that G is of type B 3 and that 

y = ~Ite2+g3 , ~ = -s2-e 3, i : j : 1. Then 

Int(x (t))Int(x (u)) x* (v) = 
-~1 -¢2-e3 ~1+~2+c3 

Xel+C2+c3( ) * 1(c2, v 2 ) x • v x* (t~v) x2¢ 2,y ~ u2 
-c1+¢2+E 3 

-gl 
t2u2v2)x*~ (e t4u2v2)x * (u2v) x 

T (c2,2,y, ~ -zg I 2,2,y,6 gl-E2-~3 

u 2 v) 
X~sl_e2_g3(t2 

But 

x g l ( t ) x _ e 2 _ c 3 ( u )  = x 2 _ ~ 3 ( u ) x _ e l ( t )  and  

Int(x-¢2_e3(u))Int(x ¢l(t))x~l+¢ - 2+e2 (v) = 
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some expression that lacks the component with weight zero (use 

-El( ,6 ~ -El 
that R u is commutative). So T c2,2, Y ~ ~ ) = 1. But T 

is non-trivial (take derivatives), so c2,2,y, 6 = 0. So far about 

the action of x~(t). 

Next consider the action of x (t). It is seen from 

Int(x (t+u))Xlp (v) = Int(xa(t))Int(xa(u))X~p~(V) that x (t) acts 

in the right way on Ta(uPv). In the same way it follows (if 6 

exists) from (Int(xB(t)),Int(x (u)))x12B(v) = Int(x +6(tu))x*_2~(v) 

that x (u) acts in the right way on T6(tPv). The action of x (u) 

on x* (v) poses no problem. We claim that Int(x (u))x*(v) can be 
±p~ Y 

determined from Ad if y is a degenerate sum distinct from ±pa. So 

we claim that no Cpi,pj,~, Y occurs (see Proposition 11.18 (ii)). 

Suppose it did. Then there are i > 0, j > 0 such that pi~ + pjy 

is degenerate. This doesn't occur in type B 3. If ~ is not of type 

B3, then (pi~ + pjy, pi~ + pjy) = (y,y) = p2 (~,~) (see 2.9 (iii), 

Lemma 2.11). It follows that i 2 + ij < y,~ > + p2 j2 = 1, while 

]< y,~ >[< p < ~,~ > = 2p. And < y,~ > • pZ, so 

1 = i 2 + ij < y,~ > + p2 j2 ~ i 2 - pij + p2 j2 ~ pij ~ p. 

This is a contradiction. 

Summing up, we have seen that x6(t) , x (t) act in the right way. 

For reasons of symmetry xs(t) does too. It follows that T is 

G-equivariant. Separability follows from the fact that Im(dm) 

contains generators of r (see Proposition 5.2). The kernel of --u 

T is a zero-dimensional algebraic group, fixed by G. The 

Theorem then follows from Proposition 5.2. 

11.28 In case B 3 the proof uses the fact that Z(T*) A Ru is non- 

trivial, in order to get rid of c2,2,_E1_~2,~1+s2+~ 3 

So we can't apply the same proof to G*/(Ru,R u) in the case 
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that R u is not commutative. Accounting for that, we get as a 

corollary to the proof: 

11.29 COROLLARY (ef. 11.1, (P2)). 

Let ~ : H ~ G be given as in 11.1, such that (P1) holds (see 

11.1). Let Ru(H ) be commutative. If p:2 and G is of type B 3 assume 

that one of the two orbits of degenerate sums doesn't occur in 

the weights of h" Then there is an H-equivariant k-homomorphism 

T : ~u ~ Ru(H] satisfying dT = ~ (see (P1) for ~). 

11.30 THEOREM. 

Let H be a connected (linear) algebraic ~roup with perfect Lie 

algebra (i.e. h = [h,h]). Assume that p ~ 2 or that H has no 

quotient of type B 3. Let the Lie algebra r of Ru(H) be central 

in h. Then there is an H-equivariant separable homomorphism T 

from an H-module M onto Ru(H). If H is defined over k and H has 

k-split maximal torus, then T may be taken to be defined 

over k. 

REMARK. 

We may assume that ker T consists of invariants, because otherwise 

ker T contains an H-submodule of M (apply [3 ] , Theorem 9.16 to 

the semi-direct product (M,H]). 

PROOF. 

Put G = H/Ru(H). (So G is not necessarily the same as above). 

Then ~ is perfect,because h is perfect. So G is semi-simple (see 

[ 1 ] , 14.2) and ~ is isomorphic to the Lie algebra of the simply 

conneeted group G 1 that covers G (see proof of Lemma 7.1). 

Then [ = ~i where ~i denotes the Lie algebra of an almost 

simple factor G i of G. We have K* = @K[" There is a surjection 
1 
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of Lie algebras ~ : ~* ~ ~ induced by 0 : ~ ~ ~. From the central 

trick it follows that ~ is H-equivariant. We may assume that H 

is defined over k and that H contains a k-split maximal torus T*. 

(Otherwise change k.) Lct G i be a factor of G. For simplicity 

of notations we assume G i to be isomorphic to the corresponding 

subgroup of G. We identify G i with that subgroup. 

Let ~ : H ~ G be the canonical homomorphism. The torus ~(T *) = T 

is isomorphic to T * (ker ~ is unipotent and ~ is separable). The 

subtorus T i = T N G i corresponds to a subtorus T~ of T* such 

that ~(T~) = T i. We may assume that T i is a maximal torus in 

G i (see [ 1], proof of Theorem 14.10 (3)). Consider the homo- 

morphism ~i : H ~ G i and the tori T~l, T i. The situation is that 

of 11.1 with (P1) because T~ (or T i) acts trivially on B(~) 

for i ~ j. Hence we have morphisms x ~ ~,i : K ~ H corresponding 

to roo~s in G i (see Proposition 11.5, Definitions 11.6, 11.7, 

11.17). Their images generate a subgroup H i of H. We claim that 

H i commutes with Hj for i ~ j. This is proved as follows. 

ZH(T ~) contains T~ and its Lie algebra contains ~(~) (see [1 ] , 

Proposition 9.4). So the xB, j have their images in ZH(T ~) (see 

Lemma 11.16 and [ 3 ] , Theorem 9.16).It follows from Lemma 11.16 

(cf. proof of 11.21 or 11.22) that x ~ (v) commutes with 
6,J 

x ~ .(u). (Apply the Lemma twice). 

Now we want to prove that Ru(H) is commutative. In view of the 

above we may restrict ourselves to the radical of H i = H/3~IH j..~. 

But then the situation is just the same as in 11.21, exeept that 

H i may be smaller then G ~ , which causes no problem. 

We may apply Corollary 11.29 to see that there is a separable 

H-equivariant k-homomorphism T' from ~r • onto Ru(H) , where r 
i--u,l -u,i 

is "the r of G." (see 11.1). 
--U I 
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~12. Representatives in G ~ of the Weyl group. 

In this section we lift representatives of the Weyl group 

to elements of G ~ normalizing the maximal torus T*. The main 

goal is to get the analogue of relation (C) from Steinbergs set 

of defining relations for G (see [23|). 

12.1. We return to the notations of 11.4, using labels as des- 

cribed in 11.3. 

12.2. DEFINITIONS. 

For ~ C ~ we put w*(t) = x*(t) x ~ (-t -1) x" (t) and 

h~(t) = w*(t)(w*(1)) -1 (t e K ×) 

(see 2.1). 

The group generated by the elements x* (u) is denoted G ~. +~ 

12.3. The image G ~ of G *e in G is of type SL 2 (see [ 2 ], 3.3(2)). 

The Lie algebra of G ~ has only weights n~ (n E 2), because G *~ 

centralizes ker(~:T* ~ K). First let ~ be long. Then Z(T*) N R u 

commutes with the elements x* (u) (see 11.21 proof of (1)) so 
+~ 

G ~e ~ G e is a central extension (cf. proof of 11.5(i)). We can 

apply ([ 1], 10.9) and Theorem 9.6 to see that there is an inverse 

homomorphism s. From the central trick for groups it follows that 

s(x (u)) = x~(u) (see proof of 9.6 and use the central extension 

T* . G ~e ~ T . G~). Let h E T ~ such that %(h) E G ~. Then 

h -~ . s(~(h)) is unipotent and commutes with h (consider the same 

extension). So it is the unipotent part of s(~(h)) which is zero. 

Hence h~(t) : s(~(h~(t))) = s(~(h)) = h for some h e T ~. 

12.4. PROPOSTION (P3). 

Let ~ be a lon$ root. 

(i) h~(t) e T*, 

(ii) w~(t) normalizes T*, 
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(iii) The group G*~is isomorphic to SL 2. 

PROOF. 

Part (i) and (iii) have been proved above. Part (ii) is easy 

because (h ,w~( t ) )  = h*(h~t)~ h*( t )  - 1 ~  fo r  h E T*. 

12.5 PROPOSITION. (P3) 

Let ~ be a short root. For each value (in k) of the norming 

constant c there is a value of c (in k) such that 
- ~  - -  

(i) h*(t) e T*, 

( i i )  w~(t) normal izes  T*, 

(iii) Int (w~(t)) x* (-t -1)_ = x*(t). 

REMARK. Property (P3) is sufficient, but we need not exclude type B 3. 

PROOF. 

If (ii) holds, then the usual argument shows that 

* for long roots ~ (see [2 ] (3.3) Int (w~(t)) x~(u) e G6_<~,~>~ 

Remark 1). We want to use the reverse of this implication. Hence 

we first consider Int (w~(t)) x~(u). Evaluating this expression 

by "reordering the product" (see 11.20) one has to check whether 

all factors cancel out whose weights are not ~ - <~,~>~. For 

those factors which are linear in u the cancellation follows 

from the corresponding fact in the Lie algebra, where w~(t) acts 

in the same way as w (t). For the factors corresponding to roots 

it follows from the corresponding fact in G. So we look at the 

case that + is + j~ is degenerate, i > 0, j > 1. Checking the 

2 dimensional root systems and using Proposition 2.12 it is seen 

that there are two possibilities 

(a) is, B are simple roots in type G 2. 

(b) is, 6 are simple roots in a subsystem of type B 2. 

In case (a) we argue as follows. 



121 

Fix c a. If one changes e_e by an amount d, then w[(t) is 

multiplied on the left by x~ (+dt p) T~(d)x * (dt -p) 
-- -p~ 

(see Lemma 11.23). Henoe we can choose e in such a way that 

Int (w~(t)) x~(u) = x~3 (...) x~(B~) (...), without a compo- 

nent x* p(B£2~) (''')" Say 

Int (w~(t)) x~(u) = x~+3 (t3u) x~(B+~)(FltPuP) , where F 1 E K. 

Say furthermore 

Int (w~(t)) x~B(-u-1) : x~B_3 (+t-3u-1) x* (F2t-Pu-P) 
-- p(-6-~) 

x* (F3t-2Pu-P) 
p(-B-2~) 

Then 

(1) Int (w~(t)) w~(u) = X*p(B+~)(2FltPuP) x~(+F3tP) 

x* )(F2t-Pu-P)x~( (F3t-2Pu-P)w~+3 (~t3u) 
p(-6-~ -B-2~) " 

(see [22], Lemma 19). 

+3a (t3u) Xp(B+~)* (FltPuP) Now let both sides of (1) act on x~ 

That gives 

x~_3~(~t-3u-1)x~(_B_~)(F2t-Pu-P)x~(_~_2~)(F3t-2Pu-P) = 

• t-3u -1) x* (FltPuP)x* (F3t-2Pu-P) x-B-3~(- p(B+~) p(-B-2~) o 

It follows that 

(2) F 1 = F 2 = 0. 

Put z = w*(t) w*(-t). If p = 3 then z = 1. If p = 2 then 

z ~ Z(T*) A R . Anyway 
U 

(3) Int (w~(t)) x~+3 (-t3u) = 

Int (zw~(-t) -1) x~+3 (-t3u) = x~(u) because F 1 : 0. 

Now let both sides of (1) act on x~(u). One gets 

x~^ _ (+t3u 2) * = x28+3 (~t3u) x* (+ F3tPuP) whence 
Z~+~ p(~+~) - 

(4) F3= 0. 
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We see from (2), (4) that Int (w*(t))~ maps h~(u) to 

3~(+t3u). (The signs that are involved can be calculated h* 
6+ -- 

in G, where the corresponding relation holds. See [22], Lemma 20). 

From (3) it is seen that we have the same situation with 6 re- 

placed by B + 3e. Hence w*(t) normalizes the torus that is gene- 

rated by the elements h~(u) hi+^ (u), But that is T* so we are 
' ~ d~ 

done for (ii) in case (a). In case (b) we skip the proof of (2), 

note that w*(t) normalizes ker (e:T* ~ K) and obtain the same 

result. So we have proved ii). 

Next we prove (i). Consider (h~(t), w~(1)) where B is a long root 

with <~,B> : 1. This commutator is an element of T* and is also 

equal to 

w~(t) w*(1) -I~ = h*(t). 

Finally we prove (iii). 

As Int (w~(t)) x*_~(u)e 8(£*+~*~ P~) (see [ 2 ] , (3,3)Remark 1) while 

Int (w (t)) x_ (-t -1) = x (t), we have Int (w~(t)) x2a(-t-1) = 

= x~(t) x~ (At p), A e K. So w*_~(-t -1) = (x~(t))-lw~(t) x* (-t -1)_ = 

(x*(t))-la x~(t) x~ (At p) w*(t)a = x~ (At p) w~(t). Or 

(5) w* ( - t  - 1 )  = x ( A t  p _~ ~ ) w~(t). 

Now take a long root B such that <~,6> = -1 and put y = 8 - <B,a > ~. 

One has Int (uS(t))x~(u) = x~(...) = 

Int ((x~(t)) -1) x*(...)y = Int (x*_~(-t -1) x~(t)) x~(u) = 

= Int (w~(-t-1)) x~(u). 

So Int (w~(-t-1)) x~(u)~ : x*(...), and hence the present value 
Y 

of o is just the value that makes that w* (-t -1) normalizes T* 

(see Proof of (i) and note that we are in case (a) or (b)). Then 

we see from (5) that x* (At p) normalizes T*. So x* (At p) = 1. 
P~ P~ 
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12.6. In 12.5 we have seen how for every choice of e there is 

a natural c h o i c e  f o r  c . T h e r e  s t i l l  r e m a i n s  much f r e e d o m  o f  

choice, which we shall use to get nice actions of the w~(t) on 

the x * ( u )  (~ s h o r t ,  fl l o n g ) .  

PROPOSITION. (P3). 

Let R be commutative. There is a choice for the values (in k) u 

of the normin~ constants, such that 

(i) For each short root ~ the three statements of 12.5 hold. 

(ii) For each long root fl and each nonzero weisht y of ~* 

(+ t-<Y,6>u) . one has Int (w~(t)) x*(u) = x* 
y y-<Y,B>fl - 

(iii) f G is of type F 4 then c2,2,~3,~ 4 = 0. 

PROOF. 

The relation in (ii) is satisfied if ~ = y - <y,fl>$ is not a short 

root (use that Int(w~(t)) G* C G*). If e is short, then y is also 
Y 

_ t-P<Y'6>uP), a short root and Int(w~(t))x~(u) = x~(+ t-<Y'B>u)x~ (Cy,a 

where Cy,~ E K (cf. proof of 12.5). The value of Cy,~ depends on 

c a and Cy. Fixing c a (or Cy) a suitable choice of the other one 

kills C . We want to kill all C simultaneously. 
y,~ ~,Y 

a) First consider case B I. Fix ca1 and choose cai such that 

C = 0. Choose c as indicated in 12.5. We have to prove 
al'Si -~i 

that this is compatible with the requirements C+Ei,+e j -  _ = 0 (i ~ j). 

-1 
First we note that it follows from w~(t) = w~(-t) (~ long) that 

= Cal ,e i : 
Cei,a I 0. Next it follows from the action of w* (t) 

e1-¢ j 

that C = C = 0 implies C = 0. The remainder then 
e1,¢ i el,e j aj,e i 

follows from the action of the elements w* (t) (see Proposition 
1 

12.5, (ii), (iii)). 

b) Next consider case F 4. The subgroup W I of W generated by reflec- 

tions with respect to long roots has three orbits of degenerate sums. 



(Compare with the three orbits of degenerate sums in type D 4. 

See 2.8). Each of these orbits can be handled like case B I. 

0 In case B I we started with fixing cc1 Now we start with fixing 

c 3 ' c 4 , c 3+~ 4 in such a way that (iii) holds. This ean be 

done because ~3' ~4' ~3+~4 lie in distinct orbits of W I. 

c) Finally consider case G 2. We use the same notations for the 

roots as in 10.15. Fix c and choose cB, Cy such that C , B = 

= C = 0. Then it follows from the action of w* (t) that 

CB, Y B I C6, ~ = C = 0. = 0. As in case we see that = Cy,~ y,B 

After choosing c_a, c_B, c_~ as in 12.5 we know that both w*(t) 

and Int (w~_~(u)) w~(t) normalize T*. Comparing these two ele- 

ments it is easy to see that C,_ 6 = 0 (use that in G the rela- 

tion Int (w _6(u)) w6(t) = w (~tu) holds). 

REMARKS. 

1) In Proposition 12.6 the norming constant c may be prescribed 

for the short simple roots ~. Then all other norming constants 

are fixed (see the proof of 12.6). 

2) If G is of type B 3 p = 2, and c 2 ~ 0 then 
, ,2,-~1-e2, e1+e2+~3 

Int (w* (t)) x* (u) ¢ x* (u). 
e1+~ 2 e 3 E 3 

§13. The Theorem of generators and relations and its consequences. 

In this section we shall give a description of G* in terms of 

generators and relations, assuming that the radical is commutative. 

As a result we shall get a uniqueness theorem. 

13.1. Let R be commutative. Then we norm the homomorphism T:r ~R 
U --U U 

(see Theorem 11.27) such that T(uZ;) = x~(u) for y degenerate. 

NOTATION. The kernel of T is denoted Q. This is a finite group 

(see Theorem 11.27). 
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13.2. THEOREM. (Generators and relations). 

Let R be commutative and nontrivial (cf. 11.4). 

(i) G* has generators x*(t), ~ E E or ~ degenerate and 

t E K, with defining relations: 

(A) If ~ is not a short root, then 

x*(u)~ x~(v) : x*(u+v). 

If ~ is a short root, then 

x*(u)a x~(v) = x~(u+v) X*p~(S f(u,v)), where s~ = _+ 1 and f is a 

Witt-oocyele (see 11.15). 

(B) If ~,6 • E, ~+B ~ 0, then 

(x~(t), x~(u)) : ~ x~ . 

i>0,j>0 l~+]fl (cij~B umv]), 

where the product is taken in some order and cij~6 • k. 
× 

(C) h*(tu) = h*(t) h*(u) for ~ • Z, t,u • K . 

Here h*(t)~ : x*(t)e x*_~(-t -1) x~(t) x~(1) -1 x[~(-1) -1 x*~(1) -1. 

(D) There is a map T':r ~ G* satisfying 
--U 

(D1) T' i.s .a homomorphism of abstract groups, 

(D2) T'(uZ~) = x*(u)y for y degenerate, u e K. 
^ 

(D3) Int (x*(t)) T'(X) = T'(Ad(x (t))X) for ~ • ~, X e ru,t e K. 
~ -- 

(D4) T'(Q) = 1. 

(ii) Given the order of the products in (B) the values of 

the constants s , cij~B only depend on G and on the choice of the 

elements X~, Z* in ~* (see Theorem 3.5). y -- 

(iii) If relation (D4) is omitted, then the result is an 

abstract group that contains T(Q) as a finit e central subgroup. 

REMARKS. 

1) In order to get relations in terms of the generators x*(t) 
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one has to express the elements T'(X) (X E ~u ) explicitly in 

terms of those generators. This can be done with (D1), (D2), 

(D3), because the elements Z* generate r as a G-module. y -u 

2) The generators x*(t) have been chosen as in Proposition 12.6 

in order to fix the constants cija6. Part (ii) of the Theorem 

should be understood correspondingly. 

PROOF. 

(i) We know that these relations hold in G ~ (Choose 

T' = T). We have to prove that they are defining relations. 

So let H be the abstract group defined by them. Then T'(r ) is -u 

a normal subgroup of H (see (D1), (D3))~ so we can form H/T'(~u). 

It is easily seen that H/T'(~u) satisfies Steinbergs defining 

relations for G (see [231 and recall that G is simply connected 

by Lemma 7.1). We choose a set theoretical section s of H ~ G, 

with s(1) = 1. Every element of H can be written in the form 

• '(X) s(x), X E r , x E G. If this element is projected onto --u 

1 E G*, then x = 1, T(X) = 1 in G*, and hence X @ Q. But then 

T'(X) = 1 in H too (see (D4). We see that H ~ G* is bijeetive. 

(ii) We already know that the constants cij~6 don't depend 

on G* if they are not of the form Cpi,pj,~.The constants E a 

are obtained from Proposition 11.15 (iii) (cf. Proposition 6.2). 

So we have only to consider the constants Cpi,pj,~, B. It easily 

follows from 2.8 and from Proposition 2.12 that there are essen- 

tially four possibilities (cf. proof of 12.5). 

a) ~,~ are simple roots in G 2 and a is the short one. 

b) ~,B are short roots in G2, making an angle 2~/3. 

c) a,B are simple roots in a subsystem of type B 2 and ~ is the 

short one. 
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d) ~,6 are short roots in F4, making an angle 2~/3. 

In case a) the constant CppBa = 0, as can be seen from the 

relation Int (w~(t)) x~(u) = x~+~ (! t-lu). Thencp,p,B+3e,_ e 

is also zero, of course. Now e2p,p,a,B can be determined from 

the relation Int (w*_~(t)) x;(u) = x'6+3 (!t-3u). (Its value 

depends on the order. Use (x,y) = (y,x)-1 .) 

Once we know the values of Cp,2p,B,~ and Cp,2p,B+3~,_e we can 

determine c from the same relation. This will do in 
p,p,-~,6+2~ 

case a) and b). 

In case c) we argue as in case a) and see that CppBa = 0. 

Finally consider case d). One of the constants of this type is 

known to be zero: c2,2,~3,~ 4 : 0 (see 12.6). It is seen from the 

relation (x~(t), x~(u)) -1 = (x~(u), x~(t)) (y = ~3' ~ = e4 ) that 

c2,2,~, Y = i. The constant c2,2,_6,y+6 can be determined from 

the relation 

Int (w[~(t)) x~(u) = Xy+ 6 (tu) x2y+2 6 (...). 

In the same way all c2,2,~, B can be found with a,B lying in the 

plane through y,6. We now need the following Lemma: 

13.3. LEMMA. 

Let ~ be of type F 4. The subgroup W I of W generated by reflection ~ 

with respect to long roots acts transitively on the planes spanned 

by pairs of short roots, making an angle 2~/3. 

PROOF. 

Let S be the set of such planes. There are three orbits of short 

roots under the action of W I (see proof of 12.6). It is seen from 

the explicit form of these orbits that 
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(1) If ~,~' are short roots in the same orbit, then ~ = +~' 

or (~,~') = 0. 

If V C S then V contains a representative of each of the three 

orbits. Let V' C S. We have to prove that there is w E W I with 

wV = V'. We may assume that V n V' contains a root ~. Let 8 E V, 

8' E V' be short roots with 

(2) <~,8> = <~,8'> : -1. 

If 6,8' ly in distinct orbits, then we replace 8 by -~-8, which 

lies in the same orbit as 8' (use (1)). If 8 = +8' then V : V' 

and we are done. So we may assume (8,8') = 0 (see (1)). Then 6-6' 

is a long root and we use the reflection with respect to 8-8'. 

It follows from (2) that (8-8',e) = 0, and we see that V' is 

transported to V. 

13.4. PROOF CONTINUED. 

From the Lemma it follows that all c in case d can be de- 
2,2,~,6 

rived from those in the plane through ~3' ~4 by means of the 

actions Int (w~(t)) with ~ long. This finishes the proof of (ii). 

Part (iii) is an easy consequence of the fact that Q is fixed by G. 

13.5. COROLLARY. 

Let %:G* ~ G and Q be as above with commutative radical R 
U 

(see 13.1, 11.4). Let 0 ~ --ur ~ G~ ~ G ~ 1 be the extension 

from Theorem 10.1. Then there is a separable k-homomorphism X from 

* onto G* such that G 1 

(i) The kernel of X is TI(Q) , 

(ii) % 0 X = ~1" 

REMARK. We don't claim that X is unique. 
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PROOF. 

From the Theorem it follows that there is a homomorphism X of 

abstract groups, sending x* (u) to x*(u) where X~l(U) is the a 
~1 ~ ' 

analogue of x*(u). One argues as in the end of the proof of theo- 

rem 9.6 to see that X is a morphism. On the open cell X is defined 

over k, so X is defined over k (see [19], Lemma 1). 

13.6. NOTATION. If H is an algebraic group, then Aut(H) denotes 

the abstract group of automorphisms (in the sense of algebraic 

group~) of H. 

13.7. COROLLARY. 

Let %: G* ~ G be $iven as in 13.5. 

(i) The natural homomorphism Aut(G*) ~ Aut(G) is surjeqti.v.e. 

(ii) Aut (G*) oan be $ive n the structure of an algebrai q 

group with dim(Aut(G*)) = dim G*. 

PROOF. 

(i) Let ~:G ~ G be an automorphism. We have to show that 

there is X: G* ~ G* with ~ 0 X = ~ 0 ~. 

If ~ is inner then it is easy. So we assume ~ to be a graph auto- 

morphism (see [22], p. 157). We have ~(x (t)) = x (E~t), where 

is the permutation of ~ corresponding to ~ and s' = + 1. As we 

only consider automorphisms of algebraic groups we only have to do 

with the case that ~ preserves root lengths. If Q = 0 then it is 

easy to see that x*(t)e ~ x*o~(E~t) preserves relations (A), (B), 

(C), (D). If Q # 0 then ~ is of type B I or G 2 (see 11.27, 5.2). 

But then ~ is trivial. It is seen as in the proof of 13.5 that 

x~(t) ~ x*~(E~t) defines an automorphism of algebraic groups. 
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(ii) First assume Q = 0. 

Put N = ker (Aut(G*)) ~ Aut(G). If X E N, then X can be written 

in the form X1 0 X2 , where X1 = Int(x) for some x E Ru, 

x2(T*) = T* (use that maximal tori are conjugate in T* . Ru). 

Say X = X 2. Then T* is fixed by X, because X E N. So X(x~(t)) = 

= x'(t) where x'(t) is obtained by replacing the norming constants 

t (use Lemma 11.16). As the x'(t) satisfy relations c by constants c a 

(A), (B), (C), (D) the values of the e ' are determined by the values 

for ~ short and simple (see 12.6, Remark 1). 

We claim that these values can be obtained from an inner automor- 

phism in the group (C,G I that is discussed in section 10 (cf.10.21). 

Proof of the claim: Put H = N~C,G I G*/ZIc,G I G* (cf.10.21). Then 

H acts on G* in a natural way and G* also acts on H. The unipotent 

radical of H can be viewed as a G*-module M, with dim M ~ dim r -u 

(use 10.22 and the structure of (C,1 ~ as a G*-module). The homo- 

morphism of abstract groups H ~ Aut(G*) maps M into N. There is a 

natural homomorphism P:~u ~ M. For each x E M there is X E --ur such 

that xp(X) fixes T*. It easily follows that dim M 0 ~ dim(~u) 0. 

But dim(~ ) 0 is equal to the number of short simple roots (see Pro- 

. T _ c a depends position 5 2), whence the claim. (Use that c~ 

linearly on m E M0). It also follows that dim M 0 = 

= dim(~u)0, so dim H = dim G*. Summing up we conclude that N is 

contained in the image of H, and that dim H = dim G*. It is easy 

to see now that H is isomorphic (as an abstract group) to the in- 

verse image in Aut(G*) of the normal subgroup Int(G) of A~t(G). 

The finite subgroup F of graph automorphisms in Aut(G) (that 

satisfy e' = e' = 1 for e simple) can be lifted to Aut(G*) 

(see proof of (i)). We see that Aut(G*) is isomorphic as an ab- 

stract group to the semi-direct product of H and F (see [1 ], (1.11)I. 

If F ~ 1 then Z(G*) = 1, so H ~ G*. 
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Hence Aut(G*) can be given the structure of an algebraic group 

with dim (Aut(G*)) = dim H = dim G*. 

If Q is nonzero then we see from the proof of (i) that TI(Q) is 

*) where G 1 T 1 are as in Corollary fixed by any element of Aut(G 1 , 

13.5 (use that ~C,1 ~ commutes with TI(Q)). So Aut(G*) ~ Aut(G1). 

13.8. THEOREM. (Uniqueness). 

Let ~: G* ~ G, ~': G*' ~ G be two solutions of d~ = ~ with commu- 

tative radicals (see 7.2). Let ' Q, Q' be corresponding subgroups 

of r (see 13.1). Then the followin$ statements are e~uivalent 

(i) Q = Q' 

(ii) G* is isomorphic to G *' 

(iii) There is an isomorphism X: G* ~ G*' such that ~' 0 X = ~. 

PROOF. 

(ii) follows from (iii). 

(iii) follows from (i) by Corollary 13.5 (note that a separable 

surjective homomorphism is a quotient morphism in the sense of 

[1], Ch. II, § 6). 

We still have to prove that (i) follows from (ii). The isomorphism 

X: G* ~ G*' induces an isomorphism 0: G ~ G with %' 0 X = P 0 

(use that %,~' both "divide out" the radicals). From Corollary 13.7 

(i) it follows that we may assume p to be the identity. Then we 

change X by an inner automorphism Int(x), x E Ru, such that 

X(T*) : T*'. The homomorphisms T': ~u ~ G*' and X 0 T: --ur ~ G*' 

then coincide, because d X = id: [* ~ ~* (use the universal property 

of ~: ~* ~ ~). So Q ~ ker • : ker (X 0 T) : ker T' : Q'. 

13.9. THEOREM. 

(i) Let %: H ~ G be $iven as in 11.1 such that (P2) holds 
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(see 11.1). Assume that G is simply connected. Let 

0 ~ r TI* ~1 --u - - G~ ~ G ~ 1 be the extension from Theorem 10.1. 

Then there is a k-homomorphism X from G~ into H such that 

0 × = ~1" 

(ii) Let G be a semi-simple alsebraic group with perfec t 

Lie al~ebra (of. proof of 11.30). !f p : 2 assume that G has no 

factor of type B . Then there is a connected linear alsebraic 
" 3 ...... 

group G 1 and a homomorphism ~1: G~ ~ G such that: 

(a) ~1 is an infinitesimally central extension and ~ : [~,~]. 

rou with h : lh,h] and (b) If H is a connected linear al~ebraic $ p _ _ _ 

~: H ~ G is an infinitesimally central extension, then there is 

* ~ H such that ~ 0 X = ~1" a surjective separable homomorphism X: G 1 

If X' : G~ ~ H also satisfies ~ 0 X' : ~1 then there is an auto- 

morphis m ~ of G~ such that X = X' 0 ~. 

(c) d~ 1 is a universal central extension. 

PROOF. 

(i) As T is H-equivariant, T(Zu) is a normal subgroup. Put 

H' = H/T(r ) and let ~': H' ~ G be the homomorphism induced by ~. 
--U 

Then ~' satisfies (P2) in a trivial way and hence Steinbergs 

relations (A), (B) hold in H' (see section 11). It follows from 

([23], Th~or~me 3.3) that relation (C) is satisfied for arguments 

that are algebraic over the prime field. Then relation (C) holds 

for all arguments for reasons of continuity. It follows (cf. proof 

of Corollary 13.5) that ~' splits, i.e. there is a homomorphism 

~: G ~ H' such that ~' 0 ~ = id (use that G is simply connected). 

We may replace H by the inverse image of ~(G) in H. Then ~: H ~ G 

is still of the type described in 11.1 and (P3) holds (cf. 11.4; 

use Lemma 11.16 for separability). If follows from Lemma 11.2 that 

d~ is a central extension. Hence there is a homomorphism of Lie 
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algebras p:~* ~ ~ such that d~ 0 P = ~. From the central trick 

it follows that p is H-equivariant, where H acts on ~* by Ad 0 9- 

It is seen from the structure of r as a G-module (H-module) that 
--U 

(dT)(~u) is the direct sum of p(~u ) and an H-submodule ~. So ~ is 

the direct sum of p(~*) and ~. The action of H on ~ factors over 

G (see Lemma 11.2). Now we use 

13.10. LEMMA. 

Let ~: H ~ G be given as in 11.1, such that (P3) holds. Then H 

has senerators and relations like those in Theore m 13.2, with 

constants e , cij~B that only depend on G, the action of G on h 

......... * Z* in h (defined as indicated and the choice of the elements X , Y ___ 

in 11.3). 

REMARK. The group Q (= ker T) corresponding to H is not necessa- 

rily finite. 

The proof of the Lemma is the same as that of Theorem 13.2. 

13.11. We continue the proof of Theorem 13.9, (i). Consider the 

semi-direct product of ~ and G~/Tl(ker 0), where G~ is as in the 

Theorem. This is a group S with the same Lie algebra as H and 

with the same action of G on that Lie algebra. Then it follows 

from Lemma 13.10 (cf. Corollary 13.5) that there is a homomor- 

phism X': S ~ H such that its composition X with the natural homo- 

* ~ S satisfies 9 0 X = 91 (k-rationality follows as in morphism G 1 

1 3 . 5 ) .  

(ii) As ~ is perfect, the simply connected covering G sc ~ G 

is separable (see proof of Lemma 7.1). Each almost simple factor 

G~el of G se has an extension ~i as in Theorem 10.1. The direct pro- 
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* ~ G sc duct of these extensions is an extension ~sc: GI such that 

d~ se is a universal central extension. We get an extension 

~I: G~ ~ G from it, such that d~l is a universal central extension 

(use that G sc ~G is separable). Now assume ~: H ~ G is given such 

that d~ is a central extension and such that h is perfect. Let G. 
- 1 

be an almost simple factor of G, T* a maximal torus in H and T~ a 
1 

subtorus of T* such that ~(T~) is a maximal torus T. in G. (ef. 
1 l 1 

proof of Theorem ii.30). There is a surjective homomorphism of 

Lie algebras p: ~[ ~ h such that d~ 0 P = d~ 1 (see Proposition 

1.3, (v)). It is H-equivariant (use the central trick). Consider 

• * T The the composite homomorphism H ~ G ~ G l and the tori Ti, i" 

situation is that of ii.I with (PI) (cf. proof of Theorem 11.30). 

If G. is not simply connected then it follows as in the proof of 
1 

(i) that there is a homomorphism Xi from G~Cl into H, such that 

0 X i = ~i" If G i is simply connected, then it follows from Theo- 

rem 11.30, Corollary 11.29, Remark 2 in ii.i, that (P2) holds. So 

we can apply (i). The result is a homomorphism X: G[ ~ H such that 

0 X = ~I (use Lemma 7.1). Then d X : p, because d~ 0 dx = d~ I. 

So X is surjective and separable, which proves the existence of X 

in (b). Now suppose X' : G 1. ~ H also satisfies ~ 0 X' = ¢1" Let 

* such that x(T[) = T*. We may * denote a maximal torus of G 1 T 1 

change X' by an automorphism Int(x), x @ Ru(G~) , such that 

x'(T~) = T*. We have morphisms x* * ~,i : K ~ G 1 as in the proof of 

Theorem 11.30. As H ~ G i satisifes (P1) (see above), we may apply 

Lemma 11.16 to see that X,X' coincide on x* .(t) if ~ is a long 

root with respect to G i. Furthermore we can "change the norming 

constants" by an automorphism ~ such that X' 0 ~ and X also 

coincide on x* .(t) for ~ short and simple (see proof of 13.7) 

Then X' 0 ~ = X because they coincide on generators (cf. 12.6~ 
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Remark 1). Parts (a), (c) follow from the construction above. 

13.12. We return to the notations of 11.4. 

COROLLARY. 

Let M be an indecomposable nonzero quotient of the G-module r u. 

2 
Then d i m  k H k ( G , M )  = 1 .  

PROOF. 

By Theorem 13.9 (i) an extension of G by M is either isomorphic 

to a quotient of the extension from Theorem 10.1 or it splits. 

So there is only one nontrivial 2-cocycle, up to scalar multiples. 

13.13. PROPOSITION. 

Let M be a G-module in which all nonzero weishts are degenerat 9 

sums. Let T E H2(G,M). Then there is a homomorphism of G-modules 

p: r ~ M such that T is in the imase of H2(p): H2(r ) ~ H2(M). --u --u 

PROOF. Consider the extension ~ : H ~ G, corresponding to T. 

The weights of M lie in pF but the roots do not, so the differen- 

tial of the action of G on M is trivial (Use [2 ], Lemma 5.2). 

So d% is a central extension and there is a homomorphism of Lie 

algebras p:~* ~ h such that d% 0 P = ~. We claim that the res- 

triction of p to r satisfies the requirements. It is sufficient --u 

to prove that the image of T in H2(M/P(~u )) is zero, because the 

case ofH2(p(~u )) is discussed in Theorem 13.9 (i) (use Lemma 11.16 

to prove linearity of the restriction of X to r in 13.9 (i)). So --u 

we may assume that d~ splits (replace M by M/P([u)). In this case 

we prove that T is trivial by induction on the number of irreduci- 

ble factors of M. If M is irreducible then the result follows from 

Theorem 13.9 (i) or Theorem 9.6 (see Proposition 5.2 and classify 

M by its highest weight). If 0 ~ L ~ M ~ N ~ 0 is an exact sequence 



136 

of G-modules, L # 0, then H2(L) ~ H2(M) ~ H2(N) is exact, and the 

image of [ in H2(N) is zero by induction hypothesis. So [ is the 

image of some g 6 H2(L), which is zero by the same reason. (A sub- 

extension of a splitting central extension splits by the central 

trick). 

13.14. THEOREM. 

Let ~ be a simply connected almost sim21e subgroup of G. Assume 

there is a l o n g  r o o t  ~ ( w i t h  r e s p e c t  t o  G , T )  s u c h  t h a t  X E ~ ,  

% % % 
ha(t ) E G for t E K x. Assume furthermore that T = G A T is a 

% 
maximal torus in G. 

Let ~ b e  p e r f e c t  a n d  l e t  0 ~ r ~ G" ~ G ~ 1 ,  
- -  - - U  % 

% 
~* ~ ~ ~ 1 b e  t h e  e x t e n s i o n s  f r o m  T h e o r e m  1 0 . 1 .  0 ~ r ~ 

--U 

Then there is a h o m o m o r 2 h i s m  ~:  ~* ~ G* s u c h  t h a t  ~ 0 ~ = ~ .  

REMARK. Again we don't claim that ~ is unique. 

PROOF. 

There is a dual pairing X(T) × X,(T) ~ ~ , where X(T) is the 

character group of T and X,(T) is the group of one parameter sub- 

groups of T (see [ 1 ], (8.6)). Note that X(T) is just F. We denote 

the pairing <,>, as in loc. cir. There are natural maps X(T) ~ X(~) 

and X.(T) ~ X.(T). Let V be the real vector space in which Z, F 

are imbedded. There is a natural choice for the inner product 

(,) on V and on its dual V', up to scalar factors. This choice 

is characterized by the fact that (,) is invariant under W (see 

[ 4 ], Ch. VI, § 1, n ° 1.2, Proposition 7). We choose (,) in the 

following way: 

For X,B E X.(T), we put 

(X,~) = ~ <y,~> <y,~>, extend this to V', and identify 
y weight of 
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V with V' by means of this inner product. Then we restrict (,) to 

the subspace ~' spanned by X,(~), which we view as a subset of 

X,(T) (cf. [14], §2). We get an inner product that is invariant 

under the Weyl group ~ of ~ (use that g is a ~-module). Then we 

identify X(~) : N with a subset of ~' by means of the inner 

product. The result is that we have embeddings of X,(T), 

X,(~), X(T), X(~) into a real vector space V with inner pro- 

duct (,). In V the map X(T) ~ X(~) corresponds to the ortho- 

gonal projection of V on the subspace ~ (or ~'). The long root 

E ~ is its own projection because t ~ h (t) is in V. If y 

is a degenerate sum in F, then its projection on ~ is an element 

of pN with (y,y) ~ (y,y) ~ p(~,~) (see Proposition 2.12). If 

E ~0' then ~ is either zero or degenerate by Proposition 2.12. 

Consider the inverse image H of ~ in G*. It is an extension of 

by ru, where the weights of r are zero, degenerate or not con- -u 

tained in N 0. Write r : M @ N where M is spanned by the weight -u 

components of weights in N 0 (cf. 10.14, Remark). We claim that 

H2(G,N) = 0. Then the result follows from Proposition 13.13. 

So we still have to prove: 

13.15. PROPOSITION. 

If N is a G-module with weights that are not in F0, then H2(G,N) = 0. 

PROOF. 

Let ~: H ~ G be an extension of G by N. From Theorem 8.2 we get the 

existence of a T*-equivariant cross section s: G ~ H, where T* is 

a maximal torus in ¢-1(T) as usual. We have an "open cell" 

~, = ¢-1(~) = N • s(~). Put x*(t) = s (x (t)) for e E Z. We argue 

as in 11.15, 11.18 to see that Steinbergs relations (A), (B) hold. 

It follows as in the proof of Theorem 13.9 (i) that ¢ splits. 
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13.18. Examples to Theorem 13.14. 

1) Let ~ be the subgroup GB3 of GD4 which we discussed in 3.11. 

Then ~ contains all elements x±~2(t), t C K, and hence X 2 E 

(here ~2 is the second simple root in type D4). The other 

conditions are also satisfied (see 3.11) so there is a homomorphism 

G* ~ G* . Compare this result with the construction of G* 
B 3 D 4 B 3 

in 10.12. 

2) Similar examples are obtained from the "triality" in D 4 

(cf. Remark 10.17) and from the graph automorphisms of GDI (i > 4). 

3) The triality induces an embedding GG2 ~ GD4 t h a t  f a c t o r s  t h r o u g h  

the embedding from example 1. As a result we get an embedding 

GG2 ~ GB3 which also satisfies the requirements. 

4) Let ~ be the subgroup of GF4 generated by the elements 

x!~3(t) , x+~4(t),_ t E K. It is a simply connected group of type A 2, 

but the assumption about the long root in 13.14 is false. If p ~ 2, 

then it is easy to see from the [p]-structures that there is no 

homomorphism ~ as in the Theorem. 

§14. The sroup functor G* 

In this section we discuss a group functor which has R ~ ~ 

as a Lie algebra. We omit proofs. 

14.1. We will consider contravariant functors from schemes to 

sets, which are sheaves on the category of schemes. Giving such 

a sheaf is equivalent to giving a covariant functor from rings 

to sets which is a sheaf (see [15] I § 2 (2.3.6)). We will iden- 

tify these two sheaves. 

14.2. Let G be a simply connected almost simple Chevalley group 

scheme that is not of type C I (i ~ 1). Its Lie algebra is perfect 
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and we have a universal central extension ~: ~* ~ , inducing 

a universal central extension ~ ~ ~R for every ring R. So we 

have a funetorial morphism, which we denote ~: ~* ~ ~ (Here we 

drop the convention ~ = ~K ). For p = 2, 3 we have an extension 

~: G* ~ G x Spec(~ ) Spec(~p) as in Theorem 10.1. It defines a 

functorial morphism of group functors on the category of (commu- 

tative) • -algebras. We put G*(R) = G*(R/pR) and G (R) = G(R/pR). 
P P P 

We get group functors on the category of rings. A functorial mor- 

phism ~p: G*p ~ Gp is induced by ~. It is in fact a morphism of 

group functors. We extend the functor G* from section 10 to a 

funetor on the category of rings defining the extension as the 

limit of the projective system, given by the diagram 

/~G2(R) 

G(R) 

~G3(R) 

• x G2 G) x G3G~ It is a group Equivalently, we have G* = (G 2 

functor and it is a sheaf. There is a morphism of group funetors 

~: G* ~ G. Its kernel is isomorphic to the kernel of ~:~* ~ 

and its differential d~ is isomorphic to ~. Here the differential 

is taken in the sense of ([12], Exp. II, Prop. 3.7), where it is 

denoted L(~). The tangent spaces may be supplied with a structure 

of Lie algebra functors by the definitions given in ([12], Exp. II). 

(One has to check a list of conditions). Then d~ may be identified 

with ~ as a homomorphism of Lie algebra functors (i.e. there are 

suitable isomorphisms). 



140 

14.3. If ker ~ is nontrivial then ker ~ (or ker ~), ~, G ~ are 

not representable by schemes. For suppose G ~ is (representable by) 

a scheme. Then its tangent space ~ is an affine scheme (see [12], 

Exp. II, Prop. 3.3 and Exp. I, 4.6.3). This is not compatible with 

the fact that there is x E ~ , x ~ 0, such that its image in ~p 

is zero for almost all p. In the same way we see that ~* and ker 

are no schemes. (They are their own tangent spaces). 
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List of Notations 

We use mainly the same notations as in [1], [2], [4], [22]. 

~d 

~d 

C, (C) 

C~ 

cij~ B 

fo' TO 

G 

G • 

G *~ 

G ~ 

G* 

G 

G ~ , ~ )  

g 

g* 

g' 
Z 

H* 

h* 

iv,i G , • . . 

~nt 

k,K 

representation of G in ~*. 3.1 

d ~d 3 . 3  

G-module C, condition (C). 10.3,10.4 

norming constant 11.17 

constant in commutator relation 11.18 

element of L2, H°(L2). 10.3 

Chevalley group from 2.1, except in 7.1, 

7.8, 7.9, 8, 9, 11.1, 11.2, 11.3, 11.29, 

11.30, 13.9, 13.10, 14. After section 4 

it is assumed that if G is as in 2.1 then 

is perfect (or E N pF = 0). 

see ~. 

subgroup generated by x~(t), x~(t), t E K. 12.2 

~(G*~). 

subgroup with Lie algebra ~. 11.5 

~(G*). 

subgroup generated by x~ .~(u) i > 0 11.19 
i~+3~ ' ' 

j > o .  

: ~K 2.1 

see ~. 

~Z" 2.14 

generator of ~*. 3.5 

h~(t) = w~(t)w~(1) -I . 12.2 

mappings into (V,G]° 8.1 

action of G on R u. 11.26 

K is algebraic closure of k. 2.1 
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LM'LM/N 

ny 

(P1),... 

PG,Pv,-.. 

Q 

r 

T • 

w~ 

x~ 

X* 

Y~ 

Z* 
Y 

Z(T*) 

£,~1,~2 

£V 

G-module M ®~,... 4.1 

max{nI¥ e nF}. 3.5,3.7 

condition or label. 11.1,11.3 

projections from CV,G~. 8.1 

ker T. 13.1 

G-module ker ~ or Lie algebra of the 

unipotent radical R u of G*. 10,7.4 

torus in G* or H. 11.1,11.4 

w~(t) = x*(t)x*~ -~(-t-1)x~(t)" 12.2 

* for t E K. 11.6,11.17 x~(t) E G~ 

generator of ~*. 3.5 

x (t) = * t x* c t p) 11 17 * y~( ) p~( • 

generator of [*. 3.5 

centralizer ZG.(T*) of T* in G*. 

exact sequences. 9.4,10.3 

category of modules LM, M C V. q.1 

F 

F o 

C~ 

e 

¢ 

lattice of weights. 2.1 

sublattiee generated by roots. 2.1 

(X*~) [ p ]  = -~ Z* . 1 1 . 1 5  o~ c~ p ~  

morphism onto ~]* or restriction of this 

morphism. 11.12 

: g* ~ g is a u.c.e. 1.1 

morphism into Z(T*) N Ru. 11.23 

@ : G* -~ G satisfies d@ = w. 7 

~-I(~), where ~ is the open cell in G. 2.1,11.10 

Subscripts: 

Vy,~y,V0,.. weight spaces. 

GA3,... G of type A3,... 
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Brackets etc.: 

{H~}, {x}, {X}M, {X}M/N residue classes. 

fV,G ] semi-direct product. 

¢V,~,.,. 

J1/v2/v3 

R x 

2.16,4.1 

8.1 

Lie algebra of rV,G ~ ,... 

generators of composition series.4.14 

(~,6) = 0. 

group of invertible elements of R. 
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Index 

admissible 

central trick 

centrally closed 

coboundary 

eochain 

cocycle 

Z-connected 

degenerate sum 

equivariant 

extension (of Lie algebra) 

(universal) central extension 

extension (of group) 

k-extension 

infinitesimally central extension 

Hochschild group 

homomorphism 

indecomposab!e 

indecomposable component 

Jacobi relation 

Lie algebra 

long root 

morphism 

norming constant 

perfect 

ring 

short root 

standard lattice 

Witt-cotycle 

4.1 

1.2 

1.1 

9.1 

9.1 

9.1 

4 12 

2 4 

8 1 

1 1 

1 1 

8 1 

8.1 

7.8 

9.1 

conventions 

4.8 

4.10 

1.1 

1.1 

conventions 

conventions 

11.17 

11.30 

1.1 

conventions 

4.1 

11.15 


