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Introduction

In these notes we study the connection between infinitesimally
central extensions of Chevalley groups and universal central
extensions of their Lie algebras. Here an infinitesimally central
extension is a morphism of algebraic groups ¢ : H -* G such that,
if g, h denote the Lie algebra of G, H respectively,
(i) ¢ is surjective and separable,
(ii) the kernel of the derivative d¢ of ¢ is contained in the
centre of the Lie algebra h.
We will restrict ourselves to the case that h = [h,hl.

Assume that g = [g,gl. Then a universal central extension
m i g*¥ * g exists. It may be characterized as a homomorphism
m : g* > g such that

(i) 7 is surjective,

*

= [g*,g*1,

(iii) the kernel of 7 is contained in the centre of g*,

(ii) g

(iv) g* is universal with respect to (i), (ii), (iii).
Condition (iv) is equivalent to
(iv)' If v : g' > g* is a homomorphism satisfying (i), (ii),
(iii) with m replaced by t and g* replaced by g', then t is an
isomorphism. (See section 1 of thesé notes or [22]).

Let G be a Chevalley group with Lie algebra g such that
g = [g,gl. If the characteristic is not 2 or 3 then the universal
central extension m : g* > g is trivial, i.e. m is an isomorphism.
This was proved by Steinberg in [ 23] . In section 3 we complete
this result. We determine the structure of g* in arbitrary

characteristic by solving the analogous problem over Z. (see

Theorem 3.5 and Proposition 1.3 (vi)).
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In describing g* the notion of a degenerate sum in the lattice
spanned by a root system is helpful. A degenerate sum is a sum
of two linearly independent roots which is itself a p-multiple
of a weight. (p is the characteristic). These degenerate sums
are classified in section 2. It is seen that they only occur in
characteristics 2 and 3. If there are no degenerate sums then
g* = g. (This generalizes Steinbergs result).

Let ¢ : H = G be an infinitesimally central extension with
h = [h,hl. Then h is isomorphic to a quotient of g*. If g = g*
then h = g and the connected component of H is a quotient of
the simply connected covering of G. (See Springer-Steinberg,

[2] E, §2). So the simply connected covering is a universal
element in the class of extensions under consideration. Now we
assume that g #* g*. Then we look for an extension ¢ : H =~ G as
above such that h is isomorphic to g* and we ask whether this
extension is a universal element. The existence of an extension
with h >~ g* is proved in section 10 for a simply connected almost
simple Chevalley group G. The proof is based on the construction
(case by casel of a suitable 2-cocycle of G in ker w. (There is
a natural action of G on g* which gives ker 7 the structure of
a G-module). One gets a Hochschild-extension ¢ : G* - G which
satisfies the requirements. Note that its radical is isomorphic
to ker m and is hence commutative. Now we deal with the question
whether ¢ is universal in the class of infinitesimally central
extensions H > G with h = [h,hl . The answer is affirmative if G
is not of type Bs in characteristic 2. (In the case of type Bs
in characteristic 2 the class also contains extensions with non-
commutative radicals. We don't give a proof of this fact). More

generally, if 6 is Chevalley group with g = [g,gl and if G has no
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factor of type By in characteristic 2, then there is a universal
solution ¢; : Gf = G. (see Theorem 13.9). It is obtained by
applying the solutions from section 10 to the simply connected
coverings of the almost simple factors of G. Here it should be
noted that g # g* implies that G has a simply connected factor

(see 7.1, Remark). The proof of the fact that ¢, is universal
resembles the proof of the "Théordme fondamental" in [12],

Exposé XXIII: We construct a set of generators and defining relations
for Gf and prove that the same relations hold in all extensions of
the class under consideration. (They are not defining relations for
all these éxtensions). The generators and relations are very similar
to Steinbergs generators and defining relations for a simply
connected Chevalley group (see [22] or [23]). The analogy with
simply connected Chevalley groups is also stressed by results about
the group of automorphisms of G* (see Corollary 13.7) and about
embeddings of groups of distinct types into each other (see Thecrem
13.1% and compare with [22}] or [24]).

I feel indebted to professor T.A. Springer for his frequent advice
and to professor F.D. Veldkamp who suggested the search for the
groups G*. I owe much to Mark Krusemeyer and Roelof Bruggeman for
many useful discussions. I wish to thank miss A. van Hoof and

mrs. P. van der Kuilen for careful typing.



CONVENTIONS

We will use mainly the same terminology as Borel in [1] and
Steinberg in [22]. There are some modifications:

1. All algebraic groups are assumed to be affine.

2. All Chevalley groups are considered as algebraic groups.

So a Chevalley group is an algebraic group that is obtained by
the Chevalley construction from a faithful representation of a
complex semi-simple Lie algebra. It is not necessarily of adjoint
type. In fact we shall usually consider the simply connected
types.

In dealing with varieties (not necessarily irreducible),
we shall, as usual, write V for the set V(K) (or VK) of K-rational
points in V, K being an algebraically closed field. A map V = W
shall be called a morphism, if it is a morphism of varieties.

3. In order to avoid ambiguities, a morphism of algebraic groups
will be called a homomorphism and not just & morphism.

So we shall speak of morphisms between algebraic groups that are
not homomorphisms, but just morphisms of varieties.

4, If only one root length occurs in a root system then all roots

are called long and not short.



§1. Universal central extensions. Central trick

In this section we introduce universal central extensions

of Lie algebras, cf. {[22]).

1.1. Let R be a ring. (Rings are commutative and have a unit).

A Lie algebra over R is an R-module g, together with an R-bili-
nedr composition
[,] : g xg = g that satisfies

(i) [X,X] = 0 for all X € g (anti-symmetry).

(11) [X,0Y,211 + [Z,0X,Y]] +[Y,[2,X]] = 0 for all X,Y,Z € g.
(Jacobi-relation).

S0 a Lie algebra over R is not necessarily a free R-module.

Homomorphisms are defined as usual. The centre of g, i.e.

{x € g|[X,Y] = 0 for all Y € g}, is denoted z(g). An extension

of g is a surjective homomorphism of Lie algebras m: k = g.A central
extension 1s an extension w:k7g, satisfying ker 7 C z(k).

A universal central extension is a central extension m:g* = g

with the property:

If ¢ : k > g is a central extension, then there is exactly one
homomorphism y: g* = k such that ¢,¢ = w. Note that ¢ is not ne-
cessarily surjective. Henceforth m: g* = g will always denote a
universal central extension of g. A Lie algebra g is centrally

closed if id: g = g is a universal central extension.

1.2. LEMMA (central trick).

If m: k > g is a central extension, and if X,X',Y,Y' € k are such

that X = 7X" and 7Y = @¥', then [X,Y] =[X',Y'].

PROOF. Y-Y' € ker m C z(k), so [X,Y] = {X,¥']. In the same way

[X,Y'] = [X',Y'], whence the lemma.



The central trick is an important tool for lifting properties
from g to k. Its usefulness was demonstrated by R. Steinberg

in [23].

1.3. PROPOSITION. (cf. [22], §7).

(1) If ¢: g' > g and ¥: g" > g' are central extensions,

and [g", g"l = g", then ¢,y: g" = g is a central extension.

(ii) g has a universal central extension if and only if

g=1[lg, gl.

(iii) Universal central extensions of g are isomorphic.

(iv) If w: g* = g is a universal central extension, then

[g*, g*l = g* and g* is centrally closed.

(v) If w: g* > g is a universal central extension, y: g > k

a _homomorphism, ¢: k' = k a central extension, then there is

exactly one ¢: g* > k' such that ¢e¥ = Ya7.

If ¥ is surjective then ¢(g*) = [k', k'].

(vi) Let R,S be rings, S an R-algebra.

Let g be a Lie algebra over R with universal central extension

mog* g,

Then m & id: g* @% S ~>g @% S is a universal central extension

of Lie algebras over S.

PROOF.

(i) From Jacobi it follows that
[ker(eoy), [g", g"1] Clig", [ker(ey), g"l].
And
Yl ker(9y), g"l C [ker ¢, g'l = 0, so
[g", [ker(oy), g"l]1 C[g", ker ¢] = Q.

(ii) Only if part.

Set r = projection of g on g/lg, gl . Suppose m: g* = g exists.



If ¢: A~ B and 1: A = C, then we denote ¢ © 1t the map

x = (0(x), 7{x)). So we have 7 @ r7n: g* = g & g/{g,gl and
mT®0: g* >g @g/lg,gl. The projection of g ® g/[g,gl on the
first factor is a central extension Py of g. As pl(ﬁ O rr) =
Pl(ﬂ ® 0), we have vrm = 0 by unicity, so g = [g,gl.

If part.

We give a construction of w: g* = g, supposing that g = [g,gl.
In the R-module g Qk g we define the bilinear composition [,]by
[X ®Y, X' ®Y'] = [X,Y] ®[Xx",Y'].

Let N be the submodule generated by

(1) [P,P1,

(23 {P,IQ,RI] + [R,[P,Q]} + [Q,IR,P}], (P,Q,R € g ®g), and put

*

g
Choose m: g*—*g such that 7{X ® Y} = [X,Y]. (Here {X ® Y} denotes

= g ® g /N.Then g* is a Lie algebra.
R

the residue class of X ® Y),

It is easy to check that 7 is well-defined. Then it is seen from

g = {g,gl that 7 is an extension, which is central because of the
definition of [,] in g ® g.

Now let ¢: k » g be a central extension.

Choose a section s of ¢, i.e. a mapping s such that ¢es = id. Using
the central trick (Lemma 1.2, we see that (X,Y) = [sX,sY] is bili-
near, so a mapping g ® g * k is induced. Using the central trick
again, we see that it is a homomorphism of non-associative algebras.
Therefore a Lie algebra homomorphism ¥: g* = k is induced, satis-
fying ¢o9{X ® Y} = ¢[sX,sY] = [X,¥Y] = n{X ® Y}.

Now suppose ¢' is a homomorphism satisfying ¢oy' = 7. Then

v'[P,Ql =1[uv'P, v'Ql =[yP,¥Q] = Y[ P,Ql by the central trick. As



g = [g, gl, we see that every {X ® Y} € g* is of the form
{p,qQl.
So we are done, and we also have proved that g* =1g*, g*l.

(iii) Use abstract nonsense.

(iv) By the last remark in the proof of (ii) we only have
to prove that g* is centrally closed. Let g** — g% be a univer-
sal central extension. Using (i) we see that g** — g is a
central extension. So the extension g** = g* splits, and we
have g** = g* ® i where i1 denotes the abelian Lie algebra
ker (g** = g*). As g** = [g**, g**] this implies that i = 0.

(v) As in the proof of (iv) we choose a section s of ¢ and
see that (X,Y) = [syX, syY] is bilinear. Again a Lie algebra
homomorphism is induced, and again it is unique by the central
trick. Now suppose ¥ is surjective, Then ig* = &[g*, g*l =
= [@5*, @g*] = [kx', k'] by the central trick.

(vi) The construction of g* we gave in the proof of (ii)
commutes with the base transformation from R to 8. (The functor

- 8& S is right exact).

§2. Degenerate sums. The extension r : gi nd gy

In this section we shall introduce degenerate sums. Besides
that we derive some technicalities involving root systems and their
classification (see [ 4#1]). Omitting some defining relations for 2g

we construct a central extension r : 5& - gz

2.1. NOTATIONS.

We are going to consider Lie algebras of simply connected almost
simple Chevalley groups in characteristic p > 0. So let k be a
field of characteristic p > 0, K its algebraic closure, G a simply
connected almost simple Chevalley group viewed as an algebraic

group defined over k, g the Lie algebra of G. The set of k-ratiocnal



points in g is denoted gy

It is a Lie algebra over k. We use the following standard nota-

tions (see [22]).

1l = rank of G,

&gy = the complex Lie algebra corresponding to g,

Z = the (irreducible) root system, (It is assumed to be ordered).

W = Weyl group,

{Xa’ H&Ia € £} = set of Chevalley generators in g,, or the corres-
ponding set of generators in g.

{NaB} = the corresponding set of structure constants,

{xq(t)ia € Z,t € X} = the set of generators of G.

_ .1 X _
wu(t) = xa(t) X—a( t ) Xa(t)’ for o« €, t € K~ = K\{0}.

_1 X
hu(t) wd(t) wa(l) , for a € Z, t € K.
0 = the open cell, consisting of the elements

I Xa(ua) i h (£ T x (uu), where
<0 o simple 0>0

u, € K, ty e x* (see [ 81, Proposition 1).
(x,y) = xyxaiy_1 if x,y are group elements,
(x,y) = the inner product of x and y if x,y are elements of a real

vector space.

The notation may also be used for an element of a direct product
of varieties.
&y Z - Lie algebra generated by the Xy» Ha in g+
I' = lattice of weights,

I's = sublattice generated by the roots.

<o,B> = 2(0,B) for a,B in the real vector space with inner product

(B,8)
which is generated by Z. (B ¥# 0).

If a,8 € £, then <u,8> € Z . If a,B are (linearly) independant



roots with |a| < |B| then |<a,8>| < 1.

{al,...,al} = gset of simple roots, numbered as in [ 4],

{ei} = orthonormal basis that is used in [ 41 to describe the
root system,

{6i} = set of fundamental weights.

So we have g = gy 8 K,

I = {al<a,Z> C Z}.

The ordering of Z induces an ordering of T defined by: a = 8 if

a-8 is a positive linear combination of the simple roots (see [ 4],

Ch. VI §1.86).

2.2. PROPOSITION. g = [g,, g ] if and only if ¥ N pT = 4.
PROOF. Z N pl' consists of those roots o for which <oa,2> Cp Z .
So if Z N pl = 4, then for every ¢ € Z there is 8 € ¥ such that

- -1 . .
Xa = <g,B> {HB, X&] in g, - The elements Xa generate g, as a Lie
algebra. Conversely, suppose Z N pl # ¢. Since £ N pl' consists of
W~orbits, it contains a simple root o. For all simple roots 8 one
has <&,8> € p Z . Taking B = o one sees p = 2. Taking roots corres-
ponding to neighbours in the Dynkin diagram for B, one concludes
1 C2 = BQ). One now checks that
2, #* [gk, gk] in these cases (see [17], Lemma 7).

that Z is of type Cl, 121 (C1 = A

COROLLARY.

(i) gy ° [gk, 5k] if and only if Z is not of type

¢, (L >1), orp > 2.

(ii) gy = [g% , 529 if and only if Z is not of type

C1 1= 1.



PROOF. We have to prove (ii).

If part.
For every p we have (gz mod[gzz, 525]) ®Z ﬂ; = § by (1i}).

So &EmOd[EZ’ g_Z]= 0

Only if part.
Take p = 2 and use (i).

2.3. LEMMA. Let o,B be independent roots.

Then there is vy € 2 such that Z, = (fo+fg+fy) N E is an irre-

ducible root system.

If rank Z > 2 then vy may be chosen such that rank 21 = 3.

PROOT.

Let XO,...,Aq be a sequence of roots such that XO = o, (Xi,ki+1)*0,

Aq = B. Such a seguence exists because Z is irreducible. Now suppose

q is minimal and q > 2. As <A1, A2> # 0, we have Ay - Az € Z or

€ Z. As q 1s minimal, we have (Xz,k ) = 0.

A, + A, € Z, Say Xl + A 0

1 2 2

And (A05 Al) #* 0, so (Kl + A AU) # 0. In the same way

23
(Xl + AZ’ Kg) # 0. But then AO, %1 + AQ, 3o

sequence, which is a contradiction. So we may take g < 2. Define

Py xq is a shorter

Y = xi. Then every irreducible component of Z, which contains Yy

1
contains o and B. So 21 is irreducible. If rank Z > 2, then we

have to consider two cases:

First suppose T, = (4o + #B) N = is a reducible root system (i.e.

2
of type A1 X Al)‘ Then we choose Yy as above,

Secondly suppose Z, is irreducible.

2
Then we choose ¥y € £ such that y is not orthogonal to 22 and Yy is

not in 22. We always get an irreducible 21 of rank 3 this way.



2.4, DEFINITION. Let y €'y n € Z , n > 1. Then y is called a

degenerate sum with respect to n if

(1) There are independent roots a,R with a + 8 = vy.
(ii) v € nI'. This means that<y,Z> C nZ .
If n = p then we just say that y is a degenerate sum, or that Yy

is degenerate.

2.5. LEMMA. Let Z be as above, £, a subset of Z.

1
Iif 21 is an irreducible root system, and a,8 € 21 are independent,

such that o + 8 is degenerate with respect to n in Z, then o + 8

is a degenerate sum with respect to n in Z, too.

1
The proof is trivial.

REMARK. The converse does not hold, as one can see from 2.8.,

Table 1.
2.6, LEMMA.
(i) If n > 3 then no degenerate sums with respect to n

exigt. So degenerate sums may only occur if p = 2 or p = 3.

(ii) If p = 2, 0,8 € T are independent, o + B is degene-

rate, then (a,B) = 0.

(iii) If @,B,v,8 are distinct roots, while a + 8 = y + & Is

a degenerate sum, then p = 2 and the same root lengths occur in

both pairs of roots.

PROOF. If a,B are independent, |a| < |g]|, then 0 < 2 + <a,8> <u,
so that 1 € <a+B8,B8> < 3. This implies (i). If furthermore
<a+B,B> € 2% then it follows that <a,B> = 0, whence (ii).

(iii) Let B have a largest length in the set {a,8,v,8}. Then
|<y+8,8>| < 2.

And <y+§,8> = <a+8,B8> is again strictly positive.
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So p=# 2 and a L B, vy L §.
so lal? + 817 = Jarel? = |ves]® = [v[? + [s]”

As, for fixed Z, there are at most two possibilities for the
values of the root lengths, there are at most four posgibilities
for the value of

ia'|2 + |a"|2, a', a" € Z,

These values correspond to the occurrence of root lengths in

the pair a', a".

2.7. We are now geoing to classify degenerate sums. We may restrict
ourselves to one representative for each orbit under the action

of W. Results will be given in 2.8., Table 1.

EXPLICIT DETERMINATION.

According to lemma 2.6. we may restrict ourselves to p = 2 and

p = 3. First let p = 3.

Choose a normalisation of the inner product such that the shortest
roots have lengths 1. Recall that T'. is the lattice generated by Z.

0

For vy € ', we have (y,Y) € Z . Set n = order of I‘/F0 (= "indice de

0
connexion"). (See [ 41}1). Then n2 (Y,Y) € Z for every vy € T.

Now let a,8 € £ with o+B degenerate, |a| < |8]. Then a+8 € 3T, so
n?(a+B, g+8) € 9% . And (a+B, a+B) = (a,a) + <a,B>(B,B)+(8,8) <
<3+ 3+ 3 =9, So either n is divisible by 3 or (oa+f, a+B) = 9.
In the latter case, Z is of type 82 and a,B8 are two long roots
making an angle 7/3. This yields a degenerate sum indeed, because
the sum 1s p times a root.

In the case that n is divisible by 3, Z is of type A3m~1 or EG'

So now we may assume that all root lengths are equal. As

<a+B, B> € 3%Z , we see that <a,8> = 1, which means that they

make an angle 7/3. In AZ this yields two orbits of degenerate

sums. Now suppose & is of type A3m_1, m > 1, or EB' Using lemma 2.3



1

we get a root system El’ containing o and B, with rank 21 = 3.

In this system a+f should be degenerate too. {(lemma 2.5.).

But we have seen that no root system of rank 3 yields degenerate

sums. So we are done for p = 3,

Now let p = 2. As we know from lemma 2.6, we have a L B.
Consider 22 = (fo+#B) N Z. It is a root system, so we can choose
a system of simple roots in it, containing a(see [ 4], Ch. VI, §1,
Prop. 15). (If possible, we choose this system of simple roots in
such a way that 8 is simple too). According to [ #1, Ch. VII, 81,
Prop. 24, there is a system of simple roots in %, containing the

one chosen in 22.

Now there are two possibilities:

1. 22 is reducible.

In this case B has also been chosen to be simple, and we

have to deal with Dynkin diagrams. Say o = o_, B8 = o_,

r s

where o ,0 are the simple roots. As (0,8) = 0, the

goc e
points r and s are not neighbours in the Dynkin diagram.
So Z has rank > 2. Now consider such a pair r, s in a
Dynkin diagram, consisting of two points that are not

neighbours. The fact that o+B is degenerate may be expres-

sed by the relations

<o ,0.> = <a, o> mod 2, 1 = 1,...,1.

For i = r and i = s the relation is always satisfied and
it is also satisfied if i is adjacent to neither r or s in
the Dynkin diagram. So we have to look at neighbours of

r and g. For a common neighbour i the relation is satis-

fied if and only if o. has maximal lenght in the set



12

{ai,a ,as}. For other neighbours, say neighbours i of r

T
that are not adjacent to s, the relation is equivalent

to (ar, ar) = Z(Gi, ai). There is at most one place in a
Dynkin diagram where (aj, aj) = Z(ai, ai) is satisfied

for neighbours i,j, so there is at most one non-common
neighbour.

It is easily seen that these requirements for the behaviour
of neighbours select one pair r,s if £ is of type A3 =D
Bu, and don't permit any pairs in other

3)
D, (1 = 3), By,
cases.,

2). 22 is irreducible.

As (a,B) = 0 we have 22 of type B, or G,.

First let 22 be of type G2. Up to the action of the Weyl
group, there is just one pair of orthogonal roots.

This pair a,B yields a sum that is twice a root. Hence it

is a degenerate sun.

Now let 22 be of type BZ'
There are two possibilities for an orthogonal pair:

Both roots are short or both roots are long. If they are
short, their sum is a long root. So we have to do with
the case Z N pl' # ¢, That is, Z is of type Cl (see 2.2.).
A long root is degenerate in this case indeed. Finally,

if both roots are long, their sum is twice a root, so it

is a degenerate sum again. This situation occurs in Bl’

2.8. Summing up, we can list results as in Table 1. In this table
all W-orbits of degenerate sums and of elements in Z N pI are given.

A notation like ay * oy {6,262] means that there is an orbit con-



sisting of 6 elements, with a

13

1

+

%3

and 262 as representatives.

The number 6 and the fundamental weight 62 are found with the

help of the "Planches" in [ 41].

Table 1.
Type Dynkin diagram Z N prl Degenerate sums
p=2 p>2 p=2 p=3 p>3
A1 o4 a1[2,261] - - - -
2a1+a2{3,361]
A o—o _ _ _ B
2 1 2 20,+0,03,36,]
o—0—0
Ag 1 2 3 B T oytagl6,268,]
. ) ) {2a3[6,261] i )
3 1 2 3 o, +a,l8,28,]
. ) ) 20Lu[8,261] ) )
4 1 2 3 4 u1+u3[16,26u]
[0
B, (L>w) | OIS - - 20,[21,28,]
o 2a1{212-21,262}
>2) | YT - - -
CLaZPD 1 110 10 | %l21,284] o [21,28,]
O_’O<: 3 a1+cx3[8,264]
- _ a,+o,[8,268,] _ _
Du 12 4 OL1+OL]+[8 263]
I R §
1_’%
[o SN
D, (1>4) | ] 1O~3 1-O<2 1 - - | oy_y*aql21,28,] - -
O—O==0—20 - _ _ _
Fy 1 2 3 4 20,024,281
Crmm=0 _ _ _
8, 1 p 2&1[6,261] 30&1{6,361]
others some - - - - -
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2.8. LEMMA.

(1) If vy is a degenerate sum with respect to p then p-ly

ig in the orbit of a fundamental weight.

(ii) If Z is not of type C 1 2 2, then the fundamental

l’
weight in (i) is a minimal dominant weight in the sense of the

order defined in 2.1.

(iii) Let Z be of a type such that degenerate sums with

respect to p occur and let o be a short root. Then pa is a

degenerate sum.

PROOF.

(i See Table 1.

(i1) Some cases are discussed in ([ 7], p. 20-03). Let §
be the fundamental weight that is found in (i). If it is not
minimal, then there is a dominant weight o such that § - a > 0.
We may suppose that a is fundamental because fundamental weights
are positive and o is a sum of them. It is easy to check, using
the "Planches" of [ 4 ], that for each fundamental weight di # §
the difference § - di is not positive. (Use the description of
Gi in terms of the aj). Hence o does not exist, except in the

cases Cl’ where the check doesn't work.

(iii) See Table 1.

REMARK.
If the minimal dominant weight in (ii) is not a root, then it is

a "Poids minuscule” in the sense of ([ 4 ], exercice 24, p. 226).
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2.10. LEMMA.

If Z has degenerate sums, then the order of T/FO is a power of p.

In fact it is 1, p or pz.
PROOF.

Compare Table 1 with the Planches again.

2.11. LEMMA.

Except for the cases B, and Cl, 1 > 2, all degenerate sums (in T)

3

with respect to the same p have the same length.

2.12. PROPOSITION.

Let p be prime, vy € pI' N FO, Yy # 0.

Then v is a degenerate sum with respect to p if and only if there

is a long root o with (y,Yy) S pla,a).

PROOF.

Suppose ¥ is a degenerate sum. Choose a long root o such that
(a,¥) > 0. If p = 3 then it is seen from the table that

(v,v) = plo,a).

If p = 2 then it follows from lemma 2.6, (ii) that

(v,y) < 2(a,a).

Conversely, suppose (y,Y) < pla,0), Y €Epl NT Y # 0. Recall that

0>
o is a long root such that <y,a> > 0. Then <y,a>2 > pQ, 80
Liy,y){(a,0) 2 P2

2 p°, and hence ploa,a) = (y,y) = = (a,0). It follows
(o,a)

that p< 4, whence p = 2 or p = 3.

1). First suppose Z is of type C Then there is an orthogonal

1
base (B.,), consisting of long roots. As <y,8i> € pZ , we have

- B
Y = 5 n.fB., n, e % .

1 1

VT
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2

So (v,v) = B~ (‘zi: ni) (a,0).

It follows that Z ni <
i

.

vl P~

There is no solution for p = 3, because y =

[

Bi is not
in FO.
For p = 2 there are two solutions, up to the action of
the Weyl group. As there are also two orbits of degene-
rate sums, these solutions are degenerate sums.

2). From now on we exclude type Cl(l 2 1). First let p=3.
Recall that ¢ has been chosen such that <y,a> is strictly
positive. The root o is the sum of two long roots.

(Type Cl is excluded). Let B be one of them, such that

(Y,8) > 0. Then we have: <y,a> 2 p, <y,B> 2 p, and hence

0 < (y-o-B, y-a-8)
(a,0)

(y,Y) - -

Ty + 2 <y, o> <Y,B> + 1 S
p+t2-p-p+1 = 0.

It follows that v = o + B, hence Yy is a degenerate sum.

Finally let p = 2.

We may suppose that vy is a dominant weight. Then v=2 2 niéi=2miui,
i i
where mi, Ny €z s MWy 20, n. 2 0. (Recall that y € pI' N TO).
As <Ysa.> 2 0 for each i, all m, are strictly positive. (Consider
an index in the Dynkin diagram adjacent to an index i where mi>0).
Now 2n. = <y,o.> = 2m. + 2 m. <d.,0.> < 2m.. So
i i cie i i
i#
(1) m. =2 n.+1.
i i
Hence
> = >
(2) 2(a,a) 2 (v,Y) ? mini(ai,ai) > ? (ni+1) ni(ai,ai).
Suppose there are two indices r and s such that n, > 0, ng > 0.
>
Then 2(a,a) =2 QnP(ar,ar) + 2n_(a_,a ). It follows that o, and a
are short, so £ is of type E,- (Again we use that type Cl is ex-
cluded). Say s is the one that has two neighbours in the Dynkin



17

diagram. As m, 2 2, we have

Qns = <Y’as> = zms + jis mj <a.,0.> < QmS - 2.

Hence m, > 2, and it follows from (2) that 2(a,a)>3(as,as)+2(ar,ar),
which is nonsense.

We may conclude that there is only one index r such that n, > 0.
Suppose n, > 1. Then 2Ca,a) = (y,y) = mrnr(av,ar) = B(ar,ar) (see
(1) and (2)).

So £ is of type G2, mn, = 6, m, o= 3, n, = 2. This is nonsense,

because Gr is a root in case Gz. What is left is the case y = ZSP.

m,
- ot <

Then we have y/2 = E 7= Gy, My € %, mr(ar,ar) 2(a,a). All we

have to do now, is to look in the Bourbaki Planches for such funda-

mental weights ér. For each type, there are as many of them as

there are orbits of degenerate sums.

REMARK. In fact the proof gives another method to classify
degenerate sums in characteristic 2. It also explains Lemma

2.9.(1), in characteristic 2.

2.13. The Lie algebra g% is defined as a vector space by the
following generators and relations:
Generators: X , H (o € Z).
o o
Relations:

(1) H, + H_ =0 for a €Z.

(8,8) (v,v) _ -
(2) H + (azm Hg * toteD) HY = 0 for a,8,y € £, a+B+y=0,

(o,a) < (B,B), (a,a) < (yv,y).
These relations follow from the fact that the left hand sides
act trivially on roots. Every H, can be expressed by means of
relations (1), (2) in terms of the Hai. Coy simple). So relations
(1), (2) are sufficient to define Eg> for reagons of dimension.
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For a,B,y as in (2), we have the Jacobi identity

[Xa’ [XB, Xy]] + [XS’ [XY’ Xa]} + [XY’ {Xa’ XB}] = 0,

which yields:

(3) NBYHa + NYaHB + NaBHY = 0.

As B+y = ~a is a root, NB ¥ # 0§ and HB, HY are linearly inde-
>

pendent. So relation (3) is obtained from relation (2) by mul-

tiplying with the nonzero factor NB v
3

2.14%. DEFINITION.

Let g', be the Z - module with generators X , H (a € X) and
relations (1), (3) of 2.13. (So relation (2) is omitted).

We define the bilinear anti-symmetric composition [ , 1 on E'Z
by the usual relations:

[X,> XB} = Na8 Xouts if 4B € T,

[X,» X_ 1 = H.

[Xa’ XB] = 0 if a+B & T U(0).

{Ha’ Xol = <B,a> X

B
[H,> Hpl

B
0.

i

It is easily seen that this composition is well-defined. We now
claim that g'z is a Lie algebra. We only have to check Jacobi
relations for the generators.

X

If a,B8,y € Z, a+B+y = 0, then the Jacobi relation for Xy» XB’ v

is just relation (3) of 2.13. For other combinations of the
generators the three terms in the Jacobi relation are multiples
of one generator. So for those combinations the Jacobi relation
follows from the fact that we use the same structure constants
. . . N . .
in g'yas in gZZ.Let r:gly gzzbe the canonical homomorphism

of ZZ - modules. An element of ker r is a combination of Ha‘s



19

which acts trivially on each X because its image acts tri-

B)

vially on X So r is a central extension and ker r is the

g
centre z(g', ) of g', because z(g, ) = 0.

2.15. PROPOSITION,

The centre of g! is a direct sum of cyclic groups of prime
gz Y

order. Its order is:

2 for Bl(l = 2)

1-1

2 for Cl(l = 2)

y forp Fu

6 for G2

1 for other types (i.e. for types with one root length).

PROCF.

We use the following lemma.

2.16. LEMMA.

Relations (2) and (3) of 2.13. are equivalent, except for the

case that a,8,y are short roots in G,, in which case (3) is

2’
obtained from (2) by multiplication with a factor 2.

PROOF of LEMMA.

We know that (3) is a NBY-multiple of (2) (see 2.13.). If [N

then we are done. Let lNBY' be larger than 1. Then B-y € Z.

Byl =1
As B+y € T too, and (a,a) = {(B+y, B+Y) < (8,8) < (y,y), we see
from inspection of rank 2 root systems that B and y are short
roots in GZ’ making an angle 27/3. In this case (3) states that

QHG + 2H, + ZHY = 0.

g

Now we proceed with the proof of the Proposition. If every

L is expressable in the Hy (ai simple) by means of the relations
i
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(1), (3), then ker r = 0. Using the lemma we see that this is true
if root lengths are equal. So we only have to worry about types

Bl’ C F G

1’ "ur T2

We use the description of Z in terms of the € (see [ ], cf. 2.1),
except in case GZ'
1). Let Z be of type Bl’ 2= {t e. + €., + .},
Relations (2) (or (3)) yield

(i) Relations involving only long roots.

(ii) Relations of the type H + H + 2H = 0.
€y €, -e47€,

So after reduction mod 2 no interaction between long roots and

short roots exists, i.e. every vrelation 2 na{Ha} = 0 implies a
)

3 - - t
relation z n {H,} = 0, where n, € Z and {Ha} =H, + 28",
o short
Set

H=H + H_ __ +H__ .
82 61

As {H_E } # 0, we see that {H} # 0, hence H # 0. On the other
1

hand 28 = (2H_ , +H_ _ +H__ )+ (2H_ _ +H +H ) = 0.
€177 £1 €2 £17%2 1 2
Now we add relation H = 0 to relations (1), (2). Then every Ha

is expressible in the HB with B long, and hence in Ha e o
1 72

. HE —e 0 He ‘e This implies that we have got a full set
1-1 71 1-1 71

of relations for g7 from those for g'z , in adding relation H = 0.
We may conclude that H generates the centre of g'% , which is of
order 2.

2). Let Z be of type Cl' Z = {+ €, * Ej’ + Zei}. Now relations

(1), (2) yield
(i) Relations involving only short roots.

(ii) Relations of the type H_ + Hel-e +2H_, = 0.

1% 2 1
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Again there is no interaction between long roots and short roots
after reduction mod 2. We see that the elements

- < i< - . .
Hy = Hyo o+ Hy oo +H oo, (1 i 1-1), induce independent
i i+1 1 "i+1

elements {Hi} in E'Zl mod 2g'.,, .
And again 2H, = 0. After adding relations H, =0 to (1), (2) we

can get rid of all H, with B short, which proves as above that

B8

the Hi generate the centre.

te, +e +e, te

- 1—"2—"3=~"4
3). Let Z be of type Fu, Z= {+ gy * €55 toess > T,
g +e +g +¢e
Setg:..g'_u_.’i
2
Relations (2) yield
i Relations involving only long roots.
(ii) Relations involving only short roots.
(iii) Relations of the type H + H + 2H = 0.
€ £ -£,"€
1 2 1 72
Set H, = H + H + H
1 €1+82 €478, ~€y
H, = H + H + H_.
2 “€47€, ~E7€, S
As in the case of Bl’ we see that Hi * 0, QHi =0, H1 + Hz # 0.

We want to show that adding relations Hy = 0 to relations (1), (2)

yields a full set of relations for &z - Ags in the case of Bl’ it

is sufficient to show that every H, with o short is expressible in

HB’s with B long. So we divide out these HB'S too, and we look what

is left. One gets: H__El = HC z 0, Hei + Hai = 0, Hisi = 0,
= + H = .

0 H__ei HC HC'ﬁi and so on

We conclude that H1 and H2 span the centre.

4). Let £ be of type Gz. Put a = a,s g8 = oy ta,, ¥ = -o-B.

Then Z = {+a, #B, +v, *+(a-8), +(8-y), +(y-a)l}.
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After dividing out relations (1), relations (3) yield:

(i) Hy-g * HB—Y + HY-a = 0

(ii) H, + 2HB + 2HY = 0

(11i) Relations of the type H + H, + SHy-a = 0.
= + + .
Set H Hy—a Hs—a Ha
After reduction mod 3 no interaction between long roots and short

roots exists, so we may conclude as above that 2H # 0.
After reduction mod 2 we see that {Ha}’ {HB}, {HY} are independent,

so {3H} = {Ha + HB

But 6H = 2(H, + H_Y + 3Hy-a) + 2(H o+ H_B + 3Hg_4

+ ZHY) = 0. We conclude that H generates a cyclic

+ HY} # 0 and hence 3H # 0.

)y o+
+ (ZHa + 2HB
group of order 6, hence a direct sum of two cyclic groups of

prime order.

The fact that H generates the centre is checked as above.

2.17. COROLLARY.

(1) If Z is of type F, or B, (1 > 2), then

H + H + H is an element of the centre that has a
€1%€; €178 “Ey

nonzero image in g'Z mod 2gi .

(ii) If Z is of type G

92 then HY—a + HB—a + Ha is an element

of the centre that has a nonzero image in g'y mod 35% » and

t + H! ; ' . v
HB-Y Ha is an element of g 7 that has a nonzero image 1in

1
&'y mod Zg_'ZZ .

§3. The action Ad. Structure of g%, g%.

In this section we describe the universal central extensions
of £ and gy » Over Z and k respectively. Because of Proposition
1.3 (vi), knowledge of the universal central extension

gz 8y of g7 implies knowledge of that of gy for any ring R.
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We can't apply this remark for type C, however, because of the

1
fact that in this case &z has no universal central extension
(see Proposition 1.3, (ii), and Corollary 2.2, {(ii)). But type

1

as soon as the universal central extension g§ - & exists. (see

C, is not very interesting, because its gp ig centrally closed
3.13).

3.1. Assume that we are in the situation of 2.1 and suppose that
g =1g, gl. 6 acts on g by the adjoint representation Ad.
According to Proposition 1.3, (v), every automorphism Ad (x) of
g induces a unique automorphism Ad {x) of g* . So we have a re-
presentation Ad of G(K) in g*. As gx ~ g, induces mw: g* > g (see
Proposition 1.3,(vi)), we can take g* to be defined over k in a

natural way. Then 7w is defined over k.

3.2. REMARK.

There is exactly one k-structure of Lie algebras on g* such that
7 is defined over k.,

PROOF.

We make use of the central trick (1.2) again. Let gi‘denote the
k~structure from above, and (g*)k another one such that 7 is
defined over k. Then (g*), < [(g*), (g*)] = [gf, gfl = gg-

It follows that (g*)k = gﬁ, because both are k-structures.

3.3. PROPOSITION.

Ad: G > GL(g*) is 31 homomorphism, defined over k (i.e. a k-mor-

phism of algebraic groups). Its derivative d Ad (denoted dd) is

characterized by

ad e T = ad,

where the right-hand side is the adjoint representation of g* in g*.
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PROOF.
We use the construction of g*, given in the proof of (ii), Propo-
sition 1.3. Define the surjective homomorphism of X-modules
r: g ®g > g* by (X ®Y) = {{ ®Y}. (Notations as in loec, cit).
G acts on g ® g by Ad € Ad. As ker r (= N) is invariant under this
action, an action Ad' of G on g* is induced, with Ad'(x) {X ® Y} =
{Ad(x) X ® Ad(x) Y} . Now Ad'(x) is a Lie algebra automorphism,
satisfying 7 5 Ad'(x) = Ad(x) o 7, so Ad' = Ad. As Ad ® Ad is a
k~homomorphism, and ker r is defined over k, the representation
Ad' = Ad is a k~homomorphism.

As r is a homomorphism of G-modules, we have
r ¢ (d(Ad ® Ad) (X)) = 4d (X) o, r for X € g.
So &d (X){Y ® 2} = 8d(X) r(Y ® Z) = r(d(Ad ® AQY(XI(Y ® 2))=
{IX,¥Y] ® 2 + Y ®[X,2]}.
Hence &d (n{X ® X'}) {[Y,Y'] ®[Z,2']} =
{Iix,x'y, [Y,¥']1] ®1{z,2'] + [Y,Yy'] ®[[x,x']1,[z,2'11} =
= [{X ®Xx'}, {[Y,¥'] ®[Z,2']1}] because of Jacobi for {X ® X'},
{Yy @ Y'}, {Z ®Z'}. Now the Proposition follows form the fact

that g = [g, gl.

3.4. The action Ad makes g* into a G-module. The maximal torus
in Gﬁ’ corresponding to the Cartan decomposition in &> gives
rise to a k-split maximal torus T in G. The G-module g* has a
weight decomposition with respect to this torus. As, for x € G,
Ad(x) is a Lie algebra automorphism, we see that the weight
decomposition in g* yields a structure of graded Lie algebras.
This grading can give information about the structure of g* as
a Lie algebra. We are going to exploit an analogous grading for
g%. We shall also use unipotent automorphisms of the type Ad(x).

(see 3.10).
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3.5. THEOREM. (Structure of g% ). Assume that Z is not of type Cl’

1 2 1. The structure of the universal central extension

T g% d 2y is as follows.

(i) As a Z -module, g% is defined by the following gene-

rators and relations:

GENERATORS:
* * =
a) X3, Hr (a zZ).

b) Z; (y degenerate with vespect to some n, which we denote nY).

(See 2.6, (i)).
RELATIONS: (See 2.13).

(1) H* + H* = 0 for a € X,
a -a —

* * * oz € i =qQ.
(3) NBY Ha + Nya HB + NaB HY 0 for a,B,y Z with a+8+v=0

L Z¥ = 0.
(4) nY ¥

(Relation (2) of 2.13 has been omitted).

(ii) The Lie algebra structure on g% is defined by:

{x&, Xé] = NaB X3+6 if a+B € Z.

* * = *
(X3, Xz 1 = H2.

[X&, Xé] = g{a,B) Z;+B if a,8 are independent and a+B is degenerate

with respect to some n.

[X;, Xgl = 0 in other cases.
[H;, Xé} = <B,0> Xg.

(B3, Bil = o.

(27, Yl= 0 1f Y € g5 .

Here ¢ is a map £ x Z = {1,-1} that satisfies e(a,Bl+e(B,a) = 0

for a,8 € Z. (Every such map will do).

(iii) W(X;) = Xy W(H&) = Hy» ﬂ(Z;) = 0.
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PROOF. Let 7: g% - g7z be the universal central extension, as
constructed in the proof of (ii), Proposition 1.3. We have to
show that, given ¢: £ x Z = {1,-1}, there are X&, H&, Z; as in
the Theorem. There is a grading on g7 ® g with values in T,
corresponding to the weight decomposition with respect to Ad © Ad.
There is also a grading on B corresponding to the weight decom-
position with respect to Ad. Let r: g, & gy g% be defined by
r(X ®Y) = {X ® Y}. (cf. proof of Proposition 3.3). Then ker r is
homogeneous with respect to the grading on gy ® gy and we may
choose a grading on g% , compatible with ». This grading is also
compatible with 7.

So we have a grading g& = Z (g% )Y satisfying
Y

() [(g3),> (g3 )B] C (g5 )G+B’ which says that it is a grading,

and

(8) mlgr, © (ggy0,-

As &7 is a free 7Z - module, we can choose a Z - linear section s
of w. (We may even choose s compatible with the gradings, but we
don't need that).

We see from (5), (6) and the central trick:

(7) lslgp), » slgy dgl € (g5 )gig

Using the central trick again, we get

(8) > =1g* 1 =1 Z s( )y , Z s(g,),l =
7 &7 > &y 4EZUC0) Bz g 6E2UC0) 778
b [s(g.) , slg, ).1.
a,ge2u(0) | e ez g

3.6, REMARK.
It is easily seen from the above, that there is exactly one grading

on g% satisfying (68). After reduction mod p it yields the grading
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mentioned in (3.4), for the same reasons.

3.7. We are going to show now that the grading on gi is a weight
decompeosition with respect to the analogue of the action &d (see
(3.3)). Let X € <5Z.)a’ Y € (525)8’ a,B8 € ZU(0), § € Z.

Then we get from the Jacobi relation and the central trick:

[SHS, [sX, sY]] = [[SHS, sX], s¥l + {[sY, sHél, sX] =

[<a,8> sX, sY] + [-<B,8> sY, sX] = <a+B,6> [sX, sY].

Combining with (7), (8) we see:

(9)  ad(sHy) acts on (gy )Y as scalar multiplication with <y,é&>.
(Compare with Proposition 3.3).

So [s(gZ )0, s(g_zz)ol = 0.

As (g, )a is a Z - module of rank 1 for o € Z, [s(g% )u’S(gZ )a] =0
for all o € Z U(0). We conclude that (8) can be sharpened to

(10) g5 = a,BZEU(o)[S(E% )a’ s(gy )B].
a + B
As T is compatible with the gradings, ker 7 is homogeneous, i.e.
(11) ker ® = Z (ker 7).
¥ Y
Let Yy € T. If vy = 0, set n, = 0. If vy # 0, set n, = max{n|y € nl'},
or, equivalently, set
nY = g.c.d. of the <y,8>, § € Z,
It is easily seen from lemma 2.6, (i), that this new definition of
n, is an extension of the old one (see (i)).
We see from (9) that
(12) nY(ker ﬂ)Y =0 (ker m C z(g*)).
As we have excluded the types Cl’ 1 > 1, we have Z N pl' = & for
every p (see 2.2). Hence

(13) n, = 1 for y € Z.

We see from (10) that in g%z the only possible degrees are elements
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of Z U(0) and sums of independent roots. As ker m is contained
in g& , we conclude, using (12}, (13) that

(14) ker 7 = (ker w)o + 2 z (ker 7)_.
n Yy degenerate Y
sum with res-
pect to n

Here we see how degenerate sums come into the picture.

Let a € Z. As (ker w)a = 0, we have an isomorphism
. *
" (g0 @ (g g
Call it =
o

(15) We ¢&hoose X; to be the inverse image of Xa under 7

. * = * * . * -
(16) Define Ha = [Xa’ X~a] (a € Z), and define Za,B

= g(a,B) IX&, Xé], if a,B are independent roots such that a+8 is
degenerate with respect to some n.

We have to show that Z& depends only on a+f. It is clear that
3

8

Z* = 2} . (We require e(a,8) + e€(B,a) = 0). Hence we consider
048 8,a

the case that o,8,Y,8 are distinct roots, while a+8 = y+8 is
degenerate with respect to some n.

In this case n = 2, (a,B) = (y,8) = 0, and we may suppose

(a,0) = (y,y) < (B,B) = (8§,8). (See Lemma 2.6, (iii)).

Then <y,8> < 1, <§,B> € 1, <y+§,B> = <o+B,B> = 2. So <y,B> = 1,
and we have y-B € Z.

Now suppose y-28 € Z, to get a contradiction.

We have <y-28,8> = -3, so Z is of type G g is short in Z.

2,
Then (a,B) = 0 shows that (a,a) > (B,8), a contradiction.

It follows that N 1. For the same reasons

v-8,8 - %

=+ 1 and N = + 1. Then B+8 € Z, since

Ng,a-6 = Ny-5,8
<§,8> = 1 and N

6_858

§-g,8 - +1. Now we can compute the Jacobi relation
3

for Xg, X;_B, Xg, using the central trick:
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0 = [xg, [XX_g, X311 + [X3, [X§, X

.Y_g) ]] +

Y-8

(X3 oo 1Xg5s X310 = N o o (X5, X2 +

* * - *
Ny gos [Xgs Xg1 + 0 = 2 28+ 28 .

- - - > * - * .
As n = 2, or Nosg © nY+6 = 2, it follows from (12) that ZB,a ZG,Y

Hence

(17) z;+8 = e{a,B) [X;, X

é]

is a good definition.

Next we have to prove that X&, H&, Z; behave as described in the

Theorem. Part (iii) is obvious.

> * *71 *
The relation [Xa’ XB} = Nu,B Xa+B follows from (5) and (15).
: * *® = * * * - * Ty o
Relations [Xa’ X-a] Ha and {Xa’ XBI ZY follow from the defini

tions (18), (17).

For other cases {X&, X*] = 0 because it is an element of (ker ﬁ)a

8

which is the zero module (see (14)).

+R°

Relations [Z;, Y] = 0 are obvious, and the action of H& is the same
as that of SHa’ which is described in (9).

This proves (ii).

Using the central trick, we see from (10) that g& is generated

as a Z - module by the elements [X,Y] where X,Y € {X;, H&{a € Z}.
Then we see from (ii) that gi is generated as a Z - module by

the elements Xr, HZY, Z;. We still have to prove now that (1), (31,
(4) are defining relations.

It will be sufficient to look for defining relations of all compo-
nents (g% )B’ because g2, is the direct sum of the (g_i3 )8'
First we prove that relations (1), (3), (4) are satisfied. Relation
(4) is a special case of (12). Relation (1) is obvious. Relation (3)

is the Jacobi relation for X&, Xé, X;. (See (1i) and see 2.13).
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3.8. PROOF CONTINUED.
We still have to prove that relation (1), (3), (4) are sufficient
to define g7, . Consider the central extension r: &y T &gy of Lie
algebras over Z (see 2.14).
. . . 1 o =
There is a homomocrphism T: gi - &y such that r 4 1 ™.
The central trick proves
* - * * - -
T(Hd> [Txu’ TX~a] [Xa’ X—a] HQ.
So there can't be more relations between the Hg, then there are
3 1
between the Ha in g -
This proves:

(18) The subspace (g% ) generated by the H&, has (1) and (3) as

0°
defining relations.

The other components of the grading of gi are 7Z - modules with

one generator. If a € £, then (gi )a is generated by X;. It is a
free 7Z - module, because (gz )a is free. If § is degenerate with
respect to n, then (g%z)(S has Zg as generator, and nZS = ndzg = 0
(see (12)). As n is prime (see lemma 2.6, (i)), (g& )6 is either
zero or n-cyclic.

(19) So if we prove that Zg # 0, then all components of the grading
satisfy description (1), which proves the Theorem.

3.9. REMARK.

It is possible to check that the % - module with bracket-operation
g% , that is described in (i), (ii), is in fact a Lie algebra.

This yields a central extension of gy > that we can use in the same
way as we used the extension gi -

We won't pursue this line; we will exploit the action Ad instead

(see 3.1), which is a more instructive way.



3.10. Fixing 8§, we take p = n., k = ¥ _ and return to the

§ P
notations of 2.1, 3.4.
The universal central extension m: gi - &y is obtained from
&7 T &y DY reduction mod p. So we have in gy the images of
X;, H&, Zg (oo € Z, vy degenerate).
We denote them by X&, H&, Z;.
Now it is sufficient to prove that Zg # 0 in gi. We are going

to give this proof case by case, using the classification of

degenerate sums.

case 1. p = 2, types By (1 > 4) and type Fpe We have a natural

grading on g*(see 3.4 and 3.6).

As Zg

multiplicity in the G-module g*. For the types under consideration

generates gg, all we have to show is that § has non-zero

there is one orbit of degenerate sums (see 2.8 Table 1). Multi-
plicities are invariant under the action of the Weyl-group, so we

may suppose § = 282. (Notations as in 2.1, 2.16).

Using the central trick and the fact that p = 2 we see {(cf.[ 2 |,

(4.5) (2))

-e,t€

Ad (x (1)) 2%
"€, 2e 2 2%

= [Ad (x_€2(1)) X21+52’ Ad (x__ (1)) XI 1

2

= [Xx* + X2+ X* O, X + X* o+ X* 1=
€1+€2 81 81 82 €1+€2 81 81 82

% + H* + H* + HX + 7%
2€2 €1+52 —el el 52 ~252

, which has non-zero component

in ga. (See Corollary 2.17 and use the part of (i) that has been

proved above). So ZES has non-zero image, which shows that ZE@
2 1
itself is non-zero.

case 2. p = 2, type Bu. We denote By the Lie algebra g of type

X, and G, the (simply connected) Chevalley group G of type X.

X
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In (gﬂ)F there is a subalgebra generated by the weight components
U

(g,) s (ga) (i # j). This subalgebra is a semisimple alge-

Eelve.? "Belse. v,

bra of type B, (see [14], § 5). The Chevalley basis in (EZ)F ob-
4

n
viously induces a Chevalley basis in this subalgebra (g@)B . Hence
n

there is an inclusion map (EZZ)B *’(g% )F , which induces a homo-
b b4

morphism of g 1into go , sending X g, To X+€. and X+€.+€. to
4 4 -1 - 1 —-"1—7]
3 3 * * 3 *
X+€‘+€-. So there is a homomorphism gr nd EF sending Z+2€. to
—1-"3 u [ -1
Z* and Z* to Z2* .
12ei te te teq te te te te te,

These Z; cover all possibilities (see 2.8, Table 1). So the image

of Zg is non-zero, which proves that it is itself non-zero.

case 3. p = 2, type Du.
Use the "trivial" homomorphism &y ~ &p that is analogous to the
4 "

homomorphism gg T gp -
y L

case 4. p = 2, type 83.

In this case we use a less trivial homomorphism.

3.11. DIGRESSION.
Let o be a graph automorphism of GD that has order 2. Say 0 inter-

4
changes «, and aq. The fixed point group (GD )0 of ¢ is an almost
4

3

simple group of type B This is easily seen from Theorem 8.2 in

3
Steinberg [2u], step (2) in the proof of this Theorem, Remark (b)
following the proof.

The group (GDM)G has a maximal torus Tg, consisting of fixed points
in the torus T = TDQ' So there is a homomorphism GB3 - GDq’ mapping

Ty onto T ,whose image is (GD )c' (See [ 71, Exposé 23, Théoréme 1).
3 y

We make it more explicit. Let V be a complex vector space of dimen-
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sion 8, with a non-~degenerate symmetric bilinear form B of

maximal Witt index. Say v > Vs ¥ v_, is a basis of

R R "

V such that B(Vi’ Vj) = 6§ (Kronecker §8).

is"j.
In the Clifford algebra associated to B, the elements Vivj

span a Lie algebra of type Dy, (see [16], Theorem 7, p. 231).

The elements v.v .~v .v. = [v.v
i-1 '-373 i

a Cartan subalgebra.

5 v_jv_i} (1i] # ]3| span

Let o be a root in 2. , say a = s + s

£ .
' . Dq 171
i< s,35 then we put Xa =

283 where s, = & 1,
i# 3. If sy vSli vszj. If sli > szj,
then i has to be interchanged with j. We get a Chevalley basis
this way.

The counterpart of ¢ in characteristic (¢ interchanges Vi TV_y

and fixes the other vi's. (So it maps X€ to

= v,V

1*tEy 174

= v v, = X Y. Its fixed points in the Clifford al-
=41 €178y

gebra form an algebra that is generated by Vg TV, TV

TV4Vioy
—y and the

v; with [i] < 4. This is a Clifford algebra again, associated to

i 1

the subspace V- of V generated by Vo Vil’ viz, vi3 (see [ 91,
2.1, II. 1.4). Put Xie' = viiVO'

The elements X i,j = 1,2,3, i # J, generate a Lie

+e.° X+e.+e.’
rE; re;r

algebra of type B3, and yield a Chevalley basis again. The Vi
generate a Z - form of the larger Clifford algebra. If we apply
the construction of Chevalley groups from admissible lattices to

the representations (by left multipliecation) of (gz )B and

3

(gZ )D in this Z - form, then we get a Chevalley group GB that

L4 3
is contained in a Chevalley group GD . The inclusion map is

4

given by

Xpe () P x (£) % i <y

*es teste, iﬁi'ﬁq(t) (i )
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K 4e, ()P, o (O (i,j < ).
—"1i-"3 - 1i="]

We get a homomorphism gg  ~ gp given by
3 Yy

(21) Xy T %o vy " Xie —g
-1 -1 ~"1 "4

X+a.+e. - X+e.+eﬂ
i—73 —1="]

D (1= 2).

Note that the same can be done for all pairs Bl, 141

3.12. PROOF THEOREM 3.5 (CONCLUDED).

We return to the proof of case 4.

Consider the homomorphism 583 - gDu that is described by (21)
in 3.41. Note that it is easy to check directly that this is

a homomorphism, because p = 2. The homomorphism gg - gB that
3 L

is induced, sends 7* to Z* + Z*
+ +e,.+e, -
TERENIE, PeqIE e e, EEIENIESTE,
« . . « R
and sends Zi2€ to Zi2ai. Again, these ZY cover all posibilities.

case 5. p = 2, types A3 = D3 and Dl (1 > ).

Use the "trivial" homomorphism &y ~ 8g. > cf. 3.10, case 3.
1 1

case 6. p = 2, type G2.

In characteristic 2 there is a surjective homomorphism gy T Bg >
3 2

having the centre of g, as kernel.
3

It sends Xa to X @)’ where pr is the projection of the root

pr(

system of type A3 on a plane through a subsystem of type A2.

The image of this projection is a root system of type GZ'

€ on

on «
2

1

(Say Z = {ei—ejli # 3, i,J < 4} and project € 1°

Ay

o, +a €, On -2q.,-0

175> £ 1 e on Q).

22 7.
The existence of the corresponding homomorphism is easily checked.

As EAg - 5A3 - gGZ yields a central extension (see Proposition 1.3,
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(1)), there is a homomorphism gé - g& . This homomorphism sends
2 3
Zg to a nonzero element Z;, so we are done.

REMARKS.

1) In fact g&g = géz. This 1s easily proved from the generalities
in 1.3, using the fact that ga -> 562 is a central extension.
Then one can see again that 55 # 0, from the dimensions of gég

and gga.
2) Case 6 can also be handled like case 4. There is a homomorphism

- , reflecting the fact that the graph automorphism of
Es, ~ &p, P
order 3 in Spin8 has a fixed point group of type Gz. (see [2u],

§ 8 and [22}, p. 176, (ec)J.
Note that this homomorphism g ~ &p also exists in other char-
2 4 :

acteristics, contrary to the homomorphism gy T8y -
3 2

3) Finally, case 6 can also be handled like case 1.

case 7. p = 3, type GZ'
We proceed as in the case of p = 2, type FQ, using the same
notations for the roots as in 2.16, case L.

It is sufficient to show that qu # 0. Using the central trick

we see

Ad (x_ (1)) 23, =
[Ad (x_ (1)) XZ__, Ad (x_ (1)) X3 o] =

+ X2 o+ X2 X* £ X*, o+ X o+ XE_T.

(X r A B B-a’ “a-f — "-8 — Ty = “y-a

a-y Y
So its component H* in 56 is

* * * *
Ha—Y + clHy + CQHB + C3H6-a’ c; = 3‘3.

As a special case of relation (3) (see 3.5), we get
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g = + N H* + = + H

N H* N H* by
B~y "y-B ~Y,Y-8 "B y-8,8 -y ~— 8B
{(One also can use Lemma 2.16).

+ H*.
- Y

* * * = g* * * c .
In the same way + Ha + H 0. So H H Y + C3H8~a + CuHa' (cq Eé)

a-
* - s = -
Suppose H* = 0. Then Ha—y + CsHB—a oy Hu =0 in g, so PR 1.
(In fact these relations hold without the assumption). But
* - * - * . %
Ha—Y HB“@ H; # 0 (see Corollary 2.17, (ii)). So 23 # 0.

case 8., p = 3, type AQ.

Use the "trivial" homomorphism g4 - &g > ef. 3.10, case 3.
2 2

It is seen from 2.8, Table 1, that we have dealt with all possi-

bilities for §.

3.13. PROPOSITION. Let Z be of type Cl’ 1 >21. Let R be a ring.

If [ggs ggl = gg» then go is centrally closed.

PROOF.
The finitely generated Z - module g2y /[EZZ’ g@; has 2-torsion,
because all ZXa =[Ha’ Xa] are in [gZ , gzg , while some Xa are
not. (see 2.2, Corollary). So if gg * [gR, gR], or, equivalently,
if (gZZ/ [g% » B 1) QE R = 0, then
(0) % €R.
Now we proceed as in the proof of Theorem 3.5 with Z replaced by R.
Starting from the grading on g 8% gp we get a grading on gé.
Again we choose a section s of m, and we get the formulas
(10) g* = z [s(g,) , slg,),1 (see 3.7, relation (10)),

R a,sepuoy RO R°8

a#FB

(11) ker 1w = § (ker W)Y (see 3.7, relation (11)),

(12) n (ker n)Y = 0 (see 3.7, relation (12)).
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Now nY is either 1 or 2 for vy # 0, (gﬁ)Y # 0. (Use (10) and

see 2.8, Table 1). So relations (8), (12) imply (ker w)y = ¢ for
Y # 0. Relations (1), (3) of 2.13 or 3.5 hold again, for the same
reasons as in 3.7. (Define H; in the same way).

There 1s a canonical surjection gi ®, R~ &z (see 2.18).

/4
1-1

As the centre of gz is a group of order 2 (see 2.15),

gi ® R is canonically isomorphic to gx (Use (0)). 8o

gi @R — Eﬁ - gx is an isomorphism, and 7 is an isomorphism.

3.14. COROLLARY.

Let £Z M pl = & (see (2.2)).

(i) & is centrally closed if and only if there is no

degenerate sum.

(ii) For each degenerate sum, its multiplicity in g* is 1.

(iii) Every non-zero weight of ker wm is degenerate.

(iv) a. If root lengths are equal, then (ker W)D = 0.

1=
"
N

If £ is of type F, and p = 2, then dim (ker ™y

13
[N
.

1"

¢. If T is of type B, and p
d. If Z is of type G2 and p = 2 or p = 3, then

2, then dim {(ker w)o

dim (ker ﬂ)o = 1.

(Note that cases a, b, ¢, d cover all possibilities for the

occurrence of degenerate sums).

PROOF. See 2.15, 3.5, 3.13 and 2.8, Table 1.

3.15. CORCLLARY.

&g is centrally closed for all types.

3.16. COROLLARY.

Let £ N pl' = @. Then 6 ker(m : g, = g%) = 0.
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PROOF. See 2.6, 2.15, 3.5.

3.17. Put 1% = dim gJ and d*= dim g*.

We get the following list:

p =2 type As 1* = 3 a* = 21
type Bs 1* =y da* = 36
type Bs 1* =5 da* = 61
type By (1 >4) 1* = 141  d* = 2177 -1"
type Ds 1* = 4 da* = 52
type Dy (1 >u4) 1* =1 a* = 21%+1
type s 1* = 6 a* = 78
type G; 1* = 3 a* = 21

p =3 type A: 1* =2 a* = 14
type G2 1* = 3 d* = 21

Put d = dim g. Then we have the following partial list: (note

the resemblance)

type Bj; 1 =3 d = 21
type Ba 1 =4 d = 36
type D; (1 >5) 1 =1 d = 21*-1
type Fa 1 =4 d = 52
type By (1 >4) 1 =1 a = 21%+1
type Es 1 =56 d = 78
type G; 1 =2 d = 14

Question: Why is the pair 5,61 not present in the second list?
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54, Admissible lattices and the category £V' Z-connected components.

In the sequel we shall make a frequent use of the construction
of Chevalley groups from admissible lattices. So it will be con-

venient to list in this section some properties and notations.

4,1. NOTATIONS AND DEFINITIONS.

Let p, k, K, g, G, T,... be as above (see 2.1, 3.4). Let U be the
universal enveloping algebra of gp over . The Z - form gene-
rated by the Xg/n! (o0 €Z, n 2 0) is denoted @i .

Let p be a faithful representation of g in a complex vector
space V. (All dimensions are finite).

The canonical extension of p to % will also be denoted p.

A lattice in V is a Z - form of V, an admissible lattice M in V

is a lattice that is invariant under pC&Z)- (See [ 8]). If V is

irreducible, then a standard lattice in V is a lattice MZ(Z v,

where v is a highest weight vector (see [ 2], Proposition 2.4).
Let M be an admissible lattice.

The K-module which has Eb -structure M 8% Eﬁ is denoted LM‘

So Ly is obtained by reduction mod p. The action of’&i on I_.M

and the representation of G in LM are both denoted Pve So

= n Ny < S
(1) DM(Xa(t)) i t pM(Xa/n.) (a Z, t K).
n=0
(see [2 ], 3.1). With the notations of loc. cit. one may
choose a representation 7 such that ' = T . Then G = G and
m sc T,K

its representation in L, is A .
M p,T

REMARK 1. The action oy of G on Ly is defined over IFP. (See
[21, 3.3 (2)).

If M' is another admissible lattice in V, such that M € M',
then this inclusion induces a homomorphism of K-modules Ly Lo

defined over Hb . It is a homomorphism of ﬂ%-modules too, so it
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is a homomorphism of G-modules. We denote the quotient Ly /Mo
This notation is justified by the right exactness of the tensor

product, which yields

(25 = (M'"/M) ®Z K.

Lyt /u
(So LM'/M is also obtained by reduction mod p).

Note that M'/M is a &ﬁ -module, and that the action gy, of G

/M
on Ly, ,y is related to the action py,,) of RZ on Ly, ,y by the

formula
- n N,
(3) pM'/M(Xa(t)) = nig T Py /M (Xa/n.).
REMARK 2.
The action PMt /M of G on LM'/M 1s defined over E‘p, because both
Py and LM - LM' are defined over F
(4) An element of LM'/M’ corresponding to x € M' will be denoted

{X}M'/M’ or {x}.

We shall usually denote OM‘}M(XE/nE) {x} as Xg/nf « {x}.

Analogous conventions hold for LM.

Let V be fixed.

The category of G-modules of type L with morphisms induced

M'/M
by inclusions of lattices is denoted a@.

(So a morphism L to {x} , where

- L., sends {x},,,
Mi/M1 M2/M2 Ml/Mi

toCoM! - '
M1 MZ’ M1 pM2 + MZ)'

'
MZ/MZ

4.2. LEMMA.

Let p: &¢ >V, p': g - V' be complex vepresentations. Let p ® p!

be the tensor representation in V @ V'. Then
n . .
(p ®p") (X2/n!) a®b = = (M) o(x /i) a 8 o' (X2 */(n-1)!)b.
O i=0 3 o e

(a0 €Z, n=20, a €V, beE V'),
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PROOT.
This lemma is an easy consequence of the definition

(p ®p')Y = p(Y) ®1 + 1 ® p'(Y). (cf. [22], Lemma 7).

4.3. LEMMA.

If M, M' are admissible lattices in V, V' respectively, then

M @ M' is an admissible lattice in V @ V', and M & M' is an

admissable lattice in V & V',

4,4, LEMMA.

Let M', M, V, L., be as in 4.1. Let A be a linear subspace
_ Mt /M — _—

of LM'/M‘ Then A is ﬂz - invariant if and only if A is G-inva-

PROOT.
Let A be @i - invariant. Then A is G-invariant because of 4.1,
formula (3). Conversely, let A be G-invariant. As T is K-split,

we have A = £ A_.,
v Y

If a € AY’ o € Z, then Z (Xg/n!) - a €A, (Use 4.1, formula

n>0
(3) again). Taking homogeneous parts, we see (Xg/n!) - A CA.

4.5, LEMMA.
(1) If A is a G-submodule of Ly >
the inclusion map A = LM'/M is a morphism in the category x@.

defined over E‘P, then

(ii) If ¢ is_a morphism in J;, then its cokernel and its

kernel are in &b.

PROOF.

(1) Let r: M' > L be the canonical map. Then A is

M!'/M
spanned by r(r 1(A)). We have M C r~1(a) C M', so r1a) is a

lattice. It is an admissible lattice because of lemma 4.4. Now



42

we have the injection of E‘p-modules r:r-l(A)/ker r = A, that

induces an isomorphism L -1 > A,
r “(A)/ker r

The map L

> 1 is in Z,.
r 1(A)/ker r M /M v

(ii) From (i) it is clear that kernels are in J;. The

cokernel of L, > L., is Ly, ¢
Ml/Ml MZ/MQ M2/M2+M1

4.6, NOTATION. Let A be a G-~submodule of L defined over H‘p.

M}
1 .
€ =
Then {v 5 M| {pv}, € A} is denoted M,.
LEMMA.
Let A, M be as above.
(i) M, is an admissible lattice containing M, such that

A
A = ker(LM - LMA).

(ii) If M' is another admissible -lattice, containing M,

such that A = ker(LM - LM,), then M C MA C M'.
PROOF.
(i) As M C My My is a lattice. It is obvious that it is
an admissible one. In order to prove that A = ker'(LM - LM ) we
A

first note that both sides are defined over F b’ S¢ both sides

are spanned by elements {V}M. Now

{v}MeAéévEMAo{v}MEker(LM-»L ).

Ma

(ii)y If v € MA

that pv € pM', whence v € M'.

, then {pv%qe A, so {pv}M, = 0. If follows

4,7. REMARK,
If V is the direct sum of two proper G-submodules Vi’ V2, then

there is a natural embedding 2% GBZ% - R@ . (The notion of a
1 2



43

direct sum of two additive categories is obvious). But this
embedding is not always an isomorphism. (There is no "complete
reducibility" over Z . )

EXAMPLE.

Let £ be a root system such that degenerate sums (with respect
to p) exist. In gy the lattice - is admissible (see [ 21,
Proposition 2.6). So &y ® &y is admissible in Z¢ ® &

(see 4.3).

There are homomorphisms of'&i -modules

¢: go @ Z¢ 7 8¢> defined by &(X & Y) = [X,Y],

Vi ogy ® gy g*, (see proof of Proposition 1.3, (ii)),

X: 8z T &s

T g% g,

Note that g* = LEZ ® £, /ker ¢

Set N = ker ¢.
Then =9 @ gy = N @ gp> because of complete reducibility over ¢.
But it is not possible to decompose 978 @ &y 1n the same way.

Suppose it were: Say &7 ® &y = M, @ Mz, where M

1 1
— = = * e
are’Z{Za modules. Then (m o yIM, = (x o $IM, = 0. So g (¢ € Z)

C N, both M,

must be spanned by ¢M2.

The span of wMz is a G-module (see Lemma 4.4). So it is invariant
under dd (see Proposition 3.3). Then it is clear from the des~-
cription of g* that wMz spans g* and not only the g& (o € Z).
But this is nonsense, because M2 ig an abelian group of rank
equal to dim g, which is less then dim g*.

It is easy to see from this example (and many others), that there
may be "indecomposable" lattices in decomposable gp - modules.

(Definitions as below).
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4.8. DEFINITION.

A G-module is called indecomposable if it is not the direct sum

of two non-trivial G-submodules.

4.9. LEMMA.

Every (finite dimensional) G-module L is the direct sum of inde-~

composable submodules Li'

4.10. DEFINITION,

The Li in Lemma 4.9 are called the indecomposable components of L.

REMARK. There is some "abuse of language" here: The Li are not

unique, but there is a Krull-Schmidt-Theorem (see [10], (14.5)).

4.11. LEMMA.

Let (p,V) be an irreducible representation of gp+ Let Mst be a

standard lattice in V (see 4.1).

is

Then for every admissible lattice M C M __, the G-module L
st’ — T ———— Mst/M

indecomposable.

PRGOF.
Let v be the highest weight vector that generates Mst' Let X be
the highest weight. Suppose L = LM t/M has decomposition A @ B.
As A has multiplicity 1 in V, it hzs at most multiplicity 1 in L,
so {v}l € A

or {v}l € B,. As {v} generates L, we have A = L or B = L.

A AT

4.12. DEFINITIONS.

Let 0,8 € T (see (2.1)). Then a,8 are called directly Z-connected

if there is vy € £, n € Z , such that o-8 = ny.

Now let A be a subset of I'. We say that o,8 are directly Z-connec-

ted in A if they are in A and are directly Z-connected. (So ¥y

need not be in A.) The transitive closure of the relation
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"directly Z-connected in A" is called "Z-connected in A".

Equivalently, a,B are called Z-connected in A if there is a

sequence T ..., L of elements of A, such that

(i ;1:0‘9 ang

(ii) TFor 1 £ i < n the elements Lo T are directly Z-connec-

i+1
ted in A,
The equivalence classes with respect to the relation "Z-connec-

ted in A" are called the Z-connected components of A.

4,13, LEMMA.

Let L be a G-module, & its set of weights.

Let A, ,..., A Dbe the Z-connected components of A.
— n
Put L, = Z LX'
T aeh,
i
Then

(1) Each indecomposable G-gubmodule of L is contained in

some L..
—_— T

(ii) The L, are G-submodules.

(iii) L = & L.
i

PROOCF.

(ii) If x € Ai’ v € LA’ o € L, then xa(t)-v € 2 L

530 A+ja

(see [ 21, Lemma 5.2).
As the A+jua are directly Z-connected to o, we see that Xa(t)'LiC Li,
G.L. .
so 6.L; C L..
(iii) is obvious.
(1) Let L' be an indecomposable G-submodule of L. As

Lt = @ Li, we have L' = © (L' n L.).
X i +

But L' is indecomposable, so there is only one non-trivial term

in ® (L' N Li)'
3
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4.14,. NOTATION.
Suppose Ly, ,y has a composition series Lyv/y = Ly 2 L, o .

) Lk+1 = (0) whose elements are defined over E‘p, hence are
in4&b (see 4.5). Then we denote this composition series by

v, /v, /.../v,, where v, € M', such that {v.} €L,, {v.} €L, ..
12 k 1 1y v/ i+l

(So L is generated by {vi}, {v Joeens {vk}).

i+1
REMARK.

Such a composition series always exists (see [27], Corollary 3F).

§5, The G-module ker 7.

In this section we will study the restriection of Ad to ker .

5.1. There is a Frobenius endomorphism Fr of G, sending Xa(t) to

T he the

xa(tP) (see { 71, Exposé 23, Théoréme 1). Let 61,..., §
fundamental weights such that pél is a degenerate sum {(see Lemma
2.9, (i)). Let (pi, Vi) be the irreducible representation of g

with highest weight st M. a standard lattice in Vi'

5.2. PROPOSITION.
Assume T N pl' = 4. Let G act on ker w by the action Ad, and let

R be an indecomposable component of ker m (see 3.1, 3.3). Then

there is a fundamental weight 8% as above, such that

(i) All non-zero weights of R are in the orbit of p6l,

(ii) Ry # 0 if and only if st €z,

(iii) The representation of G in R is ¥ p-isomorghic to

(Di)Mi . FI",

(iv) R is irreducible, except for the case that p = 2 and

§* is a short voot in B, or G,.

Then R0 is a 1-dimensional G-submodule, and R/RO is irreducible.
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PROOT.

Let A be the set of weights of ker 7.

We know that each nonzero element of A is a degenerate sum (see
Corollary 3.14, (iii)).

(1) We claim that the Z-¢onnected components Ai of A (see 4.12),
are sets of the following types:

type a. An orbit of p&i, where 6i is a fundamental weight, 6i E 2.
type b. The union of (0) and the orbit of pSi, where 8© is a fun-

damental weight, st e =,

Proof of (1).

First we note that for every o € Z, vy € 4, the weights Yy and

way = Yy - <y,0>a are directly Z-connected. So the Z-connected
components are invariant under the action of W.

If Gi is a root, then 0, pﬁi are directly Z-connected. We see

that sets of type a or b are Z-connected. Their union is 4, so

we have to prove now:

If a,8 € A(a # B) are directly Z-connected, then they are con-
tained in the same set of type @ or b. Say a-8 = ny, Y€ Z, n € Z .
If o or B is zero, then it is easy. So suppose both are degenerate

sums. The reflection wY leaves invariant the line L through

a,8
a,B. It interchanges vectors of equal length. So if «,B have

equal lengths, then wYa = B and we are done.

If 0,8 have different lengths, then Z is of type BS’ (See 2.11 and
use 2.2 to show that £ N pl' = é excludes type Cl).

+e

Hence we have Z = {iei, tes iej}, A= {0, t2e;, e te,

1 163}. Put
b, = {0, #2e.}, A = {re te,te,]).
The sets Aa’ Ab are of type a,b respectively. As a,B8 have diffe-

rent lengths, one is in Aa’ one is in Ab' We see that o,8 differ
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in all coordinates with respect to the €. This yields a contra-
diction, as a,B are directly Z-connected.
We have proved claim (1) now.
(2) Next we claim that every indecomposable G-submodule of
ker 7 is of type L, = z (ker m), .
i
It is sufficient to show that these Li are indecomposable (see
Lemma 4.13).
If Ai is of type a, then Li is irreducible because its weights
lie in one orbit and have multiplicity 1 (see Corollary 3.1u4).
Obviously, there is at most one Ai of type b in A. We now use
the classification of degenerate sums again, for handling the
case of type b.
Note that Si is a short root (see 2.8 or 2.12).
case 1. Z is of type Fu, p = 2.
In the irreducible representation ¢ of G, with heighest weight
61, short roots have multiplicity 1 and zero has multiplicity 2
(see [26], Table II). Comparing the multiplicities of the irre-
ducible representation o 4 Fr (cf. [2 1, Theorem 7.5) with those
of the representation in Li, we see that Li is irreducible again.
case 2. Z is of type G,s P = 3.
As in case 1, we see that Li is irreducible, using ([21], 5.9).
case 3. Z is of type Bl’ p = 2.
In this case all multiplicities of weights in Li are 1 (see
Corollary 3.14). We have noticed earlier (see 3.10, case 1) that
Z;ez generates a submodule having zero as a weight.
As in the proof of Lemma 4.11 it follows that Li is indecomposable.

8 = a, + o

case 4. Z is of type 62, p=2. Put a = a 1 95

19
Yy = -o~f (cf. 2.16, case 4). As p = 2, we have
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N * -
Ad(x_g(1)) 23, =

[Ad(x_g(1)) Xz, Ad(x_g(1)) XX 1 =
[Xg_, * X, + X3+ Xz g0 XX+ Xr ol

Itg component in ga is HE_Y + H&, which is non-zero (see Corol-
lary 2.17, (ii)).

So we can argue as in case 3, with Z;e replaced by ZEB.
2

Cases 1,2,3,4 cover all possiblities, whence (2). Properties (i},
(1ii) in the proposition follow from (1), (2). Next we prove (iv).
The first irreducibility statement in (iv) has been proved above
(see proof of (2)).

Now consider cases Bl’ GZ; P =2, 6i short.

In Li the weight zero has multiplicity 1, and ZzSi generates Li
(see 3.14 and the proof of (2)).

Choose a non-zero element H* in (ker ﬂ)O. (See 2.17). Calculation
shows that xa(t) fixes H* for some short root a. Then H* is fixed
by all xé(t), § short, because of the action of W. (Wpreserves 56)‘
If 8§ is a long root, then H* is also fixed by xs(t), because no
weight of Li is a multiple of §. (Use [ 2], Lemma 5.2).

We see that (Li)O is a G~-submodule.

The quotient Li/(Li)0 has one orbit of weights, with multiplicity 1,
hence 1is irreducible.

Finally, we have to prove (iii).

Let R = Li’ L.i as in (2).

Let Adi denote the restriction of Ad to Li’ and let (ci, Li) denote

the representation (pi)M o Fr in LM .

i i
space LM » viewed as representation space of Oi).
1

(So Li denotes the vector

The highest weight 8t of Py is a minimal dominant weight (see Lemma

2.9).
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So every non-zero weight of oy is in the orbit of 6i, and has
multiplicity 1 (see [ 7 ], Exposé 20, Proposition 1 and Exposé
16, Proposition 4).

Suppose zero is a weight of o5 Then Gi is Z-connected to 0 in
wsi U (0), so di is a multiple of a root. In fact 5i has to be
a root, because it is a minimal dominant weight.

So, if Si € Z then the multiplicity of zero in Py is zero. If
Gi € Z, this multiplicity can be obtained from Weyl's dimension
formula, or from [25]. It is seen that this multiplicity is the
same as that of Adi in 0. (See (3.14) for the latter one).
Hence Adi and 9, have the same multiplicity in zero. They also
have the same multipliecity in non-zero weights.

For both representations all weight components are defined over
E’p. If Adi is irreducible, then it follows that Adi = o, -
So we only have to consider the cases Bl’ G2 (p = 2), mentioned
in (iv).

From the definition of (oi, Li) it follows that Li is generated
by its heighest weight vector. Hence there is a homomorphism of
G-modules Li g Li/(Li)O, defined over Hé.
The kernel of this homomorphism is (Li)g.

We see:

(3) The representations in Li/(Li)O and Li/(Li)O are isomorphic
over E&.

(4) The representations in (Li)0 and (Li) are also isomorphic

0
over Eé.

One gets aT-equivariant isomorphism of vector spaces y: L, = Li,
defined over E, (i.e. h.y(v) = ¢(h.v) for h € T, v € L;).

We have to show that ¢ is an isomorphism of G-modules. Or, what
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amounts to the same, ¥ has to be an isomorphism of &i -modules.
(see 4.1, formula (3)). From (3), (4) it follows that the only
case that might cause any trouble is the case

o € Z, o short, v € (Li)_ s where we have to prove

2a
x2/2) « v = w(x2/2) - v

As everything may be taken to be defined over HE, the problem is
solved if both sides are proved to be non-zero. (Note that multi-
plicities are 1).

Suppose (X§/2) - v = 0. Then (X§/2) © (L;)_,5 = 0 for all short
roots, contradicting the fact that Li is generated by a highest

weight vector. In the same way (Xi/Z) + Yv is non-zero.
§6. G-invariant [pl-structures.

In this section we prove uniqueness of a [pl-structure on g* (g)
that is invariant under Ad (Ad).We will see later (see Corollary
10.2) that such a [pl-structure on g* exists. (It exists on g of

course).

6.1.Recall that a [pl-structure on a Lie algebra g4 over k is a

{pl

mapping X = X such that

(1) aax!Phy = aa 0P, (xegp.

i1y xotPl o 3P lPT) (X € g,y A €K,

(idid) (X+Y){p] = X[P] + Y[p1 + p§1 t; (X,Y), where t; is an ex~

pression given in [ 1], (3.1).
We specify ti for p = 2,3:

Fx,yl.

p = 2: tl(X,Y}
p = 3 t, (6Y) = 1Y, [Y,X1],
tQ(X,Y) = [X, [X,Y]].

A Lie algebra with [p]-~structure is called a p-Lie algebra.
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6.2. PROPOSITION,
Agssume Z N pl' = 4.

(i) There is at most one [pl-structure on g* which is

invariant under Ad.

(ii) There is exactly one [pl-structure on g which is

invariant under Ad.

(iii) If g* has a [pl-structure as in (i), and g has the

[ pl-structure of (ii), then (ker ﬁ)[p} = 0 and 7: g* > g is a

homomorphism of p-Lie algebras.

PROOF.
(1) A [pl-structure is fully determined by its values on
a basis. Suppose [p]l 1is as in (i).

We shall prove that (X&)[p], (H&)[p], (Z;)[p] are computable

and hence unique. If X & gé, then we have {pl e g;ﬁ’
because of property (ii) in 6.1. It follows that (Z;)[p] =0
(y degenerate), and (X&)[p] = 0 {(a a long root).

Let a,B, a+B € Z, o+B short, a long.

Then

0 = Ad (xg(0)) (xlP -

(X& + t dd (XB) X; + j%z tj Yj)[P] , Where Yj € g&+j8'

5o 0= x0fP 4 (¢ saxx !B 4 %
o B "o

(¢7 Yj)[P] + R, where R
j=2

is some computable expression in commutators. Taking homogeneous
parts with respect to weights, we see that -(t &d (XB)XQ)[p} is

the component of R in 5;m+p8'

Now

(t aa <x6>x&>[P} = PN, e,

6o yIPl | ang Ngg = % 1.

8
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It follows that (X&+8)[p] is computable. (It is easy to check
. . [p}

* - *
in this way, that (Xa+8) =+ Zpa+p8)' As every short root can
be obtained in the form o+f with o long, all (Xg)[p} are compu-
table (8§ € Z). We are done, if we prove the same for the

(Hé)[P}. Now

~ n .
Ad(x_ (£ (xo)lPl o (o - oppr 4 3 oyl
o o a o j=2 ]

[pl PN ) S (a3 [pl
* - * *
(Xa) t (Ha) + jEQ (t Yﬁ) + R', where Y% € ga-ja’

R' ig computable.

)[p]

Taking homogeneous parts again, we see that (H; is computable.

(ii) The uniqueness is proved in the same way as for g*,
the existence follows from the fact that g is the Lie algebra
of the algebraic group G (see [ 11, (3.3)).

(iii) We have proved (Z;)[p] = 0, vy degenerate sum. So we
still have to prove that ((ker W)O)[P] = 0. As ker 7 is abelian
we have for short roots a:

0 = Ad2<x_a(t)> <z5a>[P] = (zp, 4 Py s 2Pz )Pl
0+ tP Z%P} + 0, where Zi € (ker ﬂ)—ipa‘

The elements of type Z., span (ker W)O (see Proposition 5.2).

0
It fellows that (ker w)[p] = 0.

Now we define a [p]-structure on g by the relation:

(m X)[P] =n X[P].

If w X = 7 Y, then %X~Y is central, (X-Y)[P] = 0, so

X[P] = (Y+(X-Y))[P] = Y[pl Hence [p]l is well-defined on n(g*) = g.

It is invariant under Ad, so it is the [pl-structure of (ii)}.

6.3. REMARKS.

1) From the procof of (i) it follows that the [p]=-structure of (iii)
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is defined over ¥

2) Suppose that g* has a [pl-structure as in (i). Then

(H&)[p] = Hé for long voots a, because the computation of

(H&)[p] is "the same" as the computation of (Ha)[p].

But (H*)[P] # H* for a short. For suppose (H*)[p] = H* is
o o o o

also true for short roots.

Then (H)!P) = H* for all H* € (g*) , hence for all H* € (kenr g

o°
This contradicts (ii). (see Corollary 2.17). If o is a short root
then H; is not a semisimple element but the sum of a semisimple
part, spanned by the Hg with 8 long, and a nilpotent part in

ker w. (See [20], p. 119 for definitions).

3) TFor a long (X&)[P] = 0, but for a short (X;)[P] # 0. One
reason for this inequality is that otherwise the computation of
(H&)[p] would not differ from the computation of (Ha)[p],which
would contradiet remark 2.

4) The existence of a [p]-structure as in (i) can be proved along

the same line as the uniqueness. We don't need this method. (See

section 10).

§7. The extension ¢ : G* = G.

We lock for an interpretation of w : g* @ g as the differential
dé of a homomorphism ¢ of algebraic groups (see [1], (3.3)). In this
section we make some remarks about such a homomorphism.

We suppose that the codomain of ¢ is an almost simple Chevalley
group G, having g as its Lie algebra.

Let G* denote the domain of ¢. If ¢ is such that d¢ is a universal
central extension of g, then the restriction of ¢ to the connected
component of G* also has that property. Hence we suppose that G*

is connected. In 2.1 we only considered the case that G is simply

connected. We give a justification for that choice now.
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7.1. LEMMA.

Let 6 be an almost simple Chevalley group, with Lie algebra g,
gsuch that

(iy g-=1g, 8l>»
(ii) g #g*-

Then G is simply connected.

PROOF. Let G1 be the simply connected Chevalley group that covers

6, and let g, be its Lie algebra. We claim that the natural homo-
morphism T: g4 - g is an isomorphism.

T+ is well known that the image of 1 contains all 8y o € Z

(see [ 2], 2.8).

From (i) it follows that g is generated by these g, . So t is sur-
jective. Then t is an isomorphism, because dim g = dim gq- We may
conclude that g, = {51, 51], g; #+ g4

This situation was analysed before. We see that there are degene-
rate sums and that the order of F/TO is a power of p (see Corol-
lary 3.14 and Lemma 2.10). The Lie algebras g, g, are obtained

from lattices M, Ml in gps with M 2 Ml' The group M/M1 is iso-
morphic to a subgroup of F/FO. (see [ 21, 2.86).

So its order is a power of p. But LM/Mi = 0 because T is surjective.
It follows that M = Mi’ hence G = Gi'

REMARK. If we don't require that G is almost simple, then the proof
shows that g is the direct sum of the Lie algebras of the almost simple
factors of G. Then it is easy to see that ; : g* > g is the direct

sum of the corresponding universal central extensions.

7.2. We return to the notations p, g, 6, .. of 2.1. Suppose that
there is a homomorphism ¢: 6* = G as above, that is, such that G*
iz a connected algebraic group and d¢ is a universal central ex-

tension of g. The Lie algebra of G* can be identified with g*.
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Then d¢ is identified with w.

We will henceforth indicate this situation by the statement

(1) d¢ = m.

Assume (1).

The Lie algebra g* has a [pl-structure, which is invariant under
Ad: G* > Aut (g*).

As T is surjective, ¢ is also surjective.

For x € G, choose y € G*, such that 6y = x.

Then m o Ad(y) = Ad(x) o 7, hence Ad(y) = Ad(x).

We see that the [p]-structure on g% is invariant under Ad.

So it is the [pl-structure discussed in 6.2,

7.3. The Lie subalgebra ker 1 of g* 1s an abelian Lie algebra
with trivial [p]-structure (see Proposition 6.2). So (ker ¢)0,
i.e. the connected component of ker ¢, is the unipotent radical

Ru of G (see[1], Cor. (8.2), (11.5)). In fact we have:

7.4. LEMMA.

Ru = ker ¢

PROOF.

G*/Ru is connected, and there is a separable homomorphism

P G*/Ru > G. The group G is simply connected. The group G*/R,
has the same dimension as G, the same semisimple rank, the same
root system. We see that there is an inverse for Y, or that ¢ is
an isomorphism. (See [ 7], Exposé 23, Théoréme 1). So

ker ¢ = ker (G* - G*/Ru > G) = ker (G* - G*/Ru) = R,

7.5. Now let G* be a connected algebraic group with Lie algebra g*,
g* # g. Suppose that the [pl-structure of g" is invariant under Ad.
Let Ru be the unipotent radical of G*, with Lie algebra r,-

Then g' = g*/gu is the Lie algebra of the reductive group G' = G*/Ru.
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This group G' is its own commutator, because g' = [g', g'] (see
[ 11, (3.12)). So @' is even a semi-simple group. Now we use the

following lemma.

LEMMA.

In the Lie_algebra g' of a reductive algebraic group G' there

is no central nilpotent element.

PROOF. Let ¢ be the set of central nilpotent elements. It is an
ideal, invariant under Ad. It has no weight space with weight

zero, because 56 consists of simi-simple elements. Let Sy be a
weight space of c¢. Then o is a root, so Sy F g& and =0 is con-

tained in the Lie algebra of a subgroup of type SL2 or PSLZ.

Hence it is sufficient to prove the Lemma for SL. and PSL

2 22

which is easy.

7.6. Applying the Lemma, we see that the image of ker 7 in g's
which consists of central nilpotent elements, is zero. So
(1) ker m Cp .

—u
Let i denote the image m(r,) of r, in g. It is an ideal that
consists of nilpotent elements.

We have 1 = Z i(a)’ where (o) runs over local weights.
(a)

(i.e. i(a) = {X € i|fH,, X] = <a,B> X, for all 8 € =}. Local

83
weights are elements of I'/pl, global weights are elements of T).
The term 3(0) is zero, because h = &) consists of semi-simple

elements. (Recall that £ N pl' = &). So if B is a global root,

that behaves like (-a) locally, then [X 0. On the

8> ()]
other hand [XB’ g_B] # 0. We see that i = 0. Together with (1)

this proves

(2) r = ker w.
L3
1 o~ *

So g' = g*/r

R
o
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Hence g' is not the direct sum of two proper subalgebras, and G'
is almost simple. (Use the remark in 7.1).

Then G' is isomorphic to a Chevalley group over K (see [ 71, cf.
[ 21, 3.3(6)), so we can apply Lemma 7.1. We see that G' is
isomorphic to a simply connected almost simple Chevalley group
with the same rank and the same dimensicn as G.

Then it follows that ¢ = G' (use 2.8, Table 1).

7.7. We conclude from the above: Over K the following two
problems are equivalent:

(i) To find a homomorphism ¢ such that d¢ = 7.

(ii1) To find an algebraic group G* which has g* as its Lie

algebra, such that the [p]l-structure on g" is invariant under Ad.

REMARK.

We shall use the first formulation in our solution.

7.8. DEFINITION,.

Let G,H be connected linear algebraic groups, ¢: H > G a homo-
morphism of algebraic groups such that d¢ is a central extensiocn
(so ¢ is surijective and separable). Then ¢ is called an infini-

tesimally central extension of G.

7.9. Consider an infinitesimally central extension ¥: H = G where
G is a Chevalley group and H is a linear algebraic group with
perfect Lie algebra h (i.e. h = [h, hl). It follows from Propo-
sition 1.3, (v) that there is a surjective homomorphism of Lie
algebras p: g* = h. It is easy to see that p is a universal cen-
tral extension. Analogously +to the problem of finding a homomor-
phism ¢ with d¢ = 7 (as in 7.2), there is the problem of finding
a homomorphism y such that dy = p. This last problem will be dis-

cussed in section 13 (see Theorem 13.9). Note that such a homo-
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morphism ¥ is an infinitesimally central extension and that the

same is true for ¢ ., X.

§8. Extensions of G by a G-module.

In this section we discuss extensions of a group G by a

G-module V.,

8.1. Let G be a connected algebraic group, defined over k.
Let V be a (finite dimensional) G-module over k (i.e. V is

defined over k and the action is defined over k).

NOTATIONS.

The semi~-direct product of G and V is denoted (V,GW, and its

(

elements are denoted v,g\.

r 1)

V‘7g = rV+g'V'> gg'\'

So (v,g\
The projections (V,G\ - v, (V,G\ =+ G, and the injections

v > fy,6Y, ¢ = v,6) are denoted Py» Pg» iy» iy respectively.

G
Let V'be another G-module, and ¢: V = V' a homomorphism of G-

modules. Let ¢ : G > G, ¥ : G > V be morphisms. Then we denocte
f¢,9) the morphism that sends (v,g) to (¢v,¥g', and (x,¥' the

morphism that sends g to fxg,yg.

DEFINITION.
Let G act on two varieties X and Y, and let f: X = Y be a morphism.
Then f is called G-equivariant if g.f(x) = f(g.x) for all g € G,

x € X.

DEFINITION.

An extension of G by the G-module V is a homomorphism ¢: H = G
with the following properties

(i) ¢ is surjective and d¢ is surjective. (So ¢ is separable and

G = H/ker ¢. See [ 11, (6.6)).
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(ii) ker ¢ is abelian. (So the represention Int of H in ker ¢

factors through G).

(iii) There is a G-equivariant Isomorphism of algebraic

groups T : V > ker ¢.

We say that ¢: H 2> G is a k-extension 1if H is defined over k

(i.e. H is a k-group) and ¢,T are defined over k.

8.2. THEOREM. (Existence of a T-equivariant cross-section).

Let ¢: H > G be a k-extension of G by V,T a k-split maximal

torus of H. Then there is a morphism s : G - H, defined over k,

such that ¢ o s = id and
(1) s(¢T) = T
(i1) Int(t)(s(g)) = slInt(¢ti(g)) for t € T, g € G.

(So s is T-eguivariant).

PROOF.

In fact we will only need the structure of V as a T-module, not
the structure of V as a G-module. First we use the method of [3 ],
9.5, to get a T-equivariant cross-section s, defined over k.

There has to be made a slight modification in the proof of loc.
cit. One has to put s': x P c{x) -+ s(x) instead of s': x P s(x) - c{x).
With this modification the proof also works in our case. We get a
cross-section 8 that satisfies (ii).

We have to change s in such a way that it also satisfies (i).
Hence we look for a T-equivariant morphism r: G = V, defined over
k, such that

(1) vt s(d(t)) = t for all t € T.

If r exists, then rs satisfies both (i) and (ii) and we are done.
The restriction of ¢ to T is an isomorphism to ¢T, because ¢ is
separable and ker ¢ is unipotent. Let ¢ be the inverse of this

isomorphism. Then (1) can be written as:



61

(2) () = p(t)s(t)™! for all t € ¢T.

The righthand side of (2) is a morphism r' : ¢T = V, defined
over k, that is T-equivariant, hence it maps ¢T into the weight
space V5. We claim that it can be extended to a T-eguivariant
morphism r : 6 > V5, defined over k.

For such a morphism r the T-equivariance means

(3) ro Int(t) = r for all t € ¢T.

So consider the representation of the k-split torus ¢T in the
affine algebra AlG] of G, defined by t.f = f o Int(t). (So
(t.£)(x) = £(Int(L)(x)) for x € G).

This representation is defined over k, and each f is contained
in a finite-dimensional subspace, stable under 4T. Hence we

have a decomposition into weight spaces. If Al ¢T] is the affine
algebra of ¢T, then T : A[G] = A[¢T] is surjective, defined over
k. Let ¢T act trivially on Al ¢T].

Then t is also a homomorphism of ¢T-modules. (t(f) is the restriction
of f to ¢T). We conclude that T(Ak[G]O) = Al oT].

It follows that the righthand side r' of (2) can be extended to

a morphism r, defined over k, satisfying (3).

REMARK

The condition "T is k-split" can be dropped.

We only need that T is defined over k, because it can be proved
without the assumption about the splitting that the weight spaces

VO’ A[G]D are defined over k (see [1 1, 9.2, Corollary).

§9, The Hochschild groups.

We will use rational cohomology to describe ¢ : G* - G (see 7)
as an extension of G. In this section we recall some facts about

this cohomology (cf. [11], Ch. II, §3).
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9.1 DEFINITIONS AND NOTATIONS.
Let G be a connected algebraic group, defined over k. Let V be
a (finite dimensional) G-module over k.

A (regular) n-cochain of G in V is a morphism 6 x ... x G > V,

where G x ... X G denotes the direct product of n copies of the
variety G. (If n = 0, then this product consists of 1 point).
We put

¢™6,V) = {n-cochains of G in v},

i

CQ(G,V) {n-cochains of G in V, defined over k}.
The set C™(G,V) can be viewed as a vector space in a natural way.
The subset Ci(G,V) is a k-structure on this vector space.

The boundary operator 37 : ¢™(G,v) = Cn+1(G,V) is defined by

n . -
(9 f)(gl,...,gn+1) = gl.f(gz,...,gn+1) +

z i y + (-0 e )
RIEC Dhe 30-FINRRRY- 75 - FUBPERREY - S €q0- 28,0
1=1

The boundary operator is defined over k.

The n-th Hochschild group of G in V is the group HYG,V) =

= (ker 37)/(Im Bn_l). It is denoted H™(V) if no confusion is
possible. An element of ker 3" is called an n-cocycle, an element

n-1

of Im 3 igs called an n-¢obounderv.

The class mod(Im Sn-l) of an n-cocycle f is denoted f. Let ai
denote the restriction of 3" to CQ(G,V). Then we put
n - n n~-1
Hk(G,V) = (ker ak)/(Im 3 ).
It is also denoted H;(V), and it may be identified with the
k~structure of H'(V), consisting of classes mod(Im Bn-l) that

meet Ci(G,V). It is easy to see that:

9.2 LEMMA.

If k' is a field extension of k, then

n n
Hp, (V) z HL(V) 8, X'
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9.3 We want to give interpretations for n=-cocycles and
n-coboundaries, n < 2 (cf. [11], Ch. II, §3 or [ 5], Ch. X §u,
Ch. XIV 8§u).

n = 0 The only coboundary is 0. The cocycles correspond to
elements v of V, fixed by 6. They are called invariants.

n = 1 Let 'V,8) be the semi-direct product of V and G (see
8.1). Every 1-cochain f defines a section s : x v (f(x),x) of
Pp- This section is a homomorphism if and only if f is a cocycle.

n = 2 Let ¢ : H> G be a k-extension of G by V. Then there
is a section s of ¢, defined over k. (See [19], Corollary 1 to
Theorem 1, or the remark in 8.2). So H is isomorphic to the
variety V x G by means of x » (x{s¢x)~!,¢x). We transfer the
group structure to V x G by means of this isomorphism.

Put f(x,y) = s{x)s(y)s{xy)™*'.

Then (v,g2)(v',g') = (vi+g.v' + f(g,g"),gg') in V x G and f is a
2-cocycle. Every 2-cocycle can be obtained in this way. Two
2-cocycles differ a coboundary if and only if they are obtained

from isomorphic extensions. (Or from two sections in the same

extensicn),

9.4 Let €: 0 > A—> B—2+ ¢ > 0 be an exact sequence of G-modules
over k. Then there is a long exact sequence
OéHO(A)_H_O._(._L}_,HO(B)_HO_(QL,HO(C) 50(8) H (A) H (1)
1 1
HY (B) __H..LEQ_, 1l () _.§_(_€L> H? (A)

where the connecting homomorphisms Gi(Q), also denoted Gi, may
be defined as follows:

Choose a section ¢ of p, compatible with the linear structures.
(In fact we only need that ¢ is a morphism of varieties such

that ¢ ¢ p = id. We just make a better choice here.)



64

Let f be an i-cocycle in C. Then ¢ o f is an i-cochain in B.
The (i+1)-coboundary 3 (¢ o f) has its values in A. So it is
an (i+1)-cocycle in A.(It is not necessarily a coboundary in A).

Its class in Hl+1(A) is 61(?).

9.5 EXAMPLE.

Let i = 1 and let f be a l1-cocycle in C. To f corresponds a
section s : G > 1C,8) of Pg- (s = ff,ia").

Let ¢ be the natural homomorphism fp,id) : (B,&) - (C,8). Then
an element of §'(F) corresponds to an extension that is
isomorphic to the extension Py ® v+ P 1 (sB) = G. (Note that
Pg © ¥ is the Py of fB,G6Y). That extension is a subextension,
with kernel A, of (B,6) - G.

One may take as section of Pg © V¥ the morphism (o o f£,id}.

(o0 : C > B as above).

9.6 Now we return to the case that G is a simply connected
Chevalley group, defined over k, where k is a field of

characteristic p > 0.

THEOREM. (cf. Steinberg [23]).

Let L be a G-module over k, on which G acts trivially. Then

Hi(G,L) = 0.

PROOF .

We may assume that k is the algebraic closure of EFP, because
of Lemma 9.2.Let f be a 2-cocycle, defined over k. There
corresponds to f a k-extension ¢ : H = 6 of 6 by L, with
section s.

Now some well-known results of Steinberg (see [23], Th. 3.2,

3.3, 4.1) show that there is a homomorphism ¢ : G(k) - H(k)
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with ¢ © ¥ = id. We shall show that § is a morphism. Then ¥ is
a section of ¢ that defines the cocycle 0, hence T = 0.

As ¢ is a central extension (i.e. ker ¢ is in the centre
of H), we have
(1) 9((x,y)) = (P(x),P(y)) = (s({x),s(y)) for x,y € G(k).
(Central trick for groups, cf. 1.2. See 2.1 for notations). Now
G(k) is its own commutator group. (As k is algebraically closed,
this follows from g = [g,g]. It is true in the general case too.
See [ 21, 3.3 (5)).
So (1) determines Vy.
Take a € X* such that a® # 1. (cf. [ 23}, 9.1). Let ¢« € Z, t € k.
Then ¥(x () = W((hu(a), xa((ai-l)—lt))) = (sha(a),sxa((az—l)—lt)).
(See 2.1 for notations). We see that the restriction of ¥ to
{xa(t)|t € k} is a morphism. It follows that the restriction to
{hB(t)[t € K"} is also a morphism. (B € £). Then the restriction
to the open cell (see (2.1)) is a morphism, because the open cell
is the direct product (as a variety) of the subgroups
{x, ()|t € X}, 0 €Z, and {hB(t)It € X*}, B simple (see [2 1,
3.3 (3) and [8 1, Proposition 1). By right translation we see that

¥ is a morphism locally, hence ¢ is a morphism.

§10. The existence of ¢ : G* - G.

We now return to the problem of finding ¢ : G* - G such that
d¢ = m (see 7.2). In this section we give a constructive proof
of the existence of ¢. Uniqueness will be discussed later, in

section 13.
Let G,g*,m,p ,T,Ad,... be as in 2.1, 3.1, 3.4.

NOTATION.

The G-module ker w, that is described in 5.2 is denoted r,-
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10.1 THEOREM.

Assume £ N pl' = @.

There is a k-extension ¢ : G* > G of G by r, , such that d¢ is a

universal central extension of g.

10.2 COROLLARY.

If 2 N pl = @, then there is exactly one [ pl-structure on g* that

is invariant under Ad (see 6.2 and 7.2).

10.3 PROOF OF THE THEOREM. (This proof is lengthy).
We may assume that ry # 0, or, equivalently, that degenerate
sums exist. Constructions of ¢ will be given type by type, using
the classification of degenerate sums.
First we describe the general method that underlies these
constructions. To get the extension of G by r,» we look for a
suitable 2-cocycle f, of G in r . We now describe how this
2-cocycle is obtained and how it is checked whether it is suitable.
1° (SKETCHY)
Let
81 : 0~ gu——g+ C —2 A =~ 0 and
52 : 0> Ll-—E* A—% g1 L, = 0 be exact sequences of
G-modules over k, such that G acts trivially on L1’L2’ dim Ly, = 1.
Take a non-zero element of (Lz)k‘ It corresponds to a O-cocycle
f0 of G in L2, defined over k. Using the short exact sequence
& : 0 >ker T > B > L, > 0, we get an element

2,2
(4] T 1
§ (82’2)(f0) of HL (ker 1).
The sequence
0 - L1 > A - ker 1 = 0 is exact, so the sequence

H‘(Ll) - H' (A) » H' (ker 1) > H*(L,) is exact.
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As H’(Li) = 0 (see Theorem 9.6), there is an element ?1 of

H' (A) that is mapped todo(gz,z)(?o). In fact ?1 is unique,

because H‘(Ll) = 0 too. (This follows from the fact that G is

its own commutator subgroup.)

Now we choose fQEES‘(Ei)(?l), and check whether f, is suitable,
i.e. whether f, defines an extension ¢ such that d¢ is a universal

central extension.

2° (ELABORATE).
There is some freedom in the choice of representatives and in the
way they are constructed. In order to be able to check whether
f, is suitable, we will make these choices in a convenient way.
We start with £y again,
(1) fg € C%(G,Lz), corresponding to an element of (L,), that we
also denote fj. Choose a T-equivariant linear section ng of 1,
defined over k. (1 occurs in the sequence 82). So
(2) T o ny, = id. Put
(3) 14 = a°(n1f0). It is a representative of 60(8232)(?0) in
Hi(ker 7). (See 9.4). S0 it corresponds to a homomorphism
f11,id) : 6 » fker 1,8), defined over k. Let x € G, h € T. Then
fll,id\(hxh") = r(hxh“‘).nlfo - nqyfps hxh=!) =
fhx)ony (071 fg) - ny(hofy), hxh™'Y =
fh.(x.nlfo) - h'(“lfo)’ hxh™iY,
We see that {11,id\ is T-equivariant, if T acts on G by Int and
on 'ker 1,8) by Int o ig. (ig is defined in 8.1).
Now we look for a i-cocycle f1 in A, such that
(4) 0 o £4 = 1,. (Recall that ¢ : A > B.)
Equivalently, we look for a homomorphism rfl,id\ : 6> A,8) such

that fc,id\ffl,id‘ = (1,,id).
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Choose a T-equivariant linear section ny ker T = A of o,
defined over k. So

(5) o o n, = id.

Let G, denote the image of (ll,id\ and let H; denote its inverse
image in fA,8). Then fog,id) : H1 d G1 is a central extension with
kernel (Ll,l‘. As (11,id‘ is an isomorphism, defined over k, the

group G1 is k-isomorphic to G. Furthermore H, is the image of

1
the morphism L; x G > H,, defined by (v,g) {v,l‘fnZ 0 ll(g),g\.
This morphism is a k-isomorphism. So Hy is also defined over k.
We see that fo,id) : H1 nd G1 is a k-extension. Then it follows
from Theorem 9.6 that Hy > 61 is isomorphic over k to the trivial
extension Ly x G1 - Gl’ where L, x G1 denotes the direct product
of groups. So there is a homomorphism Yy P 6q > Hps defined over
k, such that

(6) fo,id o y, = id.

Now we choose f1 such that

(7) ffi,id‘ =y, 0 fll,id‘.

Then f, is defined over k, and it follows from fg,id) o (fl,id\ =
= rll,id\ that f, satisfies (4). We claim that

(8) f1 is T-equivariant.

(9) fl(xa(t)) =n, 0 ll(xa(t)) for ¢ € £, t € k.

(10) £,(T) = 0.

Proofs:

For h € T we have 1,(h) = hong £y - ”1f0 = 0. So the image T, of

T in Gy is igT = f0,7V. (Recall that Gy = (1,,id ¢ ). Let Op

1
denote the zero element in A, 0p the zero element in B. Then
rLl,l\ is unipotent and commutes with (OA,T‘. So (OA,h1 is the

semisimple part of wifoB,h‘ for h € T.
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It follows that (fl,id\(h) = wlfoB,h\ = foA,hW. This proves (10).
It also follows from wlfoB,h\ z (OA,h‘ that y,; is T-equivariant.
We have seen above that (ll,id\ is T-~equivariant, hence ffl,id\
is T-equivariant. That proofs (8).

oo,

_ i . . .
Now let f,(x,(t)) = iflt vi, vi € A, (£, is a morphism with
f,(1) = 0). We have for h & T:
n - n . s
T tT(hov) = haE (xg(E)) = £ (x (h%)) = T M.
.~ . i
i=1 i=1
(kY denotes the image of h under v). It follows that vy € ALl
The kernel of ¢ is contained in the weight space Ay, 80 the
restriction of 0 to 8 A,

>0 ¢

Hence fl(xa(t)) =n,o0 oo fl(xa(t)) = n

is an isomorphism, with inverse n,.
o © 1i(x (1.

That proves (9).

Finally, we choose a T-equivariant linear section ng of v, defined
over k. So

(11) v o ny = id.

We put

(12) £, = 3'(ng o £,).

(13) Then f2 is a 2-cocycle in LS defined over k, corresponding
to the k-extension ¢ : G* - G, where G* is the inverse image of
(fl,id\G under the map v,id) : fc,8' » (A,8), and ¢ is the
restriction to 6 of py : fC,6) » G. (See Example 9.5). It is

seen as above (see proof of (6)) that ¢ is a k-extension.

Put

(14) s = rng ° fl,id‘.

Then s is a morphism as in Theorem 8.2. We have to check whether
d¢ is a universal central extension. Of course, the result depends
on.fi,éé. First we prove that d¢ is a central extension.

Put

= { ]
(15) R, r 1.
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Then R, is the unipotent radical of G*. We identify its Lie
algebra with T, The action of G on Ru is of the form p ¢ Fr,
where p is a rational representation (see Proposition 5.2). As
d(fr) = 0, this action of G on R, induces a trivial action of

g on r,.

In formula: d(Ad ¢ s)(g)(r,) = 0.

The Lie algebra g; of G* is the direct sum, as a vector space,

of r,, and (ds)g, because (v,g) * vs(g) is an isomorphism of
varieties Ry X 6 2 G*. So ad(g*)(r,) = ad((ds)g)(p d+ad(r )(r ) =
d(Ad o s)(g)(r,) = 0. This proves that d¢ : g] > g is a central

extension. (Its kernel is r .)

u
So we have a homomorphism g* = g} with image [g{,g&]. (See
Proposition 1.3, (v)). Now suppose g} = [g},gjl. Then g* - g}
is a surjective isomorphism, because dimensions are equal. We
conclude:

(16) If [g{,g{] = gi, then d¢ is a universal central extension.
Note that this condition is also necessary.

One has d¢[gi,g§] = [g,gl = g. So [51’51] = g; if and only if
r, is contained in [g],gj]. Hence we consider r N [g},g]]-

It is a G-submodule of r , because both r, and [gz,g;] are
invariant under Ad o s. Consider the following condition:

(17) [ (ds)g,(ds)gl N r, generates r, as a G-module.

As [(ds)g,(ds)gl = [g},g;] (central trick), condition (17) is

equivalent to {gz,gi] = gi. The G-module r is generated by its

u
1-dimensional weight spaces (QU)Y, Y degenerate sum (see

Proposition 5.2). For each orbit of degenerate sums one (gu)Y
suffices. We have [(ds)ga,(ds)gg] = [(gz)a,(g{)gl C (Eu)u+6’

because dé is T-equivariant and d¢ o ds = id. (Use central trick.)
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Hence we formulate the condition:

(18) For each orbit of degenerate sums, there is a pair of
independent roots o,B, such that

1) a+B is in the orbit,

2) [ (ds)X (ds)XB] # 0.

o
It ig clear that condition (18) is equivalent to (17). In the
calculation of {(ds)Xa,(ds)Xgl, we need a description of the
composition [ ,] on gi. The action of G on C induces one of g on C.
In the Lie algebra (C,g\‘of (¢,8) we see from differentiation of

Ad that

[fv, XY, M, Y] = [X.w - Y.v, [X,¥]], for X,Y € g, v,w € C.

(See [ 11, 83 for a similar situation.)

The Lie algebra gj is a subalgebra of fc,g), so

(19) [(ds)X,,(ds)Xgl # 0 if and only if X, .nz(df )Xg # Xg.n (df )X,.
It follows from (9) that (df )X, = n,(d10X,. And 1,(x,(t)) =

£

xa(t)‘nif So (dll)xa = Xa.nlfo.

o~ N1t
Summing up we get:

10.4 PROPOSITION.

The sequences fl,fz yield a k~extension ¢ as in Theorem 10.1 if

and only if one of the following equivalent conditions is satisfied:

(C1) (g1.8]l = gf»

(C2) [g1.8%] N r, generates r, as a G-module,

U

(C3) For each orbit of degenerate sums, there is a pair of

independent roots a,B, such that

1) a+f8 is in the orbit,

2) [(ds)Xa,(ds)XB] #* 0,

(C4) For each orbit of degenerate sums, there is a pair of

independent roots a,8, such that
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1) a+B is in the orbit,

2) Xa.(n3n2(XB.n1fO)) * XB.(n3n2(Xa.n1fO)).

10.5 The corresponding diagram is:

(A1l maps are T-equivariant, but the n; are not G-equivariant).

0
l
Ly
le
0 r —Hs 0 Y p

ol A

0— ker T—B

If one of the conditions (Ci) is satisfied, we say that condition

(C) is satisfied.

10.6 (CASE BY CASE).

Now we have reached the point that we have to use the classification
of degenerate sums. For each possible type we have to give 81,82
satisfying condition (C). They have been found by trial and error.
For non-exceptional types there is a non-trivial group F/FO, which
enables us to construct non-trivial 1l-cocycles from lattices in &¢-
For exceptional types we have to study other representations then
the adjoint one. We will use the notations that are introduced in 4.

Ay, characteristic 3.

Root system {a,,a,sa %0, Taq 270y 0y o}
Put o= B=a2, Y= atp. Let MSt denote the standard lattice in g¢>
generated by XB' It contains all X4 and Hg, § € Z. The G-module

Mot is isomorphic to g and contains an invariant 1-dimensional
s
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subspace L, generated by {H_+H_,} . (It is the centre of g,
o B Mgy

which is non-trivial because I‘/l"0 has p-torsion.) There is an
admissable lattice M that is spanned by %(HG+H_B)and Mgyp. (cf.
4,6). Let o : LMst = Ly be the canonical homomorphism. Put

B = Ly. Then dim A = dim B, ker o = Lis so L, = B/cA is

1-dimensional. (This is also clear from the fact that L, = LM
2 /Mst

We get the exact sequence 52 : 0~ L1 L, p—<s p—= L2

where G acts trivially on LysL,. As A = g, A fits in the exact

-0,
sequence 81 : 0> £y~ gr > g > 0.
Choose £ = {%(HQ+H_B)}M/MSt. We have to check condition (C) now.
One has
= 1 -
Xa.(n3n2(xy.n1f0)) = Xa.(nsnz(XY.{-;(Ha+H_S)})) = 0, and
Xy Cngng (Ko - (3(Hg+H_g)3)) = =X, (ngnylX}) = -ad(X ) (X3) =
T7* L
~2a+y # 0. (Use Proposition 3.3).
In the same way [(ds)XY,(ds)XB] = {iZ§+Y,O‘ # 0. It is seen
from 2.8 Table 1 that all orbits of degenerate sums are covered

in this way.

10.7 REMARK.

One can avoid L4 by dividing out the 1-dimensional submodules
in g* and g(=A). Then one doesn't need Theorem 9.6. In fact one
returns to the following classical situation:
0-+>r,»>C~>B~>1L, >0 is a resolution of L,. In the same way
the construction for Dy and F, can be simplified. But it is not
possible to do the same for By, G, in characteristic 2. At least
not for the constructions that will be given below. In the case
of Gz in characteristic 3, we will use a construction where L1=0

automatically. So we will need L, just in those cases that r, has

a 1-dimensional G-submodule (see Proposition 5.2).
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Then we will use a sequence 81 in which A has a 1-dimensional
G-submodule, which is the image of an indecomposable submodule

of C that has dimension > 1.

10.8 A3 and Dy, 1 > 4, characteristic 2.

We exploit the centre of g in the same way as above. The root

system is Z = {%e.

i iejli < i< j <1}. (See [4 ] "Planches" and

use that Aj = D3). The element Xe in g¢ generates a standard

1*€3

lattice Mst’ corresponding to g. (i.e. LMst >~ g). Choose H =

1=1
+

He 4e R He e If 1 is even, then H € 2Mg4+; if 1 is odd,
1 1 i=1 1

then {H}Mst gener;;is a 1-dimensional G-submodule. (It is the
centre again). Anyway, 3H and Mg, span an admissable lattice M'.
In Lyt tre element {}H}y. generates a 1-dimensional G-submodule.
So we can define the admissable lattice M, spanned by ZH and Mgy -
Let o : LMst e LM be the natural homomorphism, and choose

€, : 0> Ly > Ly, > Ly~ L, 0.
Again we can identify A = Lyge With g, and we put

81 :0>r, >g" g 0.
-Choose f0 = {3H}. (If 1 is even, then there is another factor

of the centre. But that factor does not give the right cocycles).

We check condition (C):

XEl+€2 . (n3n2(X€ _82.n1f0)) g,

éd(XE ) (X ) =

r#
1~€9 Eqte, 2281 0.

X . (nyn, (X Nefn))
€9-€4 372 €1+82 170

10.9 Dy, characteristic 2.

If we use the same construction as above, then it appears that
one orbit of degenerated sums is missing:

[(ds)xel_ez,(ds>x€1+€21 # 0 and [(ds)Xel_Ez,(ds)X€3+€q] # 0,

} = 0.

but [(ds)X€1+€2,(ds)XE3+€q
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So we have to do something about the orbit of AP
Say r, = 4 & r, ® ry, where r, is the component that corresponds

to the orbit of 2€,, r, to that of e,-e,+e,+g,, ry to the last one.

1 72
What we have now is a 2-cocycle f2 in r, that behaves the right

way in ry ® r,. We divide out rj and obtain a 2-cocycle f%z of

G in ry 8o, We need a complementary cocycle in L3> to get a
cocycle f%23 in - From f%z we can get a 2-cocycle f% in ry

by dividing out r,. It is transformed into a suitable 2-cocycle

in ry by the automorphism of D, that interchanges the first and

the third orbit.

We will use a slightly different method now. (It is not essentially

different.) In g the element H generates a

+ H
€4+, €4-€,
1-dimensional G-submodule. S0 we can choose the admissible

lattice M" = 1Z(H ) o+ Moy instead of the lattice

+ H
€1%€y €17€2
M = Z(ZH) + M_,. Proceeding the same way as we did with M, we get
a 2-cocycle for which [(ds)g,{ds)g] N r, = o, 8 ry. Now we divide
out the submodule r; & r,, and get a 2-cocycle fg in ry. The final
1

2-cocycle f2

29 fg in p, satisfies condition (C).

Here one has to take for 81 the direct sum of

6 >r, 8, >g*/rg>g>0and 0 >3 > g*/ry &, > g >0,
while 82 has to be the direct sum of the two corresponding Ez's.
Note that the sum of the coeycles that behave well inr, @ r,
and p, ® rs respectively, is not behaving well in r,. That is

the reason that r, has to be divided out one time.

10.10 REMARK.

The reasoning we used for Dy, shows:

It is sufficient to construct for each orbit of degenerated sums
a system (81,82), such that there are a,8 as in condition (C3) or

(cuy.
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10.11 By, 1 = 5, characteristic 2.

We have seen earlier (in 3.11) how the Chevalley group GBl can
be embedded in the Chevalley group GD1+1' From now on we will
suppress the subscripts 1 in By and 1+1 in Dy .-

The embedding Gy ~ Gy induces a homomorphism gz ~ E&p> which in
its turn induces a homomorphism of &E into 55, given by

X* b Y +X* and X3 4 > X* .
. . , - LTe e
& €i%€1 41 176141 —Ei7Ey te tes

The image of (gu)B in £h is spanned by the elements Z;gi (i <1y,

x + Z* . We see that it has the same dimension as (r Ji.
2€l+1 2€l+1 —u’B
Hence there is an exact sequence of Gp-modules

fl 0= (p)dpg > (g")y A0,

As (gu)B is mapped into (gu)D, there is a homomorphism
* o
A= (g )D/(Eu)D = gy

*

Its kernel is 1-dimensional. (It is spanned by the image of Z5.

1+1
For D we used an exact sequence

0~>L; >gy>B>L, >0, where dim L, = 1.
Now we replace gy B by A~ B, i.e. by the composite of A = £p
and Zp = B, and get an exact sequence

¢

We have to check condition (C) again. For that purpose we may

g - L, A~ B~ L2 - 0, where dim L, = 2.

use the same calculation as we did for type D itself. It is also
possible to calculate [ (ds)Xy,(ds)Xgl using the fact that the

Lie algebra of GB is isomorphic to gﬁ.

10.12 B3, characteristic 2.

We still have an embedding Gpy ~ GD1+1 (1 = 3 now). In the case
of Dy we did not use an exact sequence of the type

0 > (rdp > 85 > &y 2> 0, but a direct sum of two sequences:
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0=2ry & ry > gp/ryg >gy > 0and 0 >ry; > gh/ry & r, > gy > 0.
The image of (£u>B in gg is spanned by the elements Zzei (i=1,2,3),

Z3 + Z* = 1.

2 -2¢,° Zg + + + * 23 + + -g,* 5i
€y £y S €4S, € ¥SgE e, S161¥8,E,t53E7E
So (gu)B is mapped injectively into gﬁ/gs. There is an exact

sequence €1 : 0> (r)g ™ gy/ry > A >0, and a natural homomorphism
A - gp> with 1-dimensional kernel. In the case of Du there was

used an exact sequence 0 > Ly~ gy~ B > L2 - 0, corresponding

to the sequence 0 > r, & r, *'36/23 2> gpn ~ 0. Again we replace

&p > B by A > B, and we get an exact sequence 82 N i L1 - A -

> B~ L, > 0. It is easy to check condition (C) now.

REMARK 1.
We can't use the construction of case Dy for the case By, because

(z,;p is too small in this case. That is the reason that we will

embed By, in F, and not in Dg.

REMARK 2.

For By, 1 # 3, 1 % 4, there also 1s a construction where dim A =

dim &B;- So this construction uses G-modules of lower dimension.
(dim gBq < dim 5Dl+1)' In fact it uses a module A that is a quotient

of the one used above.

10.13 Fy, characteristic 2.

We don't have a centre in g now, but we do have a G-submodule,
generated by the X,, o short. (See [26] Table 2).

It is spanned by the X4, Hy, o short. (See also [22] page 155,
Remark c.)

We put Mgy = Ugy(X 2), M% = UZ(%XEI). Then M% D Mgt

g te
1
There 1s a homomorphism of Gc—modules, hence of uzrmodules,

St g ®8p 8¢ ® g given by $(x 8 y) = x 8 y + y 8 x.
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Put

t c Mst ® Mst’

Mt o+ (M' 0 S(ge ® ge))s

(2) M* = 2M; 8 M
5 S

(3) M

(4) A = Ly y-

Stated otherwise, A is the G-module that corresponds to the

. ' . . - _
lattice M! that is the image of M' in go N ge = go ® 8q/8(gg 8 g¢g)-
Now we consider the element

(5) H=H, 8 H + z X, 8 X__, where ¢ = i(e,+c,+e,+g, ).
& €1 o short ¢ 1728y
a >0
It is an element of M'.

We claim that {H} spans a 1-dimensional G-submodule in A.

M'/M

Let H, denote the image of H in gc " &g+ We have to prove that

{Ha}M' spans a l-dimensional G-submodule. First we prove that
a

{Ha} is invariant under W. It is clear that

(6) z {Xy A X-u} is invariant under W.
a short
o >0
Now we note that H A H = 0 and
€4 >
— - H :
(H61 + Hei) A Hgi = 2H€1+€2 A He1 = 2361 I H€1+€2 € 2M; (1 # 1).

It follows that {H AH_} =0 (i2 1), whence
Ei 81
{HC ANH._}={H A H_ 1}, for o short, (a,al) # 0. (Inspect the

€q o €4
root system). Using the action of W we see that
{H, A HB} = {HB A Ha} = {HY A Ha} if a,B,y are short, (a,B) # 0,
(a,y) # 0.
Now let w € W. Put o = wg, B = we, . Then (a,B) ¥ 0. It follows
from inspection of I that (osey) # 0 or (B,eq) # 0. If (a,ei) #* 0,
then {Hj, A HS} = {Ha A Hgi} = {H; A Hgi} and if (B,e,) # 0, then
{Ha A HB} = {H61 A Hgl = {HC A Hgi}. We may conclude
(7) {Ha} is invariant under W.

Now consider x€2(t){Ha} - {HS}.
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We have

(xsz(t)-l) . {H'C A H81 + XEZ A X_EZ} =

t{-X€2 A H81 + X82 A HEZ} = 2t{X82 A H_€1+€2} = 0,

(xsz(t)-i) . {X€1 IN X'El} = t{2X€1+s2 A X'%} + 't{2x€1 N x_€1+€2} +
+ 2t2{2X€1+€2/\X_€1+€2} = 2t{x_El A x€1+€2} = 0,

(xgz(t)-i) . ({XC A X'C}+ {XC"EZ A XEZ‘C}) = 2{XC A XEZ'C} = 0.

All short roots that are orthogonal to €, can be handled like €q-

The remaining terms of H, can be sorted in pairs of the type

+ +
-XY h'X_Y, ~XY__82 N Xe

It follows that

-y They can be handled like the case Y = 7.
2

(8) X (t) fixes {Ha}.

Next cgnsider (x€2_€3(t)—1).{Ha}. Now we have

(X€2_€3(t)-1) . {HE A Hel} = 0,

(x€2_€3(t)°1) . {X81 I X-El} = 0,

(xez_ss(t)—l) . ({X82 A x_EQ} + {xE3 A X'Es}) = 2*c{x€2 A X'E3} = 0.

Again all roots that are orthogonal to €,-€5 Can be handled like

€45 and again all remaining terms can be sorted in pairs £X, A X_

Y Y?

X A XK e
Y-€,te, €,m€5"Y

This finishes the proof of

(9) {H,} (or {H}) spans a 1-dimensional G-submodule in A. There
is an admissible lattice in g¢ A &¢» spanned by 3H, and M5

Let B denote the corresponding G-module, ¢ the natural map

A>B.Weget& : 0-L—a-9sp-—Tsp, 0.

Now we return to the first definition of A, A = LM'/M’

M o= 2M" + (M' 0 S(ge ® gp)).
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Put
(10) M" = 2M' + (M' N S(MSt 8 Mst)).

(11) C = Ly yo-

There is a natural map v : C > A. We want to prove that there
is an exact sequence of G-modules

fi : 0~ ry - C-—!* A —=> 0.

Hence consider ker v. First we compare

NT o= S(M . 8 M) CM L ® M. with N = (Mg 8 Mgy) N S(gy 8 gg)-

Choose a basis €q5...5e, Of M_;. Then N" is spanned by the elements

e: B e: + e: B e, (1 # j), 2e:

i j ] i i ®e;i-

And N is spanned by the elements

e; ® ey + ey ® ey (i # 3), e; 8 e;.

Now we specify the basis (ei) of M_.» taking H H. , H ,

3 -
T €1 5132
H __ , X, (0 €2),

€2 83 o]

We can obtain a basis of M% from it by dividing some of the e;

by 2. We reorder the basis in such a way that %el,%ez,..
..,%ezs, €575+ 3285s is a basis of M%. Then M' is spanned by

the elements 2e; 8 ey (1 =2 274...,525 3 = 1,...,52), e; 8 &3
(12 2,0003265 3 = 1,...,52).

Hence M' N N differs from M' N N" in the components spanned by

the elements e; 8 e (i =1,...,26). It follows from

M= 2M' + (M'" N N), M" = 2M' + (M' N N") that ker v is spanned

by the elements {e.

; @ ei}, i=1,...,26. Note that {ei 8 ei}M'/M" #* 0.

It is clear that ker v has dimension 26 and has a highest weight
that is twice a short root. Then it follows from ([ 28], Table 2)
that ker v is irreducible.

From Proposition 5.2 we see that ker v ~ Ty We have to check

condition (C) now for fl,E}. Choose fO = {%Ha}.
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We want to calculate

X re, (n3n2(X€2_ nlfo)) - X (r13r12(x€ . nlfo)).

€2

In order to do this, we fix the order on Z:

€3 €273 2%€3

For a; € IR we define aqeq * ... + ayg, to be positive, if

ag 7 ... T oa g =0, a >0 for some k, 1 <k < 4, (This is the
lexicographic order on IRY).

Put AI = {a € Z|o short, ate,+e, € T, 2a+e,+¢

2 73
tegy < 0}.

> 0},

273

Ay = {a € Z|a short, ate,tey € I, 2a+e

3 2
Define A+, A> in an analogous way, replacing e,+e, by e,-€,..

2 2 273 2 73
Then we claim that

X c non (X _ .n,f£.)) =
€2+53 372 €,7€5 170

X . (nan {3X_ _ O X AX_ - Z X_ O AX,+ I X AKX
sz+s3 32 82 53 >0 o o >0 o o o<0 o o
aEeAT aEAT QEAT
2 2 2
- Z X AX_Ob) =X RS S . (Z X, 8 X__ -
@<D+ o ¢ €2+€3 62 63 a0 [¢3 ¢
aEAT aEA;
- aio_x'@ 8 X, + ai{] X_,8 X, - aiO Xy 8 X-a)}MVM"‘
aEA2 aEAE aGA;

Here the point is that the element Y inside { }M'/M" has to be
in M'. This element Y is in the #-span of the elements XB 8 Xy,
where B,y are short roots with B~y > 0.

The image in g M &g is in the image Mé of M'. It is easily
derived from these facts (or from explicit calculation) that,

indeed, Y € M'. The element X€ te .Y of M' is a sum of terms
2 73

X X (Xa ® X-u)’ o short.

€2+€3 82-63

For most roots o this term is zero. It is non-zero if
+ - = -
1) o + €, €4 * €, €q a + 2&2

2) o + €, * €4 and -o + €, - €4 are in Z,

€z,

3)Condition 1 or 2 holds for -o instead of a.
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If condition 1 is fulfilled, then o = “€,-
If condition 2 is fulfilled, then ate,teq is a short root such

that a+62+e3-282 is a root, so ate teE, = €,

We may conclude that o = iEQ,is3 for non-vanishing terms of

Xe 4, Y+ Now it is easy to calculate X_  .{ngn (X __ .n,fpl).
2 73 273 2 73
It is
(12) {iX_. 8 [X X o SX 11 o+ X, _ ,X. 1 81X X 1.
£, Eyte s’ TE,mEy, £, e,me5 e, e e, e
In the same way X_ _ . .{ngn,(X_ . ny gt =
2 73 2 73
X . 13X A2 X AX_, ...} =
€)=€g eptey " 5o @ o
dEAE
{13x, e flx __ ,lx X 11 - 3lx sX_. 1 80X __ ,x_ 11 =
€, €, 53’ E,teq €, ‘ €,%E, €4 €,"€37 €
1 -1
{2:{€2 8 [X€2+€3,£x€2_€3,x_€2}] z{xez_sa,xesl 8 [x€2+€3,x_€3]}

Hence the difference with (12) is {X€ 8 X, } which is non-zero.

2

10.14 By, characteristic 2.

There 1s a natural embedding of GBq in GPH’ sending Xtei(t) to
. 1)),
Xie . is.is-(t) to Xie-is-(t)' (See 3.10, case 2 and 4.1 (1))
i 173 13
We can exploit this embedding in exactly the same way as we

(t), and x

exploited the embedding 635 *’GDS. We get
[ o-»(gu)Bu»cFu—»A—»Uand

0> L, >A—>B = (L,) -+ 0, where the subscript F, is used
€, 1 Fy 2°F), > Pt Iy

for modules that also occur in the construction for case FH'

The dimension of Ly is 2 again, and condition (C) is satisfied.

REMARK.
Every Gp -module is a direct sum of two components, one component
containing all weight spaces with weights in Ty (the lattice

spanned by the roots), the other component containing other weight
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spaces (see Lemma 4.13). It follows that the system fl,gz splits
into two components. The component that corresponds to PO
contains r, and f,. The other component may be deleted, which

gives a construction with modules of lower dimensions.

10.15 G5, characteristic 3.

We have the root system Z = {fa, %8, ty, Z(a-8), f(B-yv), E(y-a)},
where a = “0gs 8 = 2&1 t o, ¥ = -a-B.

We will need the signs of the structure constants N6,¢ (5,6 € Z).
It is possible to choose these signs in a "symmetric" way:

If r denotes a rotation of the root system over 60 degrees,

then we require:
(1) N =

ré,re —N6,¢'
We fix the signs by giving all Xs in the 7-dimensional represen-

(see [22]1, p. 150).

tation of g¢:

d £ a b
2a g h -f
2b 3 i ¢ -d
(2) Xs = 2¢ k 1 -e d , where all variables
24 ¢ =-b -3 =k except one are zero,
2e¢ -c a -g -1 one is 1.
f b -a -h -i

(Empty entries are zero).
The variables correspond to the roots as indicated in the

following illustration

For example:



0 1 0 1 0 0
1 2
G 0
Xy = -1 X—B: 0
0 0
2 1
0 -1

It is seen that

(3) N =

a-B,y-0 Na—B,—a B NB,a—B 1,

3, N, = 2.
> e,y

Relation (1) follows from the fact that conjugation with the

g o

-1

matrix maps X

. s to -Xr

5"

1

Relations (1), (3) determine all signs.

REMARK.

We will choose our definitions in such a way that their usefulness
does not depend on the signs. But we need some choice of the signs

to demonstrate their usefulness.

NOTATIONS.
Let (10) denote the highest weight of the 7-dimensional
representation of g¢ and (01) the highest weight of the adjoint
representation. Put (mn) = m(10) + n(01), R™ = representation
space of the irreducible representation of g¢ with highest weight
TN

(mn) = representation space of the irreducible G-module with

highest weight (mn) (in characteristic p).

10 01

The gc—module R 8 R has a direct summand of type Rli. The
dimension of this factor is 64 (see [18), (5.9.4)).
The matrices Xs in (2) are given with respect to some basis

€13€55+4.,58y in Rlo.
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It is easily checked that {Zn;e,|n; € Z} is an admissible lattice
i

in R10,

Let M, denote the standard lattice in rRO1 - g¢» generated by XS'Y'
Put

(4) v = eg 8 XB-Y'

Then v € R%%_Y, because e € RI0. Put

(5) Mgy = Upv.

Then Mg+ is a standard lattice in R11 that is contained in the
admissible lattice
- . 10 01
(6) M = {?ei 8 A;lA; € My} in RID & RVT,
We are interested in the G-module
(7Y R = Ly +am/am
It is clear that R is a quotient of LMst' We claim that it is in
fact isomorphic to LMst' After proving this claim, we will be

able to recognize non-zero elements of LMst' The multiplicities

of R are arranged like this:

(see [21], Table 1.)

We use the same ¢rientation as in the display of the root system,
$0 the encircled multiplicity corresponds to the weight space of v.
Put

(8) w = (X + X X X X v.

u-Exy—a y=a a-B oy
(We don't indicate the action by points now.)
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This element w is in the weight space of weight 0.
(w = e, 8 H, -~ e, 8 XB + 258X - e, B XY - 2eg 8 X_B +

beg 8 X_ - 2e9 8 X_.).

In the following computations we put brackets around expressions

that have the form XB "'XS. XB~ "'XB x, where x is in Mgy and
1 i i+l r 11
...X, x is in aweight space that does not occur in R™".
Bi+1 By
These expressions are zero, of course.

X

Put x = XaXYv.

Then Xg_ W = Xg_ Ko X, g% = (X _gXp (X ¥ + X _ Xg X, _gx -

(XY-axa-BXS—aX) = H8~axy~ax + Xy—aHB—ax z ny_ax + Xy_qx. So

(8) XB-aw = 3xy_ax € 3M.

In the same way

(10) X, w = 3X_gx € 3M.

So [XB_a,Xa_Y]w = 3g_ o Kyop® — (3X_gXg_ %) - 3xa_ny_ax +

(3%, _oXgmyX) = 3Hg_ x - 3Hy_yx = 0.

Hence

(11) XS‘YW = 0.

Th 0 = X H = X X - 2 = =
en Y-8 B'Yw Y-8 B—ny—Bw (XQ*YXY-BW) HS'YXY~BW

=-2xy_8w, so

(12> XY'BW = 0.

Explicit calculation shows

(13> Xaw € 3M.

It follows from (9)-(13) that g.{w} = 0 in R. For o € £ we get

X W € 3M, (2/2)w € (M) N M = 3M, (X /6).w = 0.

So uzw € 3M, hence the non-zero element {w} spans a l-dimensional
G-invariant subspace of R (see lemma 4.4). We want to find vy

that describe a composition series vl/vz/.../vk in the sense of

bolkh,
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We have already found two of the composition factors: One is

R yitn "oenerator" {v}, one is R0C with generator {w}.

We use the following table of multiplicities of weights in the R™P:

(00) (10) (01) (20) (41) €30)

(00) |1

(10) | 1 1

(01) |1 0 1

(20) |3 2 1 1

(11) |1 3 1 2 1

(30) |1 0 0 0 1
Table 2.

This table is obtained from ([ 21], Table 1,2).

In a row marked (mn) the multiplicities of the dominant weights
in ©™ are given. These dominant weights are in the column

headings. Using this table we will detect composition factors

§01 and §10 of R. Then R has all composition factors of Mgy

which proves the claim that LMst - R 1s an isomorphism. (The
composition factors of Lyg, ave obtained from table 2 or from [ 21},
Table 2).

Put

(1) vy = (xaxY + nya)v'

This element is in the weight space of 8-y. One has XBYl = 6v,

but XBX’BV = 5v. In ﬁli the weight A=y has multiplicity 1. We

conclude that {X‘BV} is mapped to a non-zero element and {Yi}

is mapped to zero when the G-~module spanned by {v} is mapped

onto ﬁil.

11. (I

We express this fact by saying that {Yi} is zero in R n

fact Ell = LN'/N for some N,N', and {Yl} = 0).

N'/N
But {Yl} is non-zero in R.
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So Y4 corresponds to a composition factor rOL of R. Put

(15) Y, = Xle'

01

Then {Y,} is non-zero in R, but R°" does not have weight B. So

Y, corresponds to a factor §1O. In summary, we get the composition

series
(11 (o) (10> (00)

v / Y, / Y2 /oW

1

Note that we don't claim that Y, generates w.
Put

(16) A = (R modulo the G-module generated by {Y,},{w}).

=11 §01.

So A has composition factors R™, Then A = L

N =
Mst/N’
= ker (MSt - A). Let Mw/B denote the lattice spanned by Mgy and

w/3 (Recall that {w} is invariant in R = LMgy - )

Put
(17) B = L, .
Mw/3/N
The natural homomorphism ¢ : A > B is injective, because {w} = 0

in A. One obtains an exact sequence €2 :0->L;>A>B~>1L,~»0,
where L1 = 0. Next we consider another representation of Eg» in
order to get the sequence gi' There is a homomorphism of gp-modules
[-1: g¢ »gg ™ 8> defined by [ ,1 A A B = [A,B]. (Here go A g¢ is
the usual antisymmetric tensor product. See the case of F, above).

30

The kernel of this homomorphism is R”", as one sees from its

dimension and its highest weight. We now proceed in g¢ A Sg» using

only this factor r30

essentially. (In the same way as we only
used R1? essentially in the construction of 82.)
In g we had the standard lattice M.

As the X with § short generate a proper G-submodule again (see

table 2 and compare with the case of Fy above), we can form the
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admissible lattice My, spanned by M; and the %XG, %HG. (8§ short).
3

(The submodule is an ideal of type ﬁlo.)

Consider 8 = LM1 AM /M1 A MiC
4/ 9L L1

3 3
It is easy to see that the multiplicities of weights in S give

the following pattern:

The weight 28~y has been marked by a circle again. Comparing

with table 2, we conclude that S has composition factors §01,

§01, Ell, 730, (Two times ®O1.)
Put
(18) v' = X ix .

g-y "3

This element corresponds to ﬁii, because the other factors don't

have the weight 28-v.

Choose

(19) Y3 = (XO‘X,Y + XYXa)V',

(20) Y, = Xg_,Yg,

(21) Yg = X _o¥,.

Calculation shows that {Y3}, {Yu}, {Y;} are non-zero in S. As Y,
11 11

was zero in R*" in the case of R, the element Y, is zero in R
now. (They have the same image in ﬁli.) So Y, corresponds to a
factor RO1 in 8. Y, corresponds to a factor ﬁgo, because its
image in ﬁll (from ¥3) is zero (see table 2). Then Y. corresponds
to a factor ﬁ01, because its image in R0 js zero (see table 2).

We get
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1 (01) (30) (01)
AV S A
Put

(22) C = (S modulo the G-module generated by {YS})’
(23) A'= (S modulo the G-module generated by {Y,}).

(Note that (Y,} generates {Y;}).

This gives 81 : 02> >C > Ar > 0.
(r, is of type §3O, so r, = ker v).

We have to prove that A ~ A', before we can check condition (C).

Both A and A' have composition factors §11, ®01,

Furthermore they
have composition series
(11} (01)

v o/ (XYXa+XaXY)V
and (11) (01)

vt/ (XyXa+XaXy)v' respectively.
We prove from these facts that A ~ A'. The proof closely resembles
the proof for irreducible G-modules (see [ 2 ], 5.3).
In the G-module A & A' we choose the G-submodule A" generated by
{v} & {v'} € A ® A'. As the G-submodules are the Yz-submodules

(see Lemma 4.4), the elements

n n n n
Xgl Xek Ha Ha XB]<+1 XBZk
1 k 1 1 k+1 2k '
Tr...;—"" m m Y T ...n T {{V}@{V })
17 k* 1 1 k+1° 2k*
where 61 < .0 < 32k are the roots, o; are the simple roots,

span A (see [ 22], Theorem 2). We have Xy-a(XZ/Z)({V} & {v'}) = 0.
The element {v} & {v'} is a highest weight vector, so the weight
space Ag_y is spanned by X—g({V} @ {v'}) and nya({V} 8 {v'}).

(Note that -g < y < o < 0 in the ordering that makes 28-y dominant.)

The weight spaces of g-y in A and A' are spanned by the
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corresponding elements. So the kernel of the projection of A"
on A (or A') has no weight B-y. (The image of AE-Y has dim.2 as
one sees from table 2 and these remarks.) Then it has no kernel
at all, because all composition factors of A & A' have B-y as

a weight. We conclude that A ~ A" ~ A'.

Now we can check condition (C).

Choose fj = {{w}. Then Xa_g (n3n2(X8_Y.n1fO)) = 0 (See (11).)
And XB-Y . (”3”2(X3—a'“1f0)) = XB-Y(n3n2{XY-aXaXYV}) z
{XB—ny-aXaxyvl}'(See (9)Y.)

This element is non-zero in C. (It is {-2X A XB-a}’ which

B-y
is non-zero in S.)

10.16 G5, characteristic 2.

We use the same kind of notations Rmn, R

as above. (But p = 2
for R"™, of course.)

10 .
In R we use the same basis €1s--v5eq. Put M, = {?niei[ni € Z}.

In LMst there is a 1-dimensional G-submodule, spanned by {el}.

So we can form the admissible lattice M,; spanned by %el and M_, .
2

We need a table like table 2, but for p = 2. It is the table

(00) (40) (01) (20)

(00) 1

(10) 0

(01) 2

(20) 0 0 0 1
Table 3.

The multiplicities of §OO, ilo, §01 are calculated by hand and
those for §20 then follow from the Steinberg Tensor Product Theorem
(see [22], p. 217). Note that R0 = L and that the table

Mgt/ 2My’

says that g has no proper invariant subspaces. (It has no centre

because T = Iy and furthermore XG generates g for all roots §.)
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10

In R'% & R!® we have the lattices M, 8 M_, and 24, 8 My, the
2

former containing the latter. Put

(1) 8 =Ly, g m__/oM;, & M,°

2 st 3 3
It has multiplicities 6, 3, 2, 1, hence composition factors
r20, 01, 01 10, r0O, r00, Choose,

X
- - . _—B -

(2) Y, = ¢, 8 egs Yy = X_ Y45 Yy = — Yo, Yy = XB_YYg.
Note that {Y,} € SB_Y.
Calculation shows that {Yi} # 0 in S. The submodule generated by

%20

o1 {(from Yl)’ R

{Yl} has at least the composition factors R
(from Y,), 791 (from Y,). This is seen from table 3 in the same
way as above {(see 10.15).

If one divides out in S the G-module generated by {Yl}’ then the

result has a factor L, This module is

of type R0
€1
(2) 24 = 5 8 eg + ey 8 ey -

M% 8 Ms‘t/MSt B MSt + ZM% ® M%'

with generator {21} where

(Use multiplicities again).

There are composition factors ]

missing still. One of them
corresponds to Y3. Proof:

Let Su denote the G-module generated by {Yu}. As we know multi=-
plicities outside weight zeroc, we can check that S, has the
following base outside weight zero:

{{e; 8 e5 + ey 8 ei}|1 €<i<j<&€7, Fi+t3 or J = 4},

The weight space (84)0 is spanned by the images of this base
under the action of the X6' One checks that (Su)O has the base
{e2 8 eg + ec 8 e, + e, 8e;, + e, 8 eu},

{62 & eg + eg & e, + e, & ey + eg 8 ea}, which does not span {Yg}.
Only one composition factor is missing now. But we want to do more

than finding this last one: We want to change the order in the
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composition series. (Y1 is following Z1 now, but we want 21 to
follow Yi)'

So consider S/Sz, where 82 is generated by {YQ}' We know that
{Yi} generates a G-submodule in S/S2 that has no compoesition

factor ﬁlo.

In 8/S, one checks that Xg{Z;} = 0 for § positive,

and that §§{Zl} = 0 for n > 1. (The last result is obtained from

the multiplicities.) Hence {Zl} is a highest weight vector of a

G-submodule of 8/S,. (Use the standard base of Uy as in the

case p = 3.)

Then {Zi} generates a G-submodule of S/S2 without composition
=01

factor R™ 7. Choose
(W) Zy = X_gZy.
2
Xg ,

Check that —7{22} = {Yz} in S.
The conclusion is that S has the composition series

(01) (10) (00) (20) (00) (01)

(EIRARTRNAR VAR CUVAR FUVAR N

Choose
C = the G-module generated by {Zl} modulo the G-module generated
by {Yq}. It has composition series

(10) (00) (20) (00)

Ly / 2y 1 Xy /[ ¥g

In C the element Y, generates a G-module isomorphic to r . (This
is seen as in the proof of Proposition 5.2.) Hence one gets
g:O—»Eu-—»C»A»O.
Then A ~ LMst‘ Choose B = LM%. That gives
€ 0L, >A>B~>1L,>0.
We check condition (C):

XB . (nsnz(xa_y.nlfo)) = 0, but
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a-y

94

a-y (n3n2{e5}) = {X(l_‘YZj-}

{e3 8 e3} # 0.

End of Proof of Theorem 10.1.

10.17 REMARK.

In the case by case part one may use more embeddings of Chevalley

groups in Chevalley groups to get proofs like that for type Bq.

There are useful embeddings A, > G, (p = 3), D, > B, (p = 2),

G, > Dy (p

= 2). The last one corresponds to the fixed points

of the triality automorphism of Dy, and can be described

analogously to 3.11. In this case one has to divide out two

2

of the r; in (gu)Dl+ =y ®r, @ rys in order to get a close

resemblance of (r ) and the G, -module. (cf. case B,. See

10.12.) The modules C in these alternative proofs have higher

dimensions.

10.18 Let ¢

G* > G be the extension that is constructed in

the proof of Theorem 10.1. So G* is a subgroup of fc,g),

containing

10.3 (13)).

G*. We may
(see 10.1u4
to G. Then

- rc’Gad\'

(gu,l‘, where C is a G-module containing r, (see

The map ¢ is the restriction of py : f(c,e) » g to

and shall assume that all weights of C are in Ty
Remark). Let G, denote the adjoint group corresponding

there is a natural homomorphism (id,Ad) : f(C,G' -

10.19 DEFINITION.

The image of G* under fid,Ad) is denoted G;d and the restriction

of PGag

is an extension of G_4 by r

C,Gq) = G,q to Giy is denoted ¢_4- S0 ¢,4 * Gig = Gag

u”
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10.20 PROPOSITION.

Assume X O pl' = ¢ and r, #* 0.

The extension $aqa is non-trivial, i.e. there is no homomorphism

. " . . .
s Gad i Gad satisfying ¢ad 0 s = id.

PROOF.

Suppose s exists. Put ¥ = (id,Ad'. Then 0,9 ¢ X = Ado ¢, hence
d¢ad o dx = ad ¢ d¢. Consider the inverse image h ot (ds)g_, in
g*. It is a Lie algebra. If y € Z, then X* + T, is mapped onto

Y

the inverse image of ad(XY) in g so ad(XY) ig contained in

*

ad?
(d¢>ad o dx)(h). It follows from the central trick that h contains
all [Xa, E], with a,8 € Z. Hence it contains non~trivial elements

of r, (see Theorem 3.5 and Corollary 3.14). But then (ds)g_ gy

u
contains non~trivial elements of fgu,O‘ = ker(d¢ad), which
contradicts ¢ad 0 s = id.

10.21 Let G* be contained in (C,G8' as above. Let NfcaG}G*
(Z(o, 16" denote the normalizer (centralizer) of G* in fc,e.
Then N(C,G\G*/ZrC,G\G* acts faithfully on G*. We will see later
(in 13.7) that Int(Nfc,G]G*) is a subgroup of finite index in
Aut(G*) = {y|y is an automorphism of G* in the category of

algebraic groups}. At this moment we only prove:

10.22 PROPOSITION.

Let r, be non-zero. Then

dim (N¢o \8*/Z(q o16*) > dim G*.
? 3

PROOF.
The proof is easy if the centre Z{(G*) of G* has dimension zero.

So we assume that the connected component of Z(G*) is non-trivial.
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Then it corresponds to the 1-dimensional G-submodule of r .

and £ is of type By or Gy, p = 2 (see Proposition 5.2). So Z(&8*)
is 1-dimensional. Inspection of the constructions in 10.11,
10.12, 10.14, 10.16 shows (cf. Remark 10.7) that the inverse
image of Ly in C is a G=-submodule that contains r, as a submodule
but not as a direct factor. The elements of this inverse image
are mapped into N(C,G‘G* by ic : ¢ » C,8), but some of them

are not mapped into Ry - Z(C,G\G* (otherwise r, would

be a direct factor). Hence dim (N,rC G\G*/Z(C G\G*) >
> b

dim (G*/Z(G*)) = dim (G*)~1.

10.23 REMARK.

There is a natural representation of fC,3) and hence of G*. Its
representation space is K 8 C and its action is defined by
lv,gl.(E,v') = (£,Ev+g.v'). If we assume as in 10.18 that all
weights of C are in Iy, then the image of the representation is
lsomorphic to Gad' If, on the contrary, we replace C by a bigger
representation (adding direct summands for instance) such that
the weights span I', then the image is isomorphic to G*.

Intermediate lattices of weights yield "intermediate" images.

10.24 REMARK.
The irreducible (rational) representations of G* correspond
to the irreducible rational representations of G, because the

fixed points of R, constitute an invariant subspace.

10.25 REMARK.
Let s be a cross section of ¢ as in Theorem 8.2 (cf. 10.3, (1u})).
Then 7 o AdG*(sx) = Adg(¢(sx)) o m = Adg(x) o 7w, and hence

Ad.x © 5 = Ad.

G
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It follows that &1 = ad ¢ ds, or 84d ©¢ 71 = ad, which was proved

in 3.3.

10.26. REMARK.
If all roots are long then the adjoint representation of G;d is
faithful. It then induces a representation of G* that 1is isomorphic

to the representation obtained from 10.7, 10.23.

§11. Relations in the open cell.

In this section we consider an arbitrary solution ¢ : G* = G
of the problem d¢ = 7 (see section 7). Fixing a maximal torus T*
in 6*, we derive relations between elements in 5*-stable unipotent
subgroups of G*. These relations are the analogues of relations
(A), (B) in Steinbergs set of defining relations for G (see [ 23]

or [ 22], 86). As a result of these relations we will show that

ker ¢ is abelian in most cases (see 11.21).

11.1 Let ¢ : H > 6 be a surjective separable k-homomorphism of
connected algebraic groups, where G is an almost simple Chevalley
group with [g,gl = g. Let h denote the Lie algebra of H, T the
usual maximal torus in G, T* a k~torus in H satisfying ¢T* = T.
Assume that T* is k-split.

If 6 is simply connected, let r, be the G-module described in

5.2 (cf. section 10). If not, put r, = 0 (cf. Lemma 7.1). In

both cases r, can be viewed as an H-module by means of ¢.

Now we introduce three properties (arranged in order of increasing

strength).

(P1) There is a homomorphism of H-modules u : r, = ker (d¢) such

that T* acts trivially on the cokernel of u.

(P2) There is an H-equivariant k-homomorphism T from Ty into ker ¢
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such that dt = u is as in (P1).

(P3) T(gu) = ker ¢, where t is as in (P2).

REMARKS.

1) In (P2) it is sufficient to assume that T maps into H,
because ¢ ¢ t(p ) is a connected unipotent normal subgroup.

2) If (P1) holds, then u(gu) is contained in the Lie algebra
of R,(H). Proof: Consider the natural projection
Y : ker ¢ - ker ¢/Ru(H). As ker ¢ acts trivially on u(gu), a
maximal torus of ker ¢/Ru(H) acts trivially on (dy o wi(r, ).
It follows from ([ 1], Theorem (13.18)) that (dy o u)(gu) consists
of semi-simple elements. On the other hand it follows as in 6.2
that (dy o u)(Z;) is nilpotent for vy degenerate. These elements
(dy o u)(Z;) generate (dy o u)(gu) (see Proposition 5.2), so

(dy o u)(gu) = 0,

EXAMPLES.,

1) If ¢ : G* - G is a solution of d¢ = m, as described in
7.2, then ¢ satisfies (P1). We will see in 11.21, 11.27 that ¢
also satisfies (P3), with one possible exception.

2y If ¢ : B* > G is the extension of G by T, constructed
in section 10, then ¢ satisfies (P3). (Then it also satisfies
(P1) (P2), of course.)

3) If ¢ = pg ¢ (gu,G\ - G (see 8.1), then ¢ also satisfies
(P3).

11.2 LEMMA.

If ¢ : H > G satisfies (P2), then Ady o T is trivial (i.e. it

maps r, to .
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PROOF.
Let X € r,- For x € H we have {x,T{(X)) = 1{x.X-X), so the morphism

x ¥ (x,1(X)) has differential zero (see Proposition 5.2 and use

that dfr = 0). But this differential is also equal to id-Ady (v (X))

(see [ 17, (3.9)).

11.3 In the sequel we shall derive several results about ¢ : G* = G
which do not depend on the property dé = m, but only on (P1), (P2)

or (P3). We shall apply those results in situations like example 3

in 11.1. Therefore we shall label such results with the corresponding
properties, suppressing (P1) if (P2) holds and (P2) if (P3) holds.

So a label (P1) means that some natural modifications yield a

result that is valid if (P1) holds in 11.1. (It doesn’'t mean

that (P1) is necessary.) We give some examples of these
modifications:

Replace G* by H, replace Z*

Y
Replace X§ by the weight vector of T* in h that satisfies

by u(Z;), if necessary.

(d$IX; = X,. Omit weights that don't occur in h.
We shall give proofs of labeled statements only for the case

¢ : G* > G, leaving the general case to the reader.

11.4% We return to ¢ : G* = G with d¢ = 7 (see 7.2). Assume that

¢ is defined over k and that Ty # 0. So G is simply connected
almost simple, Z n pl' = @ (see Proposition 1.3 (ii) and Proposition
2.2yand T contains degenerate sums (see 3.14). We know

that ker ¢ is the unipotent radical R, of 6* (see Lemma 7.4).

It follows from ([1 ], (6.7) Remark) that R, is defined over k.

The inverse image ¢~ *(T) of T is also defined over k (see [1 |,
(6.7), (6.8), applied to the action of G* on G/T). Hence ¢~!' (T)
contains a maximal torus T*, defined over k (see [ 11, (18.2)).

This torus T* is mapped isomorphically onto T. So T* is k-split.
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(Note that this was assumed in 11.1.) The action Ad of G* on g*
is given by Ad(x)(X) = Ad(¢x)(X) for x € 6*, X € g* (see 7.2).
So the weight spaces of Ad : G* = g* are the same as those of

Ad (for T*, T respectively). Henceforth we identify weights on

T* with weights on T.

REMARK.
In the following Proposition short roots have to be handled
with special care, because a p-multiple of a short root is a

degenerate sum (see Lemma 2.9, (iii)).

11.5 PROPOSITION (P1).(cf. [7], Exp. 13, Th. 1).

Let v be a non~zero weight of g*.

(i) If v is not a short root, then there is a connected

subgroup G; of G*, defined over k, such that

(a) The Lie algebra of G; is g;.

(b) As an algebraic group, GX

¥ is T*-equivariantly k-isomorphic

to gy-

(ii) If y is a short root, then there is a T*-eguivariant

k-isomorphism of varieties from g; into G*, mapping 0 to 1.

PROOF.

(i) The multiplicity of y is 1, and the multiplicity of ny
is zero for n > 1 (use Lemma 2.6 (1) and Proposition 2.12). So
it follows from ([ 3 ], Theorem 9.16), that there is a T*-stable
subgroup G; satisfying (a). It is the unipotent radical of T*G;.
Now (b) follows from ([ 3 ], Theorem 9.8).

(i1i) The multiplicity of y is 1, the multiplicity of py is
1 and those of other positive multiples of y are zero (see Lemma
2.9 (iii), Lemma 2.6 (i), Proposition 5.2). Hence we get from

({ 3], Theorem 3.16) the existence of a connected T*-stable
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subgroup G?Y) of G* with Lie algebra g; or g; + 5EY' Again
Gzy) is the unipotent radical of T*Gzy). The centralizer of T*
has trivial intersection with G?Y> {(see [ 1], Proposition 9.4),

so (ii) follows from ([ 31, Corollary 9.12).

11.6 Let y be a weight as in Proposition 11.5, (i). We identify
the additive group g; with its Lie algebra. Then the isomorphism

g : g; -> G; may be normed in such & way that d6 = id.

NOTATION.
x;(u) denotes the image of uX; (or uZ;) under the normed isomorphism

6 1 g* = G*,
& Ty

So x; is a k-homomorphism ga - G;, where ga denotes the 1-dimensional
additive group, as usual. We have hx;(u)h“1 = x;(hYu) for h € T*,

u € K (hY denotes the image of h under Y).

11.7 Now let y be a short root. We identify g; with its tangent

space in 0. Let & : g* = G* be the isomorphism from Proposition
&y p P

e(hYuX;). Differentiating this

n'(de)Xs. So db leaves g¥ invariant

11.5, (ii). Then he(uX;)h'1

relation we get Ad(h)(de)X;
and 8 can be normed in such a way that d® = id (note that d6 is

non-zero because § is an isomorphism).

NOTATION.
The image of uX; under the normed isomorphism 8 : g; -+ G* ig

denoted y;(u).

So y; ig a morphism K - G* satisfying y;(O) = 1 and hy;(ux;)h'l z
y?(hYuX;) for h € T*, u € K. It is not a homomorphism because

(X;)[P] # 0 (see 6.3, Remark 3).
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11.8 LEMMA. (cf. [7], Exp. 17, Lemme 1).

Let YsYqsYgaenesYpy €ET. Let f : K" > K be a morphism, satisfying

Y Y1 Ym *
h f(ui,...,um) = f(h Uqsesvsh um) for h € T*, Ugseeesly € K.

n n
» . . . . m . .
Then f is a linear combination of monomials uli...um satisfying

Y T ongYy ot ...+ onpyp.
PROOF. Use independence of characters.

11.9 Lemma 11.8 is usually applied in the case that f is the
composite of a morphism and a coordinate function. More precisely,
if V is an affine variety with coordinates ViseeeaYp (so V C K%Y,
and T : K" >V is a morphism, then we take f = yi o Ts applying
the Lemma r times. Of course this only makes sense if the vy 0T

are nice.

11.10 DEFINITION.
Let @ be the open cell in G (see 2.1). Then we call Q* = ¢~ (Q)

the open cell of G*.

11.11 LEMMA (P13,

(i) Let a € Z. Then ¢(xj(u)) (or ¢(y5(ud)) is equal to x, (ul.

(ii) Let y be degenerate. Then ¢(x;(u)) = 1,

PROOF.

First let o € X. The inverse image of Q* under 9 : gk —> e* is
an open T*-invariant neighbourhood of 0 in gi. Hence it is £
and we have ¢ o 8 : g* = Q. Applying Lemma 11.8 it follows from
the structure of Q@ (see proof of 9.6 or [8 ], Proposition 1)

that ¢ o 6(uX%) = x,(cu), ¢ € K. Differentiating shows that

c 1. Part (ii) is proved in the same way.
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11.12 The torus T* acts in a natural way on the direct product
of the groups Z..(T*)and £ g¥, where Z,.(T*) denotes the

G #0-Y G
centralizer of T* in G*. The action is trivial on the first
factor and it is AdG* on the second one. We identify the factors

with subspaces of the direct product in the natural way.

PROPOSITION (P1). (ef. [7], Exp. 15, Prop. 1).

There is a T*-equivariant k-isomorphism of varieties

§ 1 Z.e(T*) x 2 g* = Q*, such that
G #0 Yy e

(i) The restriction of 8 to the first factor is the natural

embedding ZG*(T*) -> G*,

(ii) The restriction to g; (v # 0) is the normed isomorphism

from 11.6 or 11.7,

(iii) There is an order of the non-zero weights of g*, say

81"“’Br’ such that (X4 + ... + Xp) o= 80Xy ... 8(X,) for
X; € ggi,
(iv) 8(x,X) = 0(x)0(X) for (x,X) € Z,,(T*) x Z 5;.
Y#0
PROOF.

First we consider R,. In ([ 3], 9.12) it is proved that there is
a T*-equivariant isomorphism (over K) 7 : r, * R, and a decompo-

sition of . into 1-dimensional T*-stable subspaces L;, such
m

that, if L(s) denotes 2 Ly, we have
i=g

(a) L(1) = Ly

A

(b) For each s, 1 s < m, ;(L{S)) is a normal subgroup of Ry»

(¢c) For each s, 1 < s < m, the group c(L(s))/C(L(S+1)) is
T*-equivariantly isomorphic to Lg.

Now we choose for each s a T*-equivariant cross section &g (over X)
of the composite map ;(L(S)) - C(L(s))/C(L(s+1)) - Lg (see (31,

9.13).
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Put 0(Xy + ... + Xp) = Sl(Xi) . em(xm) for X; € L;. It is
clear that © is an isomorphism of varieties o, TRy If Y is

a degenerate sum, then it follows from Lemma 11.8 that
6"(x;(u)) = cuZ; for some ¢ € K. Hence we may and shall replace
the corresponding 8; by x;. If z € ZG*(T*), then it follows from

the same Lemma that ut z x;‘((u)z“1

is a morphism K - R, of the
type u x;(cu). Hence we may assume that zero weights correspond
to the first 8;. Then we get an isomorphism of varieties from

ZRu(T*) x ;) onto R . This isomorphism 1 is

yzdegener‘ateg~
T*-equivariant and defined over k. Choose B4s---5B, to be the
degenerate sums in the order they occur in the L;. Choose
Bt+1""’6r to be the roots in ascending order. Then define ©

by (i), (ii), (iii), (iv). It has yet to be shown that 8 is an
isomorphism, as it is clear that & is T*-equivariant and defined

over k. First we note that ¢ o e(ZG*(T*)) = Z, (T) = T.

G
As T normalizes the subgroups {xa(u)'u € K}, it follows that 6 has
its image in Q* (use Lemma 11.11).
Note that 1 is a restriction of 8. The restriction of § to

* b M . . .
ZG*(T ) X (Y degeneratng) is injective because

2ge (T*) Nz ( z

¥ degenerateg;) = 1 (use that 1 is T*-equivariant).

It is an isomorphism because the composite homomorphism

Zge (T*) = ZG*(T*)/ZRu(T*) i (ZG*(T*).Ru)/Ru has a rational cross
section (see [ 18], Corolliary 1 to Theorem 1 and [1 1, Proposition
$.4, 6.7) . The image of this isomorphism is the connected subgroup
$'(T). Note that ¢ '(T) is also connected in the situation of 11.1
(see proof of Lemma 7.4 and use [1 1, 13.17 Corollary 2, (d)). The

result now follows from the structure of @ (cf. 11.11; reconstruct

from 6(x,X) the components of (déJIX).
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11.13 LEMMA (P1).

Let T* act on a vector space A such that 0 is contained in the

closure of every orbit. Let t : A 2> G* be a T*-equivariant

morphism, satisfying T1(0) = 1. Then the image of T is contained

PROOF.

171 (Q*) is a T*-equivariant neighbourhood of 0 in A.

11.14 Let 1 : A = G* be given as in the Lemma.

Then we may apply Lemma 11.8 as indicated in 11.9, taking V = Q*.
We have to choose suitable coordinates on ©*. They can be
obtained from coordinates on ZG*(T*) X iog; by the isomorphism
6 (see Proposition 11.12). On the factor ZG*(T*) we choose some
set of coordinates and on the factor i g; we choose linear
coordinates corresponding to the weighgs. We get results like

those in Lemma 11.11, where the same method was applied with @

instead of Q*.

11.15 PROPOSITION (P1).

Let o be a short root.

(i) (u,v) H'y&(u)x;a(v) is a k-isomorphism of varieties
from K* into G*.
2 4 %* * * * - * *
(ii) ya(a)xp&(b)ya(c)xpa(d) = ya{a+c)xpa(€af(a,c) + b+ d),

where €, € k and f is a Witt-cocycle (i.e. f(a,c) = ac if p = 2,

fla,c) = a’c + ac® if p = 3, see {11}, p. 197).

[pl
% - *
(iii) (X3) = Eazpa'
REMARK.
In fact e, = 1 in g*, as one sees from the proof of 6.2. But
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this depends on more than (P1l) as .one sees from example 3 in

11.1 where we have €y * 0.

PROOF OF THE PROPOSITION.

(i) The map (u,v) * 6"(y&(u)x£a(v)) is of the type
(W,v) = cqux? + czupzl*m + cgvZr  (use Lemma 11.8, of. 11.14).

It is clear that cy #* 0, Cyq # 0. Hence it is an isomorphism.

(ii) We argue as ini11.14 and apply Lemma 11.11 (i) and the
fact that x;a is a homomorphism. As a result we get that the left
hand side is equal to y;(a+c)x;a(h(a,c)+b+d), where h is a
homogeneous polynomial of degree p. It follows that h{a,c) is
a 2-cocycle of ga in G, (with trivial action). Hence we can apply
([11], II §3 n® 4.6) to see that h is spanned by polynomials of
the form £P", (xypp)pn, xP+y™ - (x+Y)", where n,r >0, f is a
Witt-cocycle. But £ is the only one with degree p.

(iii) As p = 2 or 3, we have (ya(u))p = x;a(-eaup). The
group generated by the elements y;(u), x;a(u) is solvable. So it

can be realized in trigonalized form. In that form (iii) is an

easy consequence of the relation (y;(u))p = x;u(-eaup).

11.16 LEMMA (P1).

Let Y ¥ 0 be a weight of g%, wy a T*-equivariant morphism from

*

gy into G*, mapping 0 to 1.

(i) dy, maps gy into itself.

(ii) If dwy = ¢ id, ¢ € X, and ¥ is not a short root, then

P (X) = 8(cX) for all X € g*. Here © is the isomorphism that
¥ w2l das &y

defines x§ (gee 11.6).

(iii) If dwy z clid, ey € X, and Y is a short root, then

there is c, € K such that wy(ux;) = y;(clu)x;Y(czup). If wY is

defined over k, then cj,c, € k.
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PROOF.

(i) See 11.7.

(ii) Note that 6 in Proposition 11.12 extends 6 : 5; - G*.
The result is obtained by the argument in 11.14,

(iii) Use the same method.

11.17 DEFINITION.
Let o be a short root, Cqy € k. Then we put x&(u) = y;(u)x;u(caup).

We say that x& is obtained from y& by the norming constant cg.

From now on a set of norming constants is supposed to be given.

REMARK.

It follows from Lemma 11.16 (iii) that the norming constants
represent the freedom of choice in the definition of y& (see
Proposition 11.5 (ii) and 11.7). Hence results like Proposition
11.15 are also valid when y] is replaced by x5+ We will use this

frequently.

11.18 PROPOSITION (P1). (cf. [22], Lemma 15).

Let a,B be independent weights of g*.

(1) (x*(u),xi(v)) = x* L. (c,. uivj), where the
o B 0,50 io+3R " "ijaB —_—
product is taken in any order and the c.

1308 are elements of k

(depending on the order).

(ii) We fix the order of the product in (i). If 1i,j are

not both divisible by p, then c. can be determined from the

ijaB
action of the elements x;(t) (t € X, Yy ¥ 0) on the weight spaces

% with 6 linearly independent from y (see 7.2 for the action).
gg Bee

REMARKS.

1 If ci448 pi,pi,o,8

on the norming constants. S0 the condition in (ii) is essential.

# 0 and ia+jB is a short root, then c depends
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2) ¢ corresponds to a commutator in the Lie algebra (cf.

11aB
[22], Lemma 15).
3) If xa(u) € Ry, or xé(v) &€ R > then we only have to use weights

ia+jB that are degenerate.

PROOF OF THE PROPOSITION.

(1) First take the same order of the weights as in Proposition
11.12, (iii). Then the result follows as above (see 11.14). For
an arbitrary order we reason by induction on the number of weights
ia+3iB (1 > 0, j > 0) that occur in g*. By induction hypothesis
every product sza+j8

(uij)’x;a+ss(urs)) (cf. [22], p.24~-26).

(uij) can be reordered using (i) for
*

commutators (Xia+j8
(ii) Let G* be realized as a linear algebraic group, G* C GL, .

Then we can multiply matrices in G* with matrices in g*, and we

can differentiate morphisms K" — G* in the same way as we

differentiate polynomials. (In fact they are polynomials with

matrices as coefficients.)

If y is a short root, then it follows from

x¥(u+v) = x*(u) x* (¢ _flu,v *(v) that

Y Y Py Sy Tl vI) x((

4 , p-1
(du x;‘((uﬂ/))u___O = X;x;(v) - eYv Zﬁyx;(v).

So vETOxE (V) = (vKy - e vP 28 Ixr(v).

For long roots and for degenerate sums one gets analogous formulas.
Now we note that xX = (AdG*(x)X)x for x € 6*, X € g*. Hence
elements of g* can be "transported to the left" and we can apply
the same method as Steinberg used in ({221, proof of Lemma 11.18).
Applying u%a to both sides of (i) we get relations that enable us

to determine inductively all . with 1 prime to p (induction

JaB
on i+j). Applying v%; to both sides we get the same kind of

relations with j prime to p.
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11.19 DEFINITION.
Let a,B be independent weights. Put

il A
20,320

i+3>0

* = o g .. €
G(Q,B) { Xla+jB(vlj vlj K}, where the product
is taken in some fixed order, skipping ia+jg if it is not a

weight of g*.

COROLLARY (P1).

(i) Gza 8) is a k-subgroup of G*.
3

(ii) There is a bijective correspondence between the elements

of G?a,s) and their parameters Vige

(iii) This correspondence is a k-isomorphism K® - G?u 8)°
3

of algebraic varieties, where m = dim Gz@ )"
%

PROOF.

This Corollary may be proved in the same way as Proposition 11.15.
Part (i) also follows from Proposition 11.18 (i), using Proposition
11.15 (ii) and 11.5, 11.6. Parts (ii), (iii) follow from Propositions

11.12, 11.18 (1) (cf. [22], p. 28-286).

REMARK.
It follows from part (i) of the Corollary that GEQ 8) doeg not
b

depend on the order that is used in its definition.

11.20 Given some expression x; (uy) AN x; (un) it is often possible
1 n

to reorder the factors such that the weights occur in some prescribed

* (uq) .. o xE (u) = %k (vy) ... xx (v,), where

Y1 1 Yn “n §,°71 §p 77

the &, are ordered in the prescribed way. Applying Proposition 11.18

order. That is: x

several times one may try to express the arguments Vi in terms of

the uj and the constants of type c. It can be done for instance

ijag”’
in the case that all factors are contained in a subgroup of type
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G?a 8) " We call the technique "Reordering the product".
b

11.21 THEOREM.

Let G not be of type Bj, ¢ : G* = G as above (see 11.4). Then

Ru is commutative.

PROOF.

Ru is solvable. If r, is an irreducible G-module, then (Ru,Ru)
has trivial Lie algebra and is connected, so (Ru,Ru) = {1}.

So we are done in the case of type T, (see Proposition 5.2).
Hence we may suppose that £ is not of type Fy,. Then dim(_r'_u)0 <1
(see Proposition 5.2 again). Let Z(T*) denote the centralizer of T*
in G*. The group Z(T*) N R, is a connected group of dimension < 1
(see [1], (9.4)), hence it is abelian. (see [1], (10.9)). If

z € Z(T*) N Ru, and y 1s a degenerate sum, then uz;'* (z,x;(u))
satisfies the conditions of Lemma 11.16. Its derivative

Ad(z) - id = Ad(¢z) - id is trivial (cf. Lemma 11.2), so

(1) Z(T*) N R, is central in R;.

Next we consider two independent degenerate sums y,0. There is
no degenerate sum in p?*T (gee Lemma 2.6 (i)), so we can apply

Proposition11.18 (ii) to see that the constants c are zero.

ijy$
(They are zero in one solution of d¢ = 7 because of Theorem 10.1,
so they must be zero in any solution). So

(2) x;(u) commutes with xg(v) if y+§ # 0.

Now we have to consider the case y+§ = 0.

EXAMPLE. 0
o o,B are long roots, p = 2,
Y, are degenerate sums,

see figure.
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We apply Proposition 11.18 with explicit constants Cii08"
These constants are obtained from known solutions of d¢ = 7 (see
section 10 and use Proposition 11.18 (ii)) or as indicated in
the proof of 11.18 (ii). We get

Int(x;(u)) fo(v) = Int((xa(u), xg(l)))fo(v) =

Int(x}(u) xé(l) x&(u))xjy(v) xfg(v) =

Int(x?(w) xg(l)) x;(uzy) fo(v) xt (v) x;(uzv) =

Int(x}(u)) x;(uzv) x;(uzv) xfy(v) x2 (V) xX (V) x;(uzv) =
x;(uzv) x;(uzv) ij(v) x;(uzv) x;(uzv) =

! as usual.

Int(x;(uzv)) ij(v), where Int(x)y = xyx~
Put f(u,v) = (x;(u),XfY(v)). Then f is a morphism, satisfying
flu,v) = f(u?v,v) and f(0,v) = 1. It is easy to see that f is

constant (use coordinate functions).

If p = 3 then the same method can be applied, without knowledge

of the signs of the c.

ijaB* If @ is of type By, then the trick fails

however, because 1,] are both even in some relevant c.

1308 (p = 2J.

Then we can't apply Proposition 11.18.1t seems that this case is
difficult because degenerate sums of two distinct lengths occur.
If G is of type G,s P = 2, then there are also some relevant

constants of type ¢ We shall handle this case separately

21,23 ,0,8°
in 11.24, 11.25. It is easily seen from 2.8 Table 1 that there is

no other case then those mentioned above. So now we exclude types

62 and B3 in characteristic 2. Then it follows from (1), (2) and the

relation f = 1 in the example that
(3) x;(u) is central in R,.

The Theorem follows from (1), (3).

The proof for case G,, p = 2, will be given in 11.25.
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11.22 LEMMA (P1).

(Ru,Ru) is contained in Z(T*) N R,.

PROOF.

As in the proof of 11.21 we see that x;(u) commutes with Z(T*) N R,
and with x3(v), where v,8 are degenerate, y+§ ¥ 0. So (Ru’Ru) is
generated by (Ru,Ru) N Z(T*) and by the commutators (x;(u),xﬁy(v)),
Y degenerate.

We use the isomorphism ZRUCT*) x deegenerateg; > R, (see 11.18)
and Lemma 11.8 to see that the commutators (x;(u),ij(v)) are
contained in ZRu(T*)G;GjY or ZRU(T*)Gij; (notations as in 11.5).
Suppose they are not contained in ZRu(T*). Then (R ,R,) contains
one of the groups G;,G:Y(see Lemma 11.16, [ 1 ] Proposition 9.4,

[ 3] Theorem 9.16, cf. proof of 11.5). But R, is nilpotent (see

[1], Corollary 10.5), whence a contradiction.

11.23 LEMMA (P1).

Let o be a short root.

% is a morphism

(Xa(u),xqu(v)) = xga(tvuZP)Ta(vup), where T

K = Z(T*) N R,

PROOT,
The map £ : (u,v) P Int(x&(u))xfpa(v) has its image in R;.
Applicating Lemma 11.8 as in 11.22 we see

o ok P ] Py, * 2p P
(1) flu,v) = x_pa(vfl(vu 1)t (vu )xpa(vu fz(vu )), where
™(vuP) € z(1*) N R,.
Iif Ru is not commutative, then we replace G* by G*/(Ru,Ru).
This makes sense because of Lemma 11.22.
The action Int of G* on R& = Ru/(Ru’Ru) factors through G.

This yields an action p of G on R&.
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Now a standard argument shows

(2) p(w_a(t))(Rgl)Y C(RD) >q (see [2 1, 3.3, Remark 1).

Y=<y,

Put glu,v) Int(xfa(u))x;a(v). Then

*
* e
a morphism K = Z(T*) N R, (ef. (1)),

(3) glu,v)

1

(uzpvgl(vup))o(vup)xga(vgz(vup)), where ¢ is

In the same way

(4) Int(xfa(u))Ta(v) = xfpu(uph(v))T'(v), where t' is a morphism
K= z2(T*) N Ru'

Substituting u = 0 one sees 1' = %, We get modulo (Ru,Ru):
D(w_u(t))xfpa(u) = Int(xiq(t)x&(-t“)x:d(t))x:pa(u) = an(l(t,u))ra
where 1(t,u) = ut-prz(—t_pu)gg(ut_prC-t-pu)), r corresponds to
other weights then pa.

From (2) it follows that u* p(w_u(t))xjpa(u) is an invertible
homomorphism K -+ (R&>pa (see 11.6). So 1 is linear in u and
fz(x)g2(~xf2(x)) is a non-zero constant (x = -t Pu). Then f2 is
a non-zero constant and g9 is a non-zero constant. Similarly f

and g, are constant. Their values are obtained by differentiating

f and g with respect to v.

11.24 LEMMA (P1).

Let G be of type GQ, P = 2.

If § is degenerate, £ 1s a root, then ¢

232,6’C
PROCF.
We use the same notations for the roots as in 10.15.

* * - * * * . .
Int(xB_a(t))xza(u) = Int((xg(t),x_a(l)))x2a(u). Write the right
hand side as a product and reorder it, using Lemma 11.23 (see 11.20).

The result has no component in G*_ . So

2y C2,2,+2a,6-a = (0, Other

cases are of the same type.
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11.25 We finish the proof of Theorem 11.21.
From Lemma 11.24 it follows that we can handle G2 in the same
way as we handled other cases. Note that the same would be

true in the case B p = 2, if we ¢ould prove ¢

3’ 2,2,m€47€,,E ¥E FE,

to be zero.

11.26 Let Ru be commutative. Then the action Int of G* on Ru

factors through G.

NOTATION.

The resulting action of G on R, is denoted Int.

There is also the action Ad of G on T, satisfying AdG*(x) =

Ad(¢x) for x € G*. The derivative of y # int(¢x)(y) is Ad(¢x).

11.27 THEOREM. (cf. 11.1, (P2)).

Let R, be commutative. Then there is a G*-gquivariant separable

k~-homomorphism t from r, onto R,- Its finite kernel spans a

G*-invariant subspace of dimension < 1.

PROOF.
We define Tt in the following way.

(1) The restriction of 1 to is equal to the

*
yzéegenerategy
restriction of 8 (see Proposition 11.12). If there is a short

root choose one, say o. Define A by the relation

A * - * PO 2D, %
(23 Ad(xu(t))Z_pa Z'Pot + Y27 kot zpd.

Then put
(3) t(uz®) = 1%(u) (see Lemma 11.23).

If G is of type F,» choose a short root B, such that the angle

between ¢ and B is 2%.

Then we put
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B g B

)y = rg(u), where Z°, t° are the analogues of Za,ra.

(4) t(uZ
From (1), (2), (3), (4) we get a consistent definition of the
homomorphism T (see Corollary 3.14% and Proposition 5.2). It is
obvious that 1 is a k~homomorphism from s into R,. Next we show
that 1T is G*-equivariant. Equivalently, we show that 1 is
G-equivariant. As generators of G we take the xG(t) with & long
together with x (t), xB(t) (if existent) with a,B as above.
First consider Int (xg(t)). Its action on Z(T*) N R, is trivial
because of Lemma 11.8 (cf. 11.21 proof of (1)). If y is degenerate,
then fnt(xé(t))xy(u) can usually be determined from Proposition
11.18, Lemma 11.24. We claim that the only exception is type Bs,
p = 2. To prove the claim, let Z not be of type 83 or G2 or let
p # 2. Let pi§ + pjy be degenerate (i > 0,j > 0). Then
(y,y) = (pis + pjy,pid + pjy) = p(8§,8) (see the classification
of degenerate sums in section 2). So
p(8,8) = 2p*ij(y,68) + p*i*(8,8) + p2i%(y,y) =
p(8,8){pii< v,8 >+ pi? + p?3?} which is nonsense.

Sc we may assume that G is of type By and that

Y = eqTE,teEs, § = ~-¢ i = 3 = 1. Then

27 %3

(u)) x* (v) =
3

Int(x_ (t))int(x_
€4 £ € e, tEy

2‘6

(t*v) x*

*
(v) x 2€1(02,2’Y’

2.2
- u‘v*) x
€1+€2+E3 §

x*
81+€2+€3

~eq

2.2 2y, %
T (CZ,Z,Y,dt uf v )x*

4.2 2 Yo ¥ 2
261(02,2,Y,6t ulv )x€1_€2_€3(u v) X%
* 2..2
x_al_ez_gg(t u‘v).

But

x_sl(t)x_€2_83(u) = x-€2_€3(u)x_€1(t) and

Int(x_€2_€3(u))Int(x_el(t))x;1+€2+82(v) =
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some expression that lacks the component with weight zero (use
€ -€

1 212 _ 1

e u ) = 1. But 7

©2,2,,8

is non-trivial (take derivatives), so Cp o v ,6 = 0. So far about
b b 3

that Ru is commutative). So T

the action of xé(t).

Next consider the action of xa(t). It is seen from

~ " _ 0z o *

Int(xu(t+u))x_pa(v) = Int(xa(t))Int(xa(u))x_pa(v) that x (t) acts
in the right way on t*(uPv). In the same way it follows (if B

exists) from (Int(xg(£)),Intlx, (Wx2,0(v) = Intlxy g (tud)xk 0 (v)

8 -2B
that xa(u) acts in the right way on 18 (+Py). The action of Xa(U)

*

on Xip(l

(v) poses no problem. We claim that int(xa(u))x;(v) can be
determined from Ad if vy is a degenerate sum distinct from tpa. So
we claim that no Cpi,pj,a,Y occurs (see Proposition 11.18 (ii)).
Suppose it did. Then there are 1 > 0, j > 0 such that pio + pJjy
is degenerate. This doesn't occur in type By, If 2 is not of type
By, then (pia + pjy, pia + piy) = (v,y) = p’ (a,a) (see 2.9 (iii),
Lemma 2.11). It follows that i? + ij < y,a > + p?3%? = 1, while
[<y,0 >|<p<a,0>=2p. And < y,a > € pZ, so

1= + ij <y,a >+ p?3* > i? - pij + p*3? > pij > p.

This is a contradiction.

Summing up, we have seen that xs(t), Xa(t) act in the right way.
For reasons of symmetry XB(t) does too. It follows that T is
G-equivariant. Separability follows from the fact that Im(dr)
contains generators of T, (see Proposition 5.2). The kernel of

T 1s a zero-dimensional algebraic group, fixed by G. The

Theorem then follows from Proposition 5.2.

11.28 In case B, the proof uses the fact that Z(T*) N R, is non-

3

trivial, in order to get rid of ¢ _ .
178228178 e,

So we can't apply the same proof to G*/(Ru,Ru) in the case

2,2,-¢€
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that R, is not commutative. Accounting for that, we get as a

corollary to the proof:

11.29 COROLLARY (ef. 11.1, (P2)).

Let ¢ : H=> G be given as in 11.1, such that (P1) holds {(see

11.1). Let R, (H) be commutative. If p=2 and G is of type B; assume

that one of the two orbits of degenerate sums doesn't occur in

the weights of h. Then there is an H-equivariant k-homomorphism

T, Ru(H) satisfying dr = u (see (P1) for u).

11.30 THEOREM.

Let H be a connected {(linear) algebraic group with perfect Lie

algebra (i.e. h = [h,hl). Assume that p # 2 or that H has no

gquotient of type B;. Let the Lie algebra r of R,(H) be central

in h. Then there is an H-equivariant separable homomorphism Tt

from an H-module M onto Ru(H)‘ If H is defined cver k and H has

a k-split maximal torus, then T may be taken to be defined

over k.

REMARK.
We may assume that ker 1 consists of invariants, because otherwise
ker T contains an H-submodule of M (apply [3 ], Theorem 9.16 to

the semi-direct product (M,H)).

PROOF.

Put G = H/Ru(H). (So G is not necessarily the same as above).
Then g is perfect,because h is perfect. So G is semi-simple (see
[1], 14.2) and g is iscomorphic to the Lie algebra of the simply
connected group G, that covers G (see proof of Lemma 7.1).

Then g = ?gi where g. denotes the Lie algebra of an almost

simple factor G; of 6. We have g* = 8g¥. There is a surjection
il
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of Lie algebras u : g* - h induced by p : h = g. From the central
trick it follows that u is H-equivariant. We may assume that H
is defined over k and that H contains a k=split maximal torus T*.
(Otherwise change k.) Let G; be a factor of G. For simplicity

of notations we assume G; to be isomorphic to the corresponding
subgroup of G. We identify G; with that subgroup.

Let ¢ + H = G be the cancnical homomorphism. The torus ¢(T*) = T
is isomorphic to T* (ker ¢ is unipotent and ¢ is separable). The
subtorus Ti = TN Gi corresponds to a subtorus T} of T* such
that ¢(T§) = T;. We may assume that T; is a maximal torus in

G; (see [ 11, proof of Theorem 14.10 (3)). Consider the homo-
morphism ¢i : H - Gi and the tori Tz, Ti' The situation is that
of 11.1 with (P1) because T* (or T;) acts trivially on u(g;)

for i # j. Hence we have morphisms X&,i : K = H corresponding

to roots in G; (see Proposition 11.5, Definitions 11.6, 11.7,
11.17). Their images generate a subgroup H. of H. We claim that
H; commutes with Hj for i # 3. This is proved as follows.

Z4(T%) contains TE and its Lie algebra contains u(gE) (see [ 1],
Proposition 9.4). So the x*,j have their images in ZH(T;) (see
Lemma 11.16 and[ 3], Theorem 9.16).It follows from Lemma 11.16
(cf. proof of 11.21 or 11.22) that xg j(v) commutes with

2

x& i(u). (Apply the Lemma twice).
3

Now we want to prove that R (H) is commutative. In view of the
above we may restrict ourselves to the radical of gt = H/-L-Hj’
JFi

But then the situation is just the same as in 11.21, except that

gt may be smaller then G*, which causes no problem.

We may apply Corollary 11.29 to see that there is a separable

H-equivariant k-homomorphism t' from §r . onto R (H), where r .
i=u,i u “u,i

is "the r, of Gi" (see 11.1).
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§12. Representatives in G* of the Weyl group.

In this section we 1lift representatives of the Weyl group
to elements of G* normalizing the maximal torus T*., The main
goal is to get the analogue of relation {(C) from Steinbergs set

of defining relations for G (see [23]).

12.1. We return to the notations of 11.4, using labels as des-

cribed in 11.3.

12.2. DEFINITIONS.

* * _"1 *
Xu(t) X—a( t ) x2 (t) and

1

For a € £ we put w&(t)
* * - x
ha(t) = wa(t)(wa(l)) (t € K

(see 2.1).

The group generated by the elements x:a (u) is denoted G*%,

12.3. The image G* of 6*® in G is of type SL, (see [ 21, 3.3(2)).
The Lie algebra of 6** has only weights na (n € %), because g*
centralizes ker{(a:T* = K). First let o be long. Then Z(T*) N R,
commutes with the elements X:a (u) (see 11.21 proof of (1)), so

6** » g% is a central extension (cf. proof of 11.5(i)). We can
apply ([ 11, 10.9) and Theorem 9.6 to see that there is an inverse

homomorphism s. From the central trick for groups it follows that

s(xa(u)) = x;{u) (see proof of 9.6 and use the central extension
" . ¢** > 1 . 6%, Let h € T* such that ¢(h) € G*. Then
h™' . s(4(h)) is unipotent and commutes with h (consider the same

extension). So it is the unipotent part of s(¢$(h)) which is zero.

Hence h&(t) = S(¢(h;(t))) = g(¢${(h)) = h for some h € T*,

12.4. PROPOSTION (P3).

Let o be a long root.

(i) hp(t) € T+,

(ii) w;(t) normalizes T*,
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(iii) The group 6*%is isomorphic to SL

¢
PROOF.

Part (i) and (iii) have been proved above. Part (ii) is easy

because (h,w*(t)) = h*(h%t) h&(t)-l for h € T*,

12.5 PROPOSITION. (P3)

Let o be a short root. For each value (in k) of the norming

constant c, there is a value of C_q (in k) such that

(i h*(t) € T*,

a
(1ii) w&(t) normalizes T*,
-1

(iii) Int (wr(t)) x* (-t 7) = x&(t).

REMARK. Property (P3) is sufficient, but we need not exclude type Bs.

PROOF.
If (ii) holds, then the usual argument shows that

Int (wi(t)) xz(u) € G* for long roots B (see [2 ], (3.3)

B B'<Baa'>0'
Remark 1). We want to use the reverse of this implicaticn. Hence

we first consider Int (wa(t)) x*(u). Evaluating this expression

)
by "reordering the product" (see 11.20) one has to check whether
all factors cancel out whose weights are not B - <g,a>a. For
those factors which are linear in u the cancellation follows
from the corresponding fact in the Lie algebra, where w&(t) acts
in the same way as wa(t). For the factors corresponding to roots
it follows from the corresponding fact in G. So we look at the
case that + ia + jB is degenerate, 1 > 0, j > 1. Checking the

2 dimensional root systems and using Proposition 2.12 it is seen
that there are two possibilities

(a) +o, B are simple roots in type G2.

(b) +o, B are simple roots in a subsystem of type B2.

In case (a) we argue as follows.
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Fix Cye If one changes c_y by an amount d, then w&(t) is
multiplied on the left by xl’;a(j_-_dtp) ¥ arx* a(dt—p)

(see Lemma 11.23). Hence we can choose C_y in such a way that

Int (w;(t)) xé(u) = x§13a(...) xg(Bia) (...), without a compo-
nent X;(BiZa) (...). Say
Int (w;(t)) xé(u) = x§+3a(t3u) x5(8+a)(F1tpup), where F1 € K.
Say furthermore
* - -1 - * -3 -1 -p,.”P
Int (wi(t)) xfB( u ") = x—6-3a(it u ) Xg(-B—a)(FQt u )
-2p ~P
Xp(-B-Zu)(F3t u )
Then
* - P..P * P
(1) Int (wl(t)) wé(u) = x;(B+a)(2F1t us) xpa(iFat )
* TP, "Dy, x =2p “DPy,,x 3
xp(-B—a)(P2t u )Xp(-B—Za)(F3t u )w8+3a(it ud.

(see [22], Lemma 19).

; * 3 * P.P
Now let both sides of (1) act on Xs+3a(t u) Xp(8+a)(F1t us).
That gives

. -3 -1 -p P -2p_-Py -
X—e—3a(+t u )XE(—B—a)(FZt u )X;(—S-2d)(F3t u 7)) =

* A D Py, .+ -2p -D
X—B-Sa( t “u ) xp(B+a)(F1t u )xp(—B—Za)(F3t u ).

It follows that

(2) F1 = F2 = 0.

Put z = w&(t) w;(—t). If p = 3 then z = 1. If p = 2 then
z € Z(T*) N Ru' Anyway

(3)  TInt () x3 (-t3u) =

B+3a
* (- -1 * _3 - * =
Int (zwa( t) ) x8+3a( t u) = xs(u) because F1 0.
Now let both sides of (1) act on xé(u). One gets
. 3.2, _ _« 3 * PP
x28+3a(it u’) = x28+3a(it u) X5 (g+a) (+ Fyt¥u®), whence
(4) TF,= 0.

3
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We see from (2), (4) that Int (w&(t)) maps hg(u) to

h§+3a(it3u). {The signs that are involved can be calculated

in G, where the corresponding relation holds. See [22], Lemma 20).
From (3) it is seen that we have the same situation with B re-
placed by B + 3a. Hence w&(t) normalizes the torus that is gene-

rated by the elements hé(u), (u). But that is T*, so we are

hé+3a
done for (ii) in case (a). In case (b) we skip the proof of (2),
note that w&(t) normalizes ker (a:T* = K) and obtain the same
result. So we have proved (ii).

Next we prove (i). Consider (h}

8

with <o,8> = 1. This commutator is an element of T* and is also

(€, w;(l)) where B is a long root

equal to

* * —l: *
wa(t) wu(i) hi ().
Finally we prove (iii).

As Int (w&(t)) x:a(u)e 6(5&+g§a) (see [ 2], (3,3)Remark 1) while

Int (w (£)) x_ (-t7%) = x (), we have Int (w’(t)) xZ (~t1) =

= x3(6) w2 (AtP), A € Ko S0 wr (-tTh) = (kg TR (e) w2 (-t Th =
e X () xp, (AtP) wr(e) = xp (AtP) wi(t). Or

(5) wr (-tTh) = xz (AtP) wr o).

Now take a long root B such that <a,B> = -1 and put y = B - <f,a> a.
One has Int (w&(t)) xé(u) = x;(...) =

Int (3071 x2C.0) = Int (2 (-t7h) x2(6)) xj(u) =

= Int (ur,(-t71)) xp(w).

So Int (wfu(-t-l)) xg(u) = x;(...), and hence the present value

of ¢, is just the value that makes that wfa(—t—l) normalizes T*
(see Proof of (i) and note that we are in case (a) or (b)). Then

we see from (5) that xgu(Atp) normalizes T*. So xga(Atp) = 1,
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12.6. In 12.5 we have seen how for every choice of Cy there is
a natural choice for c_,- There still remains much freedom of
choice, which we shall use to get nice actions of the wé(t) on

the x;(u) (a short, B long).

PROPOSITION. (P3).

Let R, be commutative. There is a choice for the values (in k)

of the norming constants, such that

(i) For each short root o the three statements of 12.5 hold.

(ii) For each long root B and each nonzero weight y of g*

- * -<vy,8>
Xy-<y,B>8 (+ t ul.

(iii) If G is of type F, then CQ’Z’aa’uu = 0.

one has Int (wg(t)) x;(u)

PROOF.
The relation in (ii) is satisfied if a = v - <y,B8>8 is not a short

root (use that Int(wé(t)) G; c G&). If o is short, then Yy is also

* * . o * -<y,B> * -p<yYsB> p
a short root and Int(ws(t))xY(u) = xp(x t u)xpa(cy,at ut),

where C € K (cf. proof of 12.5). The value of C depends on

A3 Y

c, and cy. Fixing c, (or CY) a suitable choice of the other one

kills C . We want to kill all C simultaneously.
YL0 QY
a) First consider case Bl' Fix e and choose . guch that
1 i
= 0. Choose ¢__ as indicated in 12.5. We have to prove
i
that this is compatible with the requirements C+E ve. 0 (i #37).
cote.
1

-1
First we note that it follows from wé(t) = wé(—t) (8 long) that

€, ,€.
1?71

C = C = 0. Next it follows from the action of w? (t)
€158y €158 €q7€:
that Cei’ei = Cel’ej = 0 implies Ce.,ei = 0. The remainder then
follows from the action of the elements w; (t) (see Proposition
1

12.5, (ii), (iii)).
b) Next consider case FM. The subgroup Wl of W generated by reflec-

tions with respect to long roots has three orbits of degenerate sums.
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(Compare with the three orbits of degenerate sums in type Dy -
See 2.8). Fach of these orbits can be handled like case Bl'

In case B, we started with fixing c. - Now we start with fixing
1

in such a way that (iii) holds. This can be

1

c e, 2 Ty
Gy Oy agto,

done because o a.+a, lie in distinct orbits of W..

32 Gy %3Toy 1

c) Finally consider case GZ' We use the same notations for the

roots as in 10.15. Fix cy and choose ¢

8> cY such that Ca,B =
= C, vy © 0. Then it follows from the action of wa_g(t) that
3
CB,Y = 0. As in case B, we see that CB,a = cy,a = CY,S = 0.

After choosing C_g> Cog> c_Y as in 12.5 we know that both w&(t)

and Int (w&_s(u)) wé(t) normalize T*, Comparing these two ele-

ments it is easy to see that C__ g = 0 (use that in G the rela-
3

tion Int (w, _,(u)) wﬁ(t) = W, (rtw) holds).

8

REMARKS.

1) In Proposition 12.6 the norming constant ¢, may be prescribed
for the short simple roots a. Then all other norming constants
are fixed (see the proof of 12.6).

2) If G is of type Bys P 7 2, and 02’2,_81“€2’ e te e, # 0 then
Int (w* (t)) x* (W) # x* (.
€17%) €3 €3

§13. The Theorem of generators and relations and its conseguences.

In this section we shall give a description of G* in terms of
generators and relations, assuming that the radical is commutative.

As a result we shall get a uniqueness theorem.

13.1. Let Ru be commutative. Then we norm the homomorphism T:gu*Ru
(see Theorem 11.27) such that T(uZ;) = x;(u) for y degenerate.
NOTATION. The kernel of 1 is denoted Q. This is a finite group

(see Theorem 11.27).
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13.2. THEOREM. (Generators and relations).

Let Ru be commutative and nontrivial (cf. 11.u4).

(i) G* has generators x3(t), a €  or a degenerate and

t € K, with defining relations:

(A) If o is not a short root, then

x&(u) x;(v) = xa(u+v).

If o is a short root, then

* * — * * o -
xu(u) Xa(V) = xa(u+v) xpa(euf(u,v)), where e, =t 1 and £ is a

Witt-cocycle (see 11.15).
(B) If a,B € Z, a+B # 0, then

(3 ()5 xp(w)) = i>01’1j>0 “Iurss Ciias utvdy,

where the product is taken in some order and CijaB € k.
(C) h2(tw) = h*(t) hr(w) for a € I, t,u € K .

Here h*(t) = x7(t) x* (-t™5) x2(v) x2(D7F x2 (-D71 x1(1)7,
(D) There is a map Thip, 7 G* satisfying

{(D1) 1' is a homomorphism of abstract groups,

(D2) T'(uz;) = x;(u) for v degenerate, u € K.

(D3) Int (x(t)) T1CO0 = T (Ad(x (£))X) for o € T, X € p_,t € K.

(D&Y ' (Q) = 1.

(ii) Given the order of the products in (B) the values of

the constants e only depend on G and on the choice of the

o’ CijaB
elements X&, Z; in g* (see Theorem 3.5).

(iii) If relation (D4) is omitted, then the result is an

abstract group that contains 71(Q) as a finite central subgroup.

REMARKS.

1) In order to get relations in terms of the generators xé(t)
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one has to express the elements t'(X) (X € gu) explicitly in
terms of those generators. This can be done with (D1), (D2),
(D3), because the elements Z; generate r, as a G-module.

2} The generators x;(t) have been chosen as in Proposition 12.6
in order to fix the constants cij . Part (ii) of the Theorem

af
should be understood correspondingly.

PROOF.

(i) We know that these relations hold in G* (Choose
T' = 1). We have to prove that they are defining relations.
So let H be the abstract group defined by them. Then T'(gu) is
a normal subgroup of H (see (D1), (D3}), so we can form H/T’(Eu}.
It is easily seen that H/T‘(gu) satisfies Steinbergs defining
relations for G (see [ 23] and recall that G is simply connected
by Lemma 7.1). We choose a set theoretical section s of H > G,
with s(1) = 1. Every element of H can be written in the form
T'(X) s(x), X € L, X € @. If this element is projected onto
1 € G*, then x = 1, 1(X) = 1 in G*, and hence X € Q. But then
T'(X) = 1 in H too (see (D4). We see that H = G* is bijective.

(1ii) We already know that the constants Cij don't depend

af

on G* if they are not of the form ¢ The constants €

Pi,pJ,0,8"
are obtained from Proposition 11.15 (iii) (ef. Proposition 6.2).

So we have only to consider the constants ¢ It easily

pi,pi,a,8"
follows from 2.8 and from Proposition 2.12 that there are essen-
tially four possibilities (cf. proof of 12.5).

a) a,8 are simple roots in 62 and a is the short one.

b) a,B are short roots in GZ’ making an angle 2m/3.

c) a,B are simple yoots in a subsystem of type B2 and o is the

short one.
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d) a,f are short roots in Fu, making an angle 2w/3.
In case a) the constant CppBa = 0, as can be seen from the

H * * - * -1
relation Int (w_B(t)) xp(u) = Xo+g (+ t U)'Thencp,p,8+3&,—a

is also zero, of course. Now c can be determined from
2psp,c,B 2

the relation Int (w* (t)) x}X(u) = x* (+t~
-a B B+30 —

depends on the order. Use (x,y) = (y,x)"'.)

u)., (Its value

Once we know the values of 5, 2p,8,a and Cp,2p,B+3a,-a

determine Cp,p,—a,6+2a from the same relation. This will do in

case a) and b).

we can

In case ¢) we argue as in case a) and see that “ppga

Finally consider case d). One of the constants of this type 1is

known to be zero: 0 (see 12.6). It is seen from the

[e] =
2,2,a3,a4

. * * -1 - * * - "
relation (XY(t), xé(u)) = (xs(u), XY(t)) (y = ogs § = au) that
02,235>Y = 1. The constant c2,2,—6,y+6 can be determined from
the relation
* * - * *
Int (w_G(t)) xy(u) = Xl4s (tu) X y428 QRN I
In the same way all Gy 9.4, AN be found with o,8 lying in the
k] b bl

plane through yv,8. We now need the following Lemma:

13.3. LEMMA.

Let % be of type Fu. The subgroup wl of W generated by reflectiong

with respect to long roots acts transitively on the planes spanned

by pairs of short roots, making an angle 2m/3.

PROOF.

Let S be the set of such planes. There are three orbits of short
roots under the action of wl (see proof of 12.6). It is seen from
the explicit form of these orbits that
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(1) If a,a' are short roots in the same orbit, then a = +o'

or (o,a') = 0.

If V € S then V contains a representative of each of the three
orbits. Let V' € S. We have to prove that there is w € wl with
wV = V', We may assume that V N V' contains a root a. Let B8 € V,
B' € V' be short roots with

(2) <a,B> = <a,B'> = -1.

If B,R' ly in distinct orbits, then we replace 8 by -o-B, which
lies in the same orbit as B' (use (1)). If B = +B' then V = V'
and we are done. So we may assume (B,B8') = 0 (see (1)). Then B-R'
is a long root and we use the reflection with respect to B-B'.
It follows from (2) that (B-B',a) = 0, and we see that V' is

transported to V.

13.4%. PROOF CONTINUED.

From the Lemma it follows that all S5 2.4 8 in case d can be de-
> 3 b

rived from those in the plane through o o, by means of the

37 7y
actions Int (wZ(t)) with ¢ long. This finishes the proof of (ii).

Part (iii) is an easy consequence of the fact that Q is fixed by G.

13.5. COROLLARY.

Let ¢:6* = G and Q be as above with commutative radical Ru

T ¢
(see 13.1, 11.4). Let 0 - p —=> &1 —1> G > 1 be the extension

from Theorem 10.1. Then there is a separable k-homomorphism x from

GI onto G* such that

(i) The kernel of x is Tl(Q),

(ii) ¢ o ¥ = ¢1.

REMARK. We don't claim that x is unique.
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PROOF.

From the Theorem it follows that there is a homomorphism x of
abstract groups, sending x&l(u) to x&(u), where x&i(u) is the a
analogue of x&(u). One argues as in the end of the proof of theo-
rem 9.6 to see that ¥ is a morphism. On the open cell x is defined

over k, so x is defined over k (see [19], Lemma 1).

13.6. NOTATION. If H is an algebraic group, then Aut(H) denotes
the abstract group of automorphisms (in the sense of algebraic

groups) of H.

13.7. COROLLARY.

Let ¢: G* > G be given as in 13.5.

(1) The natural homomorphism Aut{(G*) — Aut(G) is surjective.

(ii) Aut (G*) can be given the structure of an algebraic

group with dim(Aut(G*)) = dim G*.

PROOF .
(i) Let ¥:6 = G be an automorphism. We have to show that
there is x: G* ¥ G* with ¢ o X = ¥ ¢ ¢-
If ¢ is inner then it is easy. So we assume ¥ to be a graph auto-
morphism (see [22], p. 157). We have w(xu(t)) = xga(s&t), where ¢
is the permutation of £ corresponding to ¥ and e& =+ 1. As we
only consider automorphisms of algebraic groups we only have to do
with the case that o preserves root lengths. If Q = 0 then it is
easy to see that x;(t) ad xéa(e&t) preserves relations (A), (B),
(C), (D). If Q ¥ 0 then X is of type B, or G

1 2
But then o is trivial. It is seen as in the proof of 13.5 that

(see 11.27, 5.2).

x&(t) ”’x;a(s&t) defines an automorphism of algebraic groups.
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(ii) First assume Q = 0.
Put N = ker (Aut(G*)) = Aut(G). If y € N, then yx can be written
in the form Xq ® Xpo where Xq ® Int(x) for some x € Ru’
XZ(T*) = T* (use that maximal tori are conjugate in T* . Ru).
Say x = X, Then T* is fixed by X, because y € N. So x(x&(t)) =
= x&(t), where x&(t) is obtained by replacing the norming constants
c,, by constants c& (use Lemma 11.16). As the x&(t) satisfy relations
(AY, (B), (C), (D) the values of the c& are determined by the values
for o short and simple (see 12.65, Remark 1).
We claim that these values can be obtained from an inner automor-
phism in the group (C,G) that is discussed in section 10 (ef.10.21).
Proof of the claim: Put H = NrC,G\ G*/Z’C,G‘ G* (¢f.10.21). Then
H acts on G6* in a natural way and G* also acts on H. The unipotent
radical of H can be viewed as a G*-module M, with dim M 2 dim T,
(use 10.22 and the structure of C,1) as a G*-module). The homo-
morphism of abstract groups H = Aut(G*) maps M into N. There is a
natural homomorphism pir, -+ M. For each x € M there is X € r, such

that xp(X) fixes T*. It easily follows that dim My = dim(z ),.

0
But dim(gu)O is equal to the number of short simple roots (see Pro-
position 5.2), whence the claim. (Use that cj - ¢, depends

linearly on m € MO). It also follows that dim MO =

= dim(gu)o, so dim H = dim G*. Summing up we conclude that N is
contained in the image of H, and that dim H = dim G*. It is easy
to see now that H is isomorphic (as an abstract group) to the in-
verse image in Aut(G*) of the normal subgroup Int(G) of Aut(&).
The finite subgroup F of graph automorphisms in Aut(G) (that
satisfy ey, = el = 1 for a simple) can be lifted to Aut(G*)

(see proocf of (i)). We see that Aut(G*) is isomorphic as an ab-

stract group to the semi-direct product of H and F (see [1 ], (1.11)).

If F # 1 then 2(G*) = 1, so H = G*.
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Hence Aut(G*) can be given the structure of an algebraic group
with dim (Aut(6*)) = dim H = dim G*.

If Q is nonzero then we see from the proof of (i) that Tl(Q) is
fixed by any element of Aut(Gz), where Gl’ T, are as in Corollary

1
13.5 (use that (C,1) commutes with 1,(Q). So Aut(G*)

1K

Aut(G;).

13.8. THEOREM. (Unigueness).

Let ¢: G* > G, ¢': G*' > G be two solutions of d¢ = 7 with commu-

tative radicals (see 7.2). Let Q, Q' be corresponding subgroups

of r, (see 13.1). Then the following statements are equivalent
iy Q= 4Q'.

(ii) G6* is isomorphic to G*'.

(1iii) There is an isomorphism x: G* - G*' such that ¢' ¢ x = ¢.

PROOF.

(ii) follows from (iii).

(iii) follows from (i) by Corollary 13.5 {(note that a separable
surjective homomorphism is a quotient morphism in the sense of
[11, Ch. II, § 6).

We still have to prove that (i) follows from (ii). The isomorphism
¥: G* = G*' induces an isomorphism p: G > G with ¢' ¢ X = ¢ ¢ ¢
{use that ¢,¢' both "divide out" the radicals), From Corollary 13.7
(1) it follows that we may assume p to be the identity. Then we
change X by an inner automorphism Int(x), x € Ru’ such that

x{T*) = T*', The homomorphisms T1': T, = G*' and X o T: S - G*!
then coincide, because dyx = id: g* - g* (use the universal property

of w: g* > g). So Q = ker 1 = ker (¥ o 1) = ker ' = Q'.

13.9. THEOREM.

(1) Let ¢: H > G be given as in 11.1 such that (P2) holds
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(see 11.1). Assume that G is simply connected. Let

T
0>z, —L G; 21, G = 1 be the extension from Theorem 10.1.

Then there is a k~homomorphism x from G

i into H such that

¢0X:¢1‘

(11) Let G be a semi-simple algebraic group with perfect

Lie algebra (cf. proof of 11.30). If p = 2 assume that G has no

factor of type 83. Then there is a connected linear algebraic

roup GF and a homomorphism ¢,: G* = G such that:
group by 1 1 sucn that

(a) ¢, is an infinitesimally central extension and g} = [g],gjl-

(b) If H is a connected linear algebraic group with h = [h,h] and

¢: H> G is an infinitesimally central extension, then there is

a surjective separable homomorphism ¥: G; - H such that ¢ 4 ¥ = ¢1-

If x' @ G¥ > H also satisfies ¢ ¢ y' = ¢, then there ig an auto-
=L 1 1

morphism & of 6] such that x = x' o g,

(c) d¢1 is a universal central extension.

PROOF.

(i) As 1 is H-equivariant, T(gu) is a normal subgroup. Put
H' = H/T(gu) and let ¢': H' - G be the homomorphism induced by ¢.
Then ¢' satisfies (P2) in a trivial way and hence Steinbergs
relations (A), (B) hold in H' {(see section 11). It follows from
(1231, Théoréme 3.3) that relation (C) is satisfied for arguments
that are algebraic over the prime field. Then relation (C) holds
for all arguments for reasons of continuity. It follows (cf. proof
of Corollary 13.5) that ¢' splits, i.e. there is a homomorphisn
Y: G = H' such that ¢' o, ¢ = id (use that G is simply connected).
We may replace H by the inverse image of $(G) in H. Then ¢: H * G
is still of the type described in 11.1 and (P3) holds (cf. 11.43
use Lemma 11.16 for separability). If follows from Lemma 11.2 that

dé is a central extension. Hence there is a homomorphism of Lie
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algebras p:g* - h such that d¢ o p = 7. From the central trick

it follows that p is H-equivariant, where H acts on g* by Ad o .
It is seen from the structure of r, as a G-module (H-module) that
(dt)(x, ) is the direct sum of p(pr ) and an H-submodule ¢. So h is
the direct sum of p(g*) and ¢. The action of H on h factors over

G (see Lemma 11.2). Now we use

13.10. LEMMA.

Let ¢: H > G be given as in 11.1, such that (P3) holds. Then H

has generators and relations like those in Thecrem 13.2, with

that only depend on G, the action of € on h

constants € , c..
_— Tu ijaB

and the choice of the elements Xé, Z; in h (defined as indicated

in 11.3).

REMARK. The group Q (= ker 1) corresponding to H is not necessa-

rily finite.
The proof of the Lemma is the same as that of Theorem 13.2.

13.11. We continue the proof of Theorem 13.9, (i). Consider the
semi-direct product of ¢ and G;/Tl(ker p), where GI is as in the
Theorem. This is a group S with the same Lie algebra as H and
with the same action of G on that Lie algebra. Then it follows
from Lemma 13.10 (c¢f. Corollary 13.5) that there is a homomor-
phism x': S = H such that its composition y with the natural homo-
morphism Gz =+ S satisfies ¢ 5 X = ¢1 (k-rationality follows as in
13.5).

(ii) As g is perfect, the simply connected covering c°¢ > ¢
is separable (see proof of Lemma 7.1). Each almost simple factor

GSC

: of G°° has an extension ¢i as in Theorem 10.1. The direct pro-
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duct of these extensions is an extension ¢sc: Gi -+ 6% such that

d¢sc is a universal central extension. We get an extension
¢1: Gi - G from it, such that d¢1 is a universal central extension

{use that GSC-E*G is separable). Now assume ¢: H = G is given such
that d¢ is a central extension and such that h is perfect. Let Gi
be an almost simple factor of 6, T* a maximal torus in H and TE a
subtorus of T* such that ¢(T;) is a maximal torus Ti in Gi (cf.
proof of Theorem 11.30). There is a surjective homomorphism of

Lie algebras p: gz = h such that d¢ o p = d¢1 (see Proposition
1.3, (v)). It is H-equivariant {(use the central trick). Consider
the composite homomorphism H = G = Gi and the tori TE, Ti' The
situation is that of 11.1 with (P1) (cf. proof of Theorem 11.30).
If Gi is not simply connected then it follows as in the proof of
(1) that there is a homomorphism X; from G?C into H, such that

o o X; = wi' If Gi is simply connected, then it follows from Theo-
rem 11.30, Corollary 11.2%, Remark 2 in 11.1, that (P2) holds. So
we can apply (i). The result is a homomorphism x: Gz - H such that
¢ o X = ¢1 (use Lemma 7.1). Then dy = p, because d¢ o dx = d¢1.

So ¥ is surjective and separable, which proves the existence of ¥
in (b). Now suppose X' : G; ~+ H also satisfies ¢ o y' = ¢, Let

T} denote a maximal torus of Gz such that x(T;) = T*. We may
change X' by an automorphism Int(x), x € Ru(GI), such that

x’(T;) = T*. We have morphisms X&,i : K-> G; as in the proof of
Theorem 11.30. As H - cH satigifes (P1l) (see above), we may apply
Lemma 11.16 to see that yx,x' coincide on x;’i(t) if a is a long
root with respect to G;. Furthermore we can "change the norming
constants" by an automorphism £ such that ' ¢ & and y also

coincide on x; i(t) for a short and simple (see proof of 13.7).
El

Then x' ¢ £ = y because they coincide on generators (cf. 12.6,



135

Remark 13. Parts (a), (c) follow from the construction above.

13.12. We return to the notations of 11.Y4.

COROLLARY.

Let M be an indecomposable nonzero quotient of the G-module r .

Then dim_ HZ (G,M) = 1.

k

PROOF.
By Theorem 13.8 (i) an extension of G by M is either isomorphic

to a quotient of the extension from Theorem 10.1 or it splits.

So there is only one nontrivial 2-cocycle, up to -scalar multiples.

13.13. PROPOSITION.

Let M be a G-module in which all nonzero weights are degenerate

sums. Let T € HQ(G,M). Then there ig a homomorphism of G-modules

p: r = M such that T is in the image of Hz(o): Hz(gu) - HQ(M).

PROOF. Consider the extension ¢ : H = G, corresponding to T.

The weights of M lie in pI' but the roots do not, so the differen-
tial of the action of G on M is trivial (Use [2 1, Lemma 5.2).

So d¢ is a central extension and there is a homomorphism of Lie
algebras p:g* - h such that d¢ o p = 7. We claim that the res-
triction of p to T, satisfies the requirements. It is sufficient
to prove that the image of F in HQ(M/Q(EU)) is zero, because the
case ofHQ(p(gu)) is discussed in Theorem 13.9 (i) (use Lemma 11.16
to prove linearity of the restriction of x to r, in 13.9 (i)). So
we may assume that d¢ splits (replace M by Mip(gu)). In this case
we prove that f is trivial by induction on the number of irreduci-
ble factors of M. If M is irreducible then the result follows from
Theorem 13.9 (i) or Theorem 9.6 (see Proposition 5.2 and classify

M by its highest weight). If ¢ = L > M = N = is an exact sequence
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of G-modules, L # 0, then HZ(L) - H2(M) - HZ(N) is exact, and the
image of T in B2 (N) is zero by induction hypothesis. Sc T is the
image of some g € HQ(L), which is zero by the same reason. (A sub-
extension of a splitting central extension splits by the central

trick).

13.14. THEOREM.

Let & be a simply connected almost simple subgroup of G. Assume

there is a long root a (with respect to G,T) such that Xa S g,

Y} v
ha(t) €¢ for t € K*. Assume furthermore that T = € N T is a

. .
maximal torus in G.

Let % be perfect and let 0 - z, - G* 4, G > 1,

A%
0 ->r - &+ —Eﬁ & - 1 be the extensions from Theorem 10.1.

"
©°

Then there is a homomorphism : &* > G* such that ¢ o ¥

REMARK. Again we don't claim that ¢ is unique.

PROOF.

There is a dual pairing X{(T) x X,(T) = Z , where X{T) is the
character group of T and X,(T) is the group of one parameter sub-
groups of T (see [ 1], (8.6)). Note that X(T) is just T. We denote
the pairing <,>, as in loc. cit. There are natural maps X(T) - x(t)
and X*(%) > X.(T). Let V be the real vector space in which Z, T
are imbedded. There is a natural choice for the inner product

(,) on V and on its dual V', up to scalar factors. This choice

is characterized by the fact that (,) is invariant under W (see

[41, Ch. VI, § 1, n°

1.2, Proposgition 7). We choose (,) in the
following way:
For A,u € X,(T), we put

(A,u) = z <y ,A> <y ,u>, extend this to V', and identify
Yy weight of g
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V with V' by means of this inner product. Then we restrict (,) to
the subspace ¥ spanned by X*(%), which we view as a subset of
X {T) (cf. [14}, §2). We get an inner product that is invariant

under the Weyl group W of & (use that g is a &-module). Then we
identify X(t¥) = ¥ with a subset of V! by means of the inner

product. The result is that we have embeddings of X,(T),

X*(%), X(T), X(T) into a real vector space V with inner pro-
duct (,). In V the map X(T) - X(¥) corresponds to the ortho-
gonal projection of V on the subspace ¥ (or ¥'). The long root

o € Z is its own projection because t & h (t) is in 3. If v

is a degenerate sum in T', then its projection on ¥ is an element
? of p? with (?,?) < (v,Yy) € pla,a) (see Proposition 2.12). If

? S %0, then ? is either zero or degenerate by Proposition 2.12.
Consider the inverse image H of & in 6*. It is an extension of &
by Eu’ where the weights of gu are zero, degenerate or not con-
tained in %O' Write r, M @ N where M is spanned by the weight
components of weights in %O (cf. 10.14, Remark). We claim that
HQ(G,N) = 0. Then the result follows from Proposition 13.13.

So we still have to prove:

13.15. PROPOSITION.

If N is a G-module with weights that are not in T_., then Hz(G,N) = 0.

0

PROOF.

Let ¢: H > G be an extension of G by N. From Theorem 8.2 we get the
existence of a T*-equivariant cross section s: G = H, where T* is

a maximal torus in ¢~1(T) as usual. We have an "open cell”

a* = ¢"3(Q) = N . s(Q). Put x2(t) = s (x (t)) for a € Z. We argue
as in 11.15, 11.18 to see that Steinbergs relations (A), (B) hold.

It follows as in the proof of Theorem 13.9 (1) that ¢ splits.
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13.16. Examples to Theorem 13.14.

D
y
Then & contains all elements X, (t)s t € X, and hence Xa S g
2 2

(here Gy is the second simple root in type D). The other

1) Let & be the subgroup GB of G which we discussed in 3.11.
3

conditions are also satisfied (see 3.11) so there is a homomorphism

G* =~ G* . Compare this vresult with the construction of G}
B Du B3

in 10.12.
2) Similar examples are obtained from the "triality" in DQ

(cf. Remark 10.17) and from the graph automorphisms of GD (1 > 4.
1

3) The triality induces an embedding GG - Gy that factors through
2 i
the embedding from example 1. As a result we get an embedding

G > Gy which also satisfies the requirements.

e 3
4) Let ¢ be the subgroup of GF generated by the elements
y
X (t), x (t), t € K. It is a simply connected group of type A,,
1oy 1oy

but the assumption about the long root in 13.14 is false. If p = 2,
then it is easy to see from the [pl-structures that there is no

homomorphism y as in the Theorem.

§14. The group functor G*.

In this section we discuss a group functor which has R ¥ gg

as a Lie algebra. We omit proofs.

14.1. We will consider contravariant functors from schemes to
sets, which are sheaves on the category of schemes. Giving such
a sheaf is equivalent to giving a covariant functor from rings
to sets which is a sheaf (see [15] I § 2 (2.3.6)). We will iden-

tify these two sheaves.

14.2. Let 6 be a simply connected almost simple Chevalley group

scheme that is not of type C; (1 » 1). Its Lie algebra is perfect
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and we have a universal central extension 7: gi -> &7 inducing
a universal central extension g§ ~ gx for every ring R. So we
have a functorial morphism, which we denote w: g* = g (Here we
drop the convention g = gK). For p = 2, 3 we have an extension
d: G* > G x Spec(Z ) Spec(H’P) as in Theorem 10.1. It defines a
functorial meorphism of group functors on the category of (commu-

tative) E‘p—algebras. We put GE(R) = G*(R/pR) and GP(R> = G(R/pR).

We get group functors on the category of rings. A functorial mor-
phism ¢p: GE g GP is induced by ¢. It is in fact a morphism of
group functors. We extend the functor G* from section 10 to a

functor on the category of rings defining the extension as the

limit of the projective system, given by the diagram

a3 (R) -

6, (R)
G(R) <

G, (R)
e;m/ 3

Equivalently, we have G* = (G} x , G) X G*. It is a group
2 G2 G3 3

functor and it is a sheaf. There is a morphism of group functors

¢: G* > G. Its kernel is isomorphic to the kernel of w:g* = g

and its differential d¢ is isomorphic to 7. Here the differential

is taken in the sense of ([121, Exp. II, Prop. 3.7), where it is
denoted L(¢). The tangent spaces may be supplied with a structure
of Lie algebra functors by the definitions given in ({12], Exp. II).
(One has to check a list of conditions). Then d¢ may be identified
with 7 as a homomorphism of Lie algebra functors (i.e. there are

suitable isomorphisms).
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14.3. If ker ¢ is nontrivial then ker ¢ (or ker m), g*, G* are

not representable by schemes. For suppose G* is (representable by)
a scheme. Then its tangent space g* is an affine scheme (see [12],
Exp. II, Prop. 3.3 and Exp. I, 4,6.3). This is not compatible with
the fact that there is x € g& s X # 0, such that its image in g%b
is zero for almost all p. In the same way we see that g* and ker ¢

are no schemes. (They are their own tangent spaces).
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List of Notationsg

We use mainly the same notations as in [1], [2], [u], [22].

Aa
ada
c, (C)

Ca

CijaB
fO’ fO
G

&
£z
H*

o
ng
iV,iG,...
Int

X, K

representation of G in g*. 3.1
d Ad 3.3
G~module C, condition (C). 10.3,10.4
norming constant 11.17
constant in commutator relation 11.18
element of L2, HO(L2). 10.3

Chevalley group from 2.1, except in 7.1,
7.8, 7.9, 8, 9, 11.1, 11.2, 11.3, 11.29,
11.30, 13.9, 13.10, 1u4. After section U4
it is assumed that if G is as in 2.1 then
g is perfect (or T N pl' = @).

see ¢.

subgroup generated by x&(t), x:a(t), t € K. 12.2

$(G*™).
subgroup with Lie algebra 5&. 11.5
*
¢(Ga)'
subgroup generated by X§a+j8(u)’ i>o, 11.19
j > 0.
£ < gk 2.1
see 7.
r gi‘* &y 2.14
generator of g*. 3.5
= -3
h&(t) = w&(t)w&(l) . 12.2
mappings into fV,GY. 8.1
action of G on R+ 11.26

K is algebraic closure of k. 2.1
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LM’LM/N G-module M @zg,... 4,1
n, max{n{y € nl'}. 3.5,3.7
(P1),... condition or label. 11.1,11.3
Pg»Pys-+- DProjections from fy,el, 8.1
Q ker T. 13.1
r, G-module ker 7 or Lie algebra of the

unipotent radical Ru of G*. 10,7.4
T* torus in G* or H. 11.1,11.4
wh wa (t) = x}(O)x: (-t7)x*(t). 12.2
xg x&(t) € G& for t € X. 11.6,11.17
X; generator of g*. 3.5
e x2(t) = y&(t)x;a(catp). 11.17
Z; generator of g*. 3.5
Z(T*) centralizer ZG*(T*) of T* in G*.
8,81,E2 exact sequences. 9.4,190.3
£V category of modules Ly, M C V. 4.1
T lattice of weights. 2.1
Ty sublattice generated by roots. 2.1
€q axplel - €28y 11.15
8 morphism onto Q* or restriction of this

morphism. 11.12
T T gt~ gis au.c.e. 1.1
™ morphism into Z(T*) N R,. 11.23
$ ¢ : G* > G satisfies d¢ = 7. 7
Q* ¢~ (R), where © is the open cell in 6. 2.1,11.10
Subscripts:

VY,EY,VO,.. weight spaces.

GA3"“ G of type AB""
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Brackets etec.:

{Ha}’ {x}, {x}M, {X}M/N residue classes. 2.16,4.1
fv,e} semi-direct product. 8.1
V,gl,. .. Lie algebra of V,q),...

JifVZ/VB generators of composition series.h.li
al B (a,B) = 0.

R" group of invertible elements of R.
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Index

admissible

central trick

centrally closed
coboundary

cochain

cocycle

Z-connected

degenerate sum

equivariant

extension (of Lie algebra)
(universal) central extension
extension (of group)
k-extension
infinitesimally central extension
Hochschild group
homomorphism
indecomposable
indecomposable component
Jacobl relation

Lie algebra

long root

morphism

norming constant

perfect

ring

short root

standard lattice

Witt-coeycle

7.8
9.1

conventions

conventions
conventions
11.17

11.30

1.1
conventions
k.1

11.15



