
doi:10.1006/jsco.2000.0374
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2000) 30, 329–337

Complexity of the Havas, Majewski, Matthews LLL
Hermite Normal Form Algorithm

WILBERD VAN DER KALLEN

Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80.010, NL-3508 TA Utrecht,
The Netherlands

We consider the complexity of the LLL HNF algorithm (Havas et al., 1998, Algorithm 4).
This algorithm takes as input an m by n matrix G of integers and produces as output
a matrix b ∈ GLm(Z) so that A = bG is in Hermite normal form (upside down). The

analysis is similar to that of an extended LLL algorithm as given in van der Kallen
(1998).

c© 2000 Academic Press

1. The Result

Let B ≥ 2 be such that the rows of the input matrix G have squared length at most B.
Our main result is the following theorem.

Theorem 1.1. Throughout the algorithm all entries have bit length O(m log(mB)).

We do not care about the constants in this estimate. We leave to the reader the easy
task of estimating the number of operations on the entries in the manner of Lenstra et
al. (1982). One finds that O((m+ n)4 log(mB)) such operations will do.

Our result should be compared with the estimate O(m log(B)) of Lenstra et al. (1982).
The reason our estimate is a little worse is the presence of the transformation matrix b.

The theorem should also be compared with the result of Kannan and Bachem (1979),
where again it is the transformation matrix which gives the worst estimate, namely,
basically O(m4 log(mB)). (For the matrix A they need only O(m3 log(mB)).)

2. Notations

We have tried to use notations that are consistent with the literature, but the B of
Havas et al. (1998) clashes with the B of Lenstra et al. (1982), which is why we have
rebaptized it b. For a proper understanding the reader should keep the works of Lenstra
et al. (1982) and Havas et al. (1998) at hand. See also Cohen (1993). Here are our main
notations.

〈v, w〉 = (vG,wG).
(v, w)mix = (prisov, prisow) + 〈v, w〉, see Section 6.

A A = bG is eventually in upside down Hermite normal form, see the abstract.
B integer so that B ≥ 2 and (eiG, eiG) ≤ B for all i.

0747–7171/00/030329 + 09 $35.00/0 c© 2000 Academic Press

330 W. Van Der Kallen

b The transformation matrix, see the abstract.
bi ith row of b.
b∗i ith Gram–Schmidt vector of the rows of b, with respect to (,)mix, see Section 4.
C integer so that |µij |2 ≤ C.
di di =

∏i
j=1〈b∗j+miso

, b∗j+miso
〉.

diso
i diso

i =
∏i
j=1(b∗j , b

∗
j) for i ≤ miso.

ei element of standard basis of Rm.
gram Gram matrix of 〈 , 〉: gramij = 〈ei, ej〉.

k index pointing at the row bk.
kmax maximum value that k has attained.
G the submatrix of the input matrix consisting of the columns that correspond with

columns of A in which a pivot has already appeared, see Section 6.
m the number of rows of the input matrix.

miso the number of zero rows with which A starts presently.
µij bi = b∗i +

∑i−1
j=1 µi,jb

∗
j .

n the number of columns of the input matrix.
priso orthogonal projection of Rm onto the computed part of the isotropic subspace, see

Section 6.
rank the rank of G.
rk the index of Z in Z+ Zµk,k−1 in a trickledown step, see Section 9.
z a nonzero vector in trickledown with (z, z)mix = 0.

3. Introduction

The proof is a rather technical modification of the proof in Lenstra et al. (1982). We
will describe the situation in gradually increasing detail.

The main issue is whether we can estimate the entries of b in terms of B, m, n during
the algorithm. The entries of A can then be estimated through A = bG. As they do
not affect b, we may remove from G all columns that do not contribute a pivot to the
Hermite normal form. Once that is done, A has as many columns as its rank, and at the
end of the algorithm the product of its pivots is the covolume of the lattice spanned by
its rows. This covolume can be estimated in terms of any nonvanishing maximal minor
of G, which by Hadamard is of size at most Brank/2. This is analogous to the estimate
di ≤ Bi of Lenstra et al. (1982).

As in van der Kallen (1998) we use the ordinary Euclidean inner product (,) for the
rows of b, and also an inner product 〈v, w〉 = (vG,wG). (For the new G which has a rank
equal to its number of columns.) The vectors v with 〈v, v〉 = 0 are called isotropic. We
let priso be the orthogonal projection according to (,) of Rm onto the isotropic subspace
and put

(v, w)mix = (prisov,prisow) + 〈v, w〉.
(Compare Pohst (1987).) One can estimate the ratio between (v, v) and (v, v)mix. The
problem then becomes one of estimating (bi, bi)mix for any row bi of b.

The algorithm first computes a Hermite normal form for the top kmax rows of G,
starting with kmax = 1, and increasing kmax in steps of one. Each time just before one
wants to increase kmax the situation looks like the one at the end, but now only for the first
kmax rows. Right after one wants to increase kmax we enter a stage which we will emulate
with a procedure called trickledown, which we analyse as in van der Kallen (1998). This
is where we have to deviate most from Lenstra et al. (1982). The trickledown stage is
followed by an ordinary LLL stage and then we return to increasing kmax. For all these
stages and the transitions between them we have to give estimates.

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form Algorithm 331

4. The Analogy with an Extended LLL Algorithm

The LLL HNF algorithm (Havas et al., 1998, Algorithm 4) is based on lattice basis
reduction. For us this will be much more important than the fact that it computes a
Hermite normal form. Our task is to give estimates as long as the while loop of Havas
et al. (1998) runs. To emphasize the LLL nature of their algorithm, we now describe
properties of its output in terms similar to those of Lenstra et al. (1982) and van der
Kallen (1998). It is only because of the close similarity with the extended LLL algorithm
of van der Kallen (1998) that we can prove the present theorem.

Let e1, . . . , em be the standard basis of Rm. The Gram matrix gram = (〈ei, ej〉)mi,j=1

belongs to a positive semidefinite inner product 〈 , 〉 on Rm. Note that gram has integer
entries. Let rank be the rank of G and assume that we have removed from G the columns
that do not contribute a pivot. (In this paper a pivot is an entry of A that is the first
nonzero entry in its row and also in its column.) Put miso = m− rank and let b∗i denote
the ith Gram–Schmidt vector with respect to (,)mix. We may characterize the b∗i as
follows. Firstly, b∗i lies in (bi +

∑i−1
j=1 Rbi). Secondly, if 1 ≤ j < i ≤ m and j ≤ miso then

(b∗i , bj) = 0, but if 1 ≤ j < i ≤ m and j > miso then 〈b∗i , bj〉 = 0.
With those notations the output satisfies:

(1) The first miso rows bi of b are isotropic.
(2) With respect to (,) the first miso rows of b form an LLL reduced basis of

∑miso
j=1 Zbi.

(3) The last rank rows of b form a basis of the lattice they span, and this lattice contains
no nonzero isotropic vector.

(4) If miso + 1 ≤ i < j ≤ m, then |〈b∗i , bj〉| ≤ 〈b∗i , bi〉.
(5) If 1 ≤ i ≤ miso and i < j ≤ m, then we have |(b∗i , bj)| ≤ 1/2(b∗i , bi).

The proof is clear.

5. Stages of the Algorithm

Now that we have described a way to look at the final result, let us discuss how we view
things along the way. We need to partition the algorithm into a number of stages. This
despite the fact that one keeps running the same while loop. Our estimates are simply
different for the different stages. The stages are separated by certain key events. One
such key event is when k wants to go beyond kmax. (As in Cohen (1993) we use kmax to
denote the maximum value that k has attained.) The event is followed by a stage which
we emulate by the procedure trickledown, which ends when a new pivot appears in A
or a new zero row appears in A (in the actual Havas, Majewski, Matthews LLL Hermite
normal form algorithm). During this stage we estimate b in the same manner as in van
der Kallen (1998).

Thereafter one returns to a stage which we call an ordinary LLL stage. One basically
runs an ordinary LLL algorithm for the inner product (,)mix until k wants to go beyond
kmax again. Then one returns to trickledown again, and so on. So the ordinary LLL
stages alternate with trickledown stages.

What makes it all rather technical is that (,)mix depends on the stage. For instance,
if at the end of trickledown a new zero row appears in A, then we have to change priso

to take the newly found isotropic vector into account. However, that means that (,)mix

changes meaning.
During trickledown another technical difficulty is that one is dealing not just with

332 W. Van Der Kallen

an MLLL in the sense of Pohst (1987), but with an extended MLLL algorithm, i.e. one
also requires the transformation matrix b. It is the latter which makes it such that one
cannot refer to Pohst (1987) for the analysis.

6. An Ordinary LLL Stage

We now describe the situation during an ordinary LLL stage, after any execution of
the body of the while loop. We leave the checks to the reader. One should assume for
now that all claims hold when entering the present ordinary LLL stage. This should be
checked after the discussion of trickledown below.

In the definition of the inner product 〈 , 〉 we work with a G from which all columns
have been removed where no pivot has been found yet in A. We have:

(1) an integer matrix b of determinant ±1;
(2) integers k, kmax, 1 ≤ k ≤ kmax ≤ m;
(3) an integer miso ≥ 0, so that the first miso rows bi of b span the isotropic subspace

of
∑kmax
j=1 Rbj .

For i > kmax we have bi = ei, the ith row of the identity matrix.
Let priso be the orthogonal projection according to (,) of Rm onto

∑miso
j=1 Rbj and

put
(v, w)mix = (prisov,prisow) + 〈v, w〉.

Let b∗i denote the ith Gram–Schmidt vector with respect to (,)mix, as in Section 4. Let
µi,j be defined for i > j so that

bi = b∗i +
i−1∑
j=1

µi,jb
∗
j .

The first standard fact is then that, with respect to (,)mix, the first k − 1 rows of b
form an LLL reduced basis of

∑k−1
j=1 Zbj , except that one does not require

|b∗i + µi,i−1b
∗
i−1|2mix ≥ 3/4|b∗i−1|2mix

when i > miso, and that the usual condition |µi,j | ≤ 1/2 is weakened to |µi,j | ≤ 1 for
j > miso. And the second standard fact is that, as in Cohen (1993), the first kmax rows
of b form a basis of

∑kmax
j=1 Zei.

During the ordinary LLL stage we run the LLL algorithm with respect to (,)mix,
except that one leaves out many swaps. (From now on we suppress mentioning the an-
noying weakening of the condition on the µi,j .) Leaving out swaps will be harmless for
our estimates, as the size estimates in Lenstra et al. (1982) for the µij etc. do not require
that one executes a swap whenever one is recommended by the LLL test.

Running LLL with respect to (,)mix roughly amounts to running two LLL algorithms,
one for (,) and one for 〈 , 〉. That is why the pseudo-code in Havas et al. (1998) makes
the distinction between col1 = n+ 1 and col1 ≤ n.

One runs LLL until k tries to go to kmax + 1. If kmax = m we are through. If kmax <
m then one should realize that because of the removal of columns from G, the row
ekmax+1G will be dependent on the earlier rows. That ensures that (,)mix is degenerate
on
∑kmax+1
j=1 Rbj , so that we enter an MLLL situation if we do not adapt (,)mix. However

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form Algorithm 333

we cannot adapt (,)mix yet, as this would destroy the link with what the algorithm
of Havas et al. (1998) actually does. That is why we will switch to trickledown at this
point. One may see trickledown as the search for the missing isotropic vector.

7. Estimates

We keep the notations of Section 6. We want to give estimates by changing those of van
der Kallen (1998) minimally. Recall thatB ≥ 2 is such that the entries of gram = (〈ei, ej〉)
are at most B. We start by investigating the connection between (,) and (,)mix.

7.1. determinants

Let grammix be the Gram matrix ((ei, ej)mix) with respect to e1,. . . ,ekmax . Its entries
are at most B + 1. With Hadamard this gives

|det(grammix)| ≤ (
√
m(B + 1))m

and the same estimate holds for its subdeterminants. We claim that the determinant
of grammix is an integer, so that we also obtain this upper bound for the entries of
gram−1

mix. To see the claim, consider as in Pohst (1987) the inner product (,)ε given
by (v, w)ε = ε(v, w) + 〈v, w〉. Its Gram matrix has a determinant which is a polynomial
detε of ε with integer coefficients. One may also compute detε with respect to a basis
which is obtained from e1, . . . , ekmax through an orthogonal transformation matrix. By
diagonalizing the Gram matrix of 〈 , 〉 we see that det(grammix) is the coefficient of εmiso

in detε.

7.2. lengths of vectors

Lemma 7.1. For v ∈ Rm one has

(v, v)mix ≤ m(B + 1)(v, v)

and for v ∈
∑kmax
j=1 Rej one has

(v, v) ≤ m(
√
m(B + 1))m(v, v)mix.

Proof. The supremum of { (v, v)mix | (v, v) = 1 } is the largest eigenvalue of the Gram
matrix of (,)mix with respect to e1, . . . , em. The largest eigenvalue is no larger than
the trace of this matrix. Thus it is at most m(B+ 1). Similarly, the largest eigenvalue of
gram−1

mix it is at most m(
√
m(B + 1))m by Subsection 7.1. 2

7.3. discriminants

Now put

diso
i =

i∏
j=1

(b∗j , b
∗
j)

for i ≤ miso and

di =
i∏

j=1

〈b∗j+miso
, b∗j+miso

〉

334 W. Van Der Kallen

for i ≤ rank. As far as di is concerned we may compute modulo isotropic vectors, or also
with (,)mix. Indeed

〈b∗j+miso
, b∗j+miso

〉 = (b∗j+miso
, b∗j+miso

)mix

for 1 ≤ j ≤ rank. Both diso
i and dj are integers and they descend when applying LLL.

(Throughout we must assume similar arguments to those in Lenstra et al. (1982).) In
fact the 〈b∗j+miso

, b∗j+miso
〉 are themselves squares of integers. (Squares of the pivots of

the moment.) And they do not change during an ordinary LLL stage, because the swaps
that would make them descend have been deleted.

One may also compute det(grammix) with the b∗i basis, as the transition matrix from
the ei basis to the b∗i basis has determinant ±1. From that one sees that it is just
diso
miso

drank. Thus we obtain from Subsection 7.1 that diso
miso
≤ (
√
m(B + 1))m. In fact, for

i ≤ miso one has the same estimate

diso
i ≤ (

√
m(B + 1))m

because i was equal to miso earlier in the algorithm and LLL only makes diso
i go down

(trickledown will not touch it).
Recall from Section 3 that the pivots are integers whose product is at most Brank/2.

It follows that
di ≤ Brank

for i ≤ rank.

Lemma 7.2. Let 1 ≤ i ≤ kmax. Then

(
√
m(B + 1))−m ≤ (b∗i , b

∗
i)mix ≤ (

√
m(B + 1))m

and if C ≥ 1 is such that |µij |2 ≤ C for 1 ≤ j < i, then

(bi, bi)mix ≤ mC(
√
m(B + 1))m.

Proof. Use the estimates of diso
i , di. 2

7.4. preserved estimates

Put C = (4mB)5m. We will see in Subsection 9.1 that

|µi,j |2 ≤ C for 1 ≤ j < i ≤ kmax

at the start of an ordinary LLL stage.

Lemma 7.3. The following estimates hold after each execution of the body of the while
loop in an ordinary LLL stage.

(1) diso
i ≤ (

√
m(B + 1))m for i ≤ miso,

(2) di ≤ Brank for i ≤ rank,
(3) (bi, bi)mix ≤ mC(

√
m(B + 1))m if i 6= k and i ≤ kmax,

(4) (bk, bk)mix ≤ m29mC(
√
m(B + 1))3m,

(5) |µi,j | ≤ 1 for 1 ≤ j < i < k,
(6) |µk,j | ≤ 3m−k

√
mC(

√
m(B + 1))m for 1 ≤ j < k,

(7) |µi,j | ≤
√
mC(

√
m(B + 1))m if 1 ≤ j < i and k < i ≤ kmax.

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form Algorithm 335

Proof. That these are preserved under LLL follows as in Lenstra et al. (1982), so
one has to check that they hold right after trickledown. Given the above this will be
straightforward. Note that one could insert reduction steps in the algorithm to obtain
C = 1 instead of the outrageously pessimistic C = (4mB)5m. 2

8. Description of trickledown

Before we can do estimates concerning trickledown we must describe it. One starts
with having k = kmax +1 ≤ m. (So we look at the moment that kmax should be increased,
but we do not increase it yet.) Consider the lattice generated by b1, . . . , bkmax+1 where
bkmax+1 = ekmax+1. As ekmax+1G is dependent on the earlier rows of G now, this lattice
contains a nonzero vector z with (z, z)mix = 0. Modulo Rz the vector bk is linearly
dependent on the bi with i < k. Changing the basis of Zbk−1 +Zbk we find that modulo
Rz the vector bk−1 is linearly dependent on the bi with i < k−1. Then lower k by one and
repeat until k = miso +1, where miso is the one from before the present trickledown. Or
stop when the Havas, Majewski, Matthews LLL Hermite normal form algorithm produces
a new pivot (in a column of A corresponding with one that we have removed from G). If
a new pivot has been created we add back the relevant column to G and pass to a new
(,)mix. If bk = bmiso+1 is itself isotropic we increase miso by one and again pass to a
new (,)mix. This describes trickledown.

One may worry about the fact that trickledown does not trace the Havas, Majewski,
Matthews LLL Hermite normal form algorithm faithfully. We are close enough though.
(And our replacement has worse estimates than the original.) We are just leaving out
some size reductions and we are taking together some swaps and reductions that make
up the required change of basis of Zbk−1 + Zbk. The change of basis is the one coming
from an extended Euclidean algorithm. Thus we will further ignore that trickledown,
which we took from van der Kallen (1998), does not quite trace this stage of the Havas,
Majewski, Matthews algorithm. We simply blame their algorithm.

9. Estimates during trickledown

We will examine trickledown in more detail. Upon entering trickledown we change
notation and freeze the old miso, kmax and the b∗i , even though the bi will change. In
addition, we do not change (,)mix. Let µi,0 denote (ekmax+1, bi) and let µi,j denote
(b∗j , bi)mix/(b∗j , b

∗
j)mix if j > 0. Note that initially |µi,j | ≤ 1 for 0 ≤ j ≤ i ≤ kmax. We

will estimate |µi,j | as k descends. The key point is that we can also estimate µi,0. This
compensates for the fact that (,)mix is degenerate on

∑kmax+1
i=1 Rei. By combining µi,0

with (,)mix we will be able to estimate (bi, bi). It is in order to explain the estimate of
µi,0 that we prefer working with trickledown.

Say k > miso + 1 and modulo Rz the vector bk is linearly dependent on the bi
with i < k. Let us compute with bk, bk−1 modulo V = Rz +

∑k−2
i=1 Rbi. We have

bk ≡ µk,k−1b
∗
k−1 and bk−1 ≡ b∗k−1 modulo V . With the extended Euclidean algo-

rithm of Cohen (1993) we find an integer matrix
(
α β
γ δ

)
of determinant one so that(

α β
γ δ

)(
1

µk,k−1

)
=
(

0
−1/rk

)
where rk is the index of Z in Z+Zµk,k−1. More specif-

ically, one has
(

δ −β
−γ α

)(
0

−1/rk

)
=
(

1
µk,k−1

)
so β = rk and α = −rkµk,k−1. By

336 W. Van Der Kallen

Cohen (1993) we have |γ| ≤ |µk,k−1rk| and |δ| ≤ rk. (Actually this is wrong. Indeed,
Cohen (1993) only claims it when µk,k−1 is nonzero. We leave the modifications for the
case µk,k−1 = 0 as an exercise.)

Now put ck−1 = αbk−1 + βbk and ck = γbk−1 + δbk. The algorithm trickledown tells
us to replace bk with ck and bk−1 with ck−1. We want to estimate the resulting new µi,j ,
which we call νi,j . For i different from k, k − 1, nothing changes. (By convention the
b∗j are frozen.) Further, |νk−1,j | = |αµk−1,j + βµk,j | ≤ rk|µk,k−1µk−1,j | + rk|µk,j | and
|νk,j | = |γµk−1,j + δµk,j | ≤ rk|µk,k−1µk−1,j |+ rk|µk,j |, which is the same bound.

Lemma 9.1. As k descends we have

(1) |µk,j | ≤
√
B
∏kmax+1
i=k+1 (2ri) for k > j ≥ 0,

(2) |µi,j | ≤ 1 when k > i ≥ j ≥ 0,
(3) |µi,j | ≤ 2m(

√
B)rank+1 if k ≤ i ≤ kmax + 1 and kmax ≥ j ≥ 0.

Proof. Initially we have k = kmax + 1 and |µk,j |2 ≤ B. Now assume the estimates are
true for the present k. If j < k − 1, we obtain |νk−1,j | ≤ rk|µk,k−1µk−1,j | + rk|µk,j | ≤
2rk maxi |µk,i| which takes care of |νk−1,j |. This will be the new µk,j after the lowering
of k. Recall that |νk,j | satisfies the same bound. Let us forget to interrupt trickledown
in case a new pivot is produced. Then

∏kmax+1
k=miso+2 rk is the ratio by which the covolume

drops when adding ekmax+1G to the lattice spanned by e1G, . . . , ekmaxG, so it is at most
(
√
B)rank. Thus |νk,j | ≤ 2m(

√
B)rank+1 and |νk−1,j | ≤ 2m(

√
B)rank+1. Finally, |νk,k−1| =

1/rk and νk−1,k−1 = νk,j = 0 for kmax ≥ j > k. 2

9.1. bailing out of trickledown

When k has reached miso + 1 or a new pivot has been created, it is time to forget the
old (,)mix. However first use Lemma 7.2 and the estimates of the µi,j to estimate, for
i ≤ kmax + 1,

(bi, bi)mix ≤ m4mBrank+1(
√
m(B + 1))m.

Similarly we have

(µi,0ekmax+1, µi,0ekmax+1)mix ≤ (B + 1)4mBrank+1,

and thus

(bi − µi,0ekmax+1, bi − µi,0ekmax+1) ≤ m2(
√
m(B + 1))2m4m+1Brank+1

by means of Lemma 7.1, and finally

(bi, bi) ≤ (4mB)4m

say. These estimates hold all through trickledown and thus in particular at its end.
Now update G, miso, kmax, (,)mix, b∗i and so on. We have to estimate the new

µj,i. This is easy, as we have an estimate for (bj , bj)mix by Lemma 7.1 and also one for
(b∗i , b

∗
i)
−1
mix by Lemma 7.2. We obtain the estimate |µj,i|2 ≤ (4mB)5m, which was needed

in Subsection 7.4. Now we need to check that the description in Section 6 is satisfied at
the beginning of the subsequent ordinary LLL stage.

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form Algorithm 337

10. The Actual Entries

Now that we can estimate the bi and diso
i throughout the algorithm, it is time to

consider the entries in the pseudo-code of Algorithm 4 in Havas et al. (1998). It is clear
how to estimate the entries of A, and their B is our b. The Dr require more care. They
may be defined as in Lenstra et al. (1982, (1.24)) by

Dr = det((bi, bj)1≤i,j≤r).

It will suffice to estimate them during the ordinary LLL stages, as during trickledown
Dr changes just once, from the value at the end of the previous stage to the value at
the start of the subsequent stage. (Of course trickledown is only an emulation, but by
means of Dr ≤ Dr−1(br, br) one can easily deal with the difference.)

Now for r ≤ miso we have Dr = diso
r , whence

Dr ≤ (
√
m(B + 1))m

by Subsection 7.3. However, the pseudo-code also uses Dr for larger r. (We suspect that
this may be costly.) For r ≥ kmax we have Dr = 1. For miso < r < kmax we may use
the following trick. Remove from G the columns corresponding with the pivots in biG
for miso < i ≤ r. That does not affect Dr, but it makes miso become equal to r. Hence,
then, the above estimate miraculously applies.

Finally we have the λij of the pseudo-code to deal with. One estimates them through

λ2
ij ≤ (bi, bi)(bj , bj)D2

j−1.

11. Conclusion

We have proved the theorem by exploiting the analogy with the extended LLL al-
gorithm of van der Kallen (1998) for which a similar result holds with a similar proof.
Indeed the main difference with the analysis of that algorithm is that there one does not
remove any columns from G before defining 〈v, w〉. And one executes all swaps that make
di go down. The output then also satisfies the properties of Section 4 and on top of that
the last rank rows of bG are LLL reduced. We refer to van der Kallen (1998) for further
details of analysis and implementation.

References

Cohen, H. (1993). In A Course in Computational Algebraic Number Theory, volume 138 of Graduate
Texts in Mathematics. Berlin, Springer.

Havas, G., Majewski, B. S., Matthews, K. R. (1998). Extended gcd and Hermite normal form algorithms
via lattice basis reduction. Exp. Math., 7, 125–136.

Kannan, R., Bachem, A. (1979). Polynomial algorithms for computing the Smith and Hermite normal
forms of an integer matrix. SIAM J. Comput., 8, 499–507.

Lenstra, A. K., Lenstra, H. W. Jr., Lovász, L. (1982). Factoring polynomials with rational coefficients.
Math. Ann., 261, 515–534.

Pohst, M. (1987). A modification of the LLL-algorithm. J. Symb. Comput., 4, 123–128.
Van der Kallen, W. (1998). Complexity of an extended lattice reduction algorithm, electronic note

http://www.math.uu.nl/people/vdkallen/.

Originally Received 11 January 1999
Accepted 7 April 2000

	The Result
	Notations
	Introduction
	The Analogy with an Extended LLL Algorithm
	Stages of the Algorithm
	An Ordinary LLL Stage
	Estimates
	Description of {trickledown}
	Estimates during {trickledown}
	The Actual Entries
	Conclusion
	References

