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Abstract

Let G be a connected reductive linear algebraic group over a field k of characteristic p > 0. Let p
be large enough with respect to the root system. We show that if a finitely generated commutative
k-algebra A with G-action has good filtration, then any noetherian A-module with compatible G-action
has finite good filtration dimension.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a connected reductive linear algebraic group G defined over a field k of positive
characteristic p. We say that G has the cohomological finite generation property (CFG) if
the following holds: Let A be a finitely generated commutative k-algebra on which G acts
rationally by k-algebra automorphisms. (So G acts on Spec(A).) Then the cohomology ring
H ∗(G, A) is finitely generated as a k-algebra. Here, as in [8, I.4], we use the cohomology
introduced by Hochschild, also known as ‘rational cohomology’.
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In [13] we have shown that SL2 over a field of positive characteristic has property (CFG),
and in [14] we proved that SL3 over a field of characteristic two has property (CFG). We
conjecture that every reductive linear algebraic group has property (CFG). In this paper
we show that this is at least a good heuristic principle: we derive one of the consequences
of (CFG) for any simply connected semisimple linear algebraic group G that satisfies the
following:

Hypothesis 1.1. Assume that for every fundamental weight �i the symmetric algebra
S∗(∇G(�i )) on the fundamental representation ∇G(�i ) has a good filtration.

Recall that this hypothesis is satisfied if p�maxi (dim(∇G(�i ))), by [1, 4.1(5) and
4.3(1)]. This inequality is not necessary. For instance, SLn satisfies the hypothesis for
n�5, by [13, Lemma 3.2]. When p = 2, the hypothesis does not hold for SLn with n�6,
by [13, 3.3].

In the sequel let G be a connected reductive linear algebraic group over an algebraically
closed field k of characteristic p > 0 with simply connected commutator subgroup for which
Hypothesis 1.1 holds. Let A be a finitely generated commutative k-algebra on which G acts
rationally by k-algebra automorphisms. Let M be a noetherian A-module on which G acts
compatibly. This means that the structure map A⊗M → M is a G-module map. Our main
result is

Theorem 1.2. If A has good filtration, then M has finite good filtration dimension and
each Hi(G, M) is a noetherian AG-module.

When A = k the theorem goes back to [4] and does not need Hypothesis 1.1. Unlike
the proofs in [13] and [14], the proof of our theorem does not involve any cohomology of
finite group schemes and is thus independent of the work of Friedlander and Suslin [5]. But
without their work we would not have guessed the theorem. For clarity we will pull some
material of [13] free from finite group schemes.

2. Recollections

Some unexplained notations, terminology, properties, . . . can be found in [8]. We choose
a Borel group B+ = T U+ and the opposite Borel group B−. The roots of B+ are positive.
If � ∈ X(T ) is dominant, then indG

B−(�) is the ‘dual Weyl module’ or ‘costandard module’
∇G(�) with highest weight �. The formula ∇G(�) = indG

B−(�) just means that ∇G(�) is
obtained from the Borel–Weil construction: ∇G(�) equals H 0(G/B−,L) for a certain line
bundle on the flag variety G/B−. In a good filtration 0=V−1 ⊆ V0 ⊆ V1 . . . of a G-module
V = ⋃

iVi the nonzero layers Vi/Vi−1 are of the form ∇G(�). As in [12] we will actually
also allow a layer to be a direct sum of any number of copies of the same ∇G(�), cf. [8,
II.4.16 Remark 1]. This is much more convenient when working with infinite dimensional
G-modules. It is shown in [3] that a module of countable dimension that has a good filtration
in our sense also has a filtration that is a good filtration in the old sense. Note that the module
M in our theorem has countable dimension. It would do little harm to restrict to modules
of countable dimension throughout.
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If V is a G-module, and m� − 1 is an integer so that Hm+1(G, ∇G(�) ⊗ V ) = 0 for all
dominant �, then we say as in [4] that V has good filtration dimension at most m. The case
m = 0 corresponds with V having a good filtration. And for m�0 it means that V has a
resolution

0 → V → N0 → · · · → Nm → 0

in which the Ni have good filtration, in our sense.We say that V has good filtration dimension
precisely m, notation dim∇(V )=m, if m is minimal so that V has good filtration dimension
at most m. In that case Hi+1(G, ∇G(�) ⊗ V ) = 0 for all dominant � and all i�m. In
particular Hi+1(G, V ) = 0 for i�m. If there is no finite m so that dim∇(V ) = m, then we
put dim∇(V ) = ∞.

2.1. Filtrations

For simplicity assume also that G is semisimple. (until Remark 3.1.) If V is a G-module,
and � is a dominant weight, then V�� denotes the largest G-submodule all whose weights
� satisfy ��� in the dominance partial order [8, II.1.5]. For instance, V�0 is the module of
invariants V G. Similarly V<� denotes the largest G-submodule all whose weights � satisfy
� < �. As in [12], we form the X(T )-graded module

grX(T ) V =
⊕

�∈X(T )

V��/V<�.

Each V��/V<�, or V��/<� for short, has a B+-socle (V��/<�)
U = V U

� of weight �. We
always view V U as a B−-module through restriction (inflation) along the homomorphism
B− → T . Then V��/<� embeds naturally in its ‘good filtration hull’ hull∇(V��/<�) =
indG

B−V U
� . This good filtration hull has the same B+-socle and by Polo it is the injective

hull in the category C� of G-modules N that satisfy N = N��. Compare [12, 3.1.10].
We convert the X(T )-graded module grX(T ) V to a Z-graded module through an additive

height function ht : X(T ) → Z, defined by ht =2
∑

�>0 �∨, the sum being over the positive
roots. (Our ht is twice the one used by Grosshans [6], because we prefer to get even degrees
rather than just integer degrees.) The Grosshans graded module is now

gr V =
⊕

i �0

gri V ,

with

gri V =
⊕

ht(�)=i

V��/<�.

In other words, if one puts

V� i :=
∑

ht(�)� i

V��,

then gr V is is the associated graded of the filtration V�0 ⊆ V�1 · · · .
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Let us apply the above to our finitely generated commutative k-algebra with G-action A.
The Grosshans graded algebra gr A embeds in a good filtration hull, which Grosshans calls
R, and which we call hull∇(gr A),

hull∇(gr A) := indG
B−AU =

⊕

i

⊕

ht(�)=i

hull∇(A��/A<�).

Grosshans [6] shows that AU , gr A, hull∇(gr A) are finitely generated k-algebras with
hull∇(gr A) finite over gr A. Mathieu studied gr A and hull∇(gr A) earlier in [10]. See also
Popov [11].

Example 2.2. Consider the multicone [9]

k[G/U ] := indG
U k = indG

B+ indB+
U k = indG

B+ k[T ] =
⊕

� dominant

∇G(�).

It is its own Grosshans graded ring. Recall [9] that it is generated as a k-algebra by the finite
dimensional sum of the ∇G(�i ), where �i denotes the ith fundamental weight.

Lemma 2.3. Let A have a good filtration, so that gr A = hull∇(gr A). Let R = ⊕iRi

be a graded algebra with G-action such that Ri = (Ri)� i . Then every T -equivariant
graded algebra homomorphism RU → (gr A)U extends uniquely to a G-equivariant graded
algebra homomorphism R → gr A.

Proof. Use that hull∇(gr A) is an induced module. �

2.2. A graded polynomial G × D-algebra with good filtration

We now extract a construction from [13]. It is hidden in the study of a Hochschild-Serre
spectral sequence which in the present situation would correspond with the case where as
normal subgroup one takes the trivial subgroup!

As the algebra (gr A)U is finitely generated, it is also generated by finitely many weight
vectors. Consider one such weight vector v, say of weight �. Clearly � is dominant. If �=0,
map a polynomial ring Pv := k[x] with trivial G-action to gr A by substituting v for x.
Also put Dv := 1. Next assume � 
= 0. Let � be the rank of G. Define a T -action on the
X(T )-graded algebra

P =
�⊗

i=1

S∗(∇G(�i ))

by letting T act on
⊗�

i=1 Smi (∇G(�i )) through weight
∑

i mi�i . So now we have a G×T -
action on P . Observe that by our key Hypothesis 1.1 and the tensor product property
[8, Chapter G] the polynomial algebra P has a good filtration for the G-action. Let D

be the scheme theoretic kernel of �. So D has character group X(D) = X(T )/Z� and
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D=Diag(X(T )/Z�) in the notations of [8, I.2.5]. The subalgebra P 1×D is a graded algebra
with good filtration such that its subalgebra P U×D contains a polynomial algebra on one
generator x of weight � × �. In fact, this polynomial subalgebra contains all the weight
vectors in P U×D of weight � × � with ht(�)�ht(�). The other weight vectors in P U×D

also have weight of the form � × � with � a multiple of �. These other weight vectors
span an ideal in P U×D . Now assume A has a good filtration. By Lemma 2.3 one easily
constructs a G-equivariant algebra homomorphism P 1×D → gr A that maps x to v. Write
it as P

1×Dv
v → gr A, to stress the dependence on v.

As new P we take the tensor product of the finitely many Pv and as diagonalized group
D we take the direct product of the Dv . Then we have a graded algebra map P D → gr A. It
is surjective because its image has good filtration [8, Chapter A] and contains (gr A)U . The
G×D-algebra P is an example of what we called in [13] a graded polynomial G×D-algebra
with good filtration. We have proved

Lemma 2.5. If A has a good filtration, then there is a graded polynomial G × D-algebra
P with good filtration and a graded G-equivariant surjection P D → gr A.

Now recall M is a noetherian A-module on which G acts compatibly, meaning that
the structure map A ⊗ M → M is a map of G-modules. Form the ‘semi-direct product
ring’A�M whose underlying G-module is A⊕M , with product given by (a1, m1)(a2, m2)

= (a1a2, a1m2 + a2m1). By Grosshans gr(A�M) is a finitely generated algebra, so
we get

Lemma 2.6. gr M is a noetherian gr A-module.

This is of course very reminiscent of the proof of the lemma [7, Theorem 16.9] telling
that MG is a noetherian module over the finitely generated k-algebra AG. We will tacitly
use its counterpart for diagonalized actions, cf. [2,8, I.2.11].

Taking things together we learn that if A has a good filtration, then P⊗P D gr M is what
we called in [13] a finite graded P -module. Thus [13, Lemma 3.7] then tells us

Lemma 2.7. Let A have good filtration. Then P⊗P D gr M has finite good filtration dimen-
sion and each Hi(G, P⊗P D gr M) is a noetherian P G-module.

Extend the D-action on P to P⊗P D gr M by using the trivial action on the second factor.
Then we have a G × D-module structure on P⊗P D gr M . As D is diagonalized, P D is
a direct summand of P as a P D-module [8, I.2.11] and (P⊗P D gr M)1×D = gr M is a
direct summand of the G-module P⊗P D gr M . It follows that gr M also has finite good
filtration dimension and it follows that each Hi(G, P⊗P D gr M)1×D = Hi(G, gr M) is
a noetherian P G×D-module. But the action of P G×D on gr M factors through (gr A)G,
so we see that each Hi(G, gr M) is a noetherian (gr A)G-module. And one always has
(gr A)G = (gr0 A)G = AG. We conclude

Lemma 2.8. Let A have good filtration. Then gr M has finite good filtration dimension and
each Hi(G, gr M) is a noetherian AG-module.
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3. Degrading

We still have to get rid of the grading. The filtration M�0 ⊆ M�1 · · · induces a filtration
of the Hochschild complex [8, I.4.14] whence a spectral sequence

E(M) : E
ij
1 = Hi+j (G, gr−iM) ⇒ Hi+j (G, M).

It lives in an unusual quadrant.
Assume that A has good filtration. Then by Lemma 2.8 E1(M) is a finitely generated

AG-module. So the spectral sequence lives in only finitely many bidegrees (i, j). Thus there
is the same kind of convergence as one would have in a more common quadrant.

Choose AG as ring of operators to act on the spectral sequence E(M). As E1(M)

is a noetherian AG-module, it easily follows (even without the spectral sequence) that
H ∗(G, M) is a noetherian AG-module. To finish the proof of the theorem, we note that
A⊗k[G/U ] is also a finitely generated algebra with a good filtration and that M ⊗k[G/U ]
is a noetherian module over it. So what we have just seen tells that H ∗(G, M ⊗k[G/U ]) is a
noetherian (A⊗k[G/U ])G-module. In particular, there is an m�−1 so that Hm+1(G, M⊗
k[G/U ]) = 0.

Remark 3.1. Somewhere along the way we made the simplifying assumption that G is
semisimple. So for the original G we have now proved that M has finite good filtration
dimension with respect to the commutator subgroup H of G. But that is the same as having
finite good filtration dimension with respect to G. Also, the fact that Hi(H, M) is a noethe-
rian AH -module implies that Hi(G, M) is a noetherian AG-module by taking invariants
under the diagonalizable center Z(G).

Remark 3.2. We did not prove that M has a finite resolution by noetherian A-modules with
compatible G-action and good filtration. We do not know how to start. One may embed M

into the A-module M ⊗ k[G] with compatible G-action. It has good filtration, but it is not
noetherian as an A-module.

Remark 3.3. The (CFG) property would imply that in Theorem 1.2 one does not need that
A has good filtration, but only that it has finite good filtration dimension. It looks much
harder to prove that version, even under Hypothesis 1.1.
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