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Preface

These notes are based on a course given at the Tata Institute of Fundamental
Research in the beginning of 1990. The aim of the course was to describe the
solution by O. Mathieu of some conjectures in the representation theory of
semi-simple algebraic groups. These conjectures concern the inner structure
of dual Weyl modules and some of their analogues.

Recall that if G is a (connected, simply connected) semi-simple complex
Lie group and B a Borel subgroup, the Borel–Weil–Bott Theorem tells that
one may construct the finite dimensional irreducible G-modules in the follow-
ing way. Take a line bundle L on the generalized flag variety G/B, such that
H0(G/B,L) does not vanish. Then H0(G/B,L) is an irreducible G-module,
called a dual Weyl module or an “induced module”, and by varying L one
gets all finite dimensional irreducibles.

More generally one may, after Demazure, consider the B-modules
H0(BwB/B,L) with L as above. (So one still requires thatH0(G/B,L) does
not vanish.) The “Demazure character formula” determines the character of
H0(BwB/B,L). It was shown by P. Polo that the B-moduleH0(BwB/B,L)
has a nice homological characterization in terms of its highest weight λ (see
3.1.10). We therefore use the notation P (λ) for this module. The P (λ) are
generalizations of dual Weyl modules. Indeed recall that nothing is lost when
restricting a rational module from G to B; inducing back up from B to G
one recovers the original module (see 2.1.7).

Now the conjectures are about filtrations of the dual Weyl modules
H0(G/B,L) or their generalizations P (λ), for semi-simple algebraic groups
in arbitrary characteristic. (Over the integers, actually.) The strongest con-
jecture of the series is Polo’s conjecture, which says that if one twists a P (λ)
by an anti-dominant character the resulting B-module can be filtered with
subsequent quotients P (µi). In Polo’s terminology—which we will follow—
the twisted module has an excellent filtration. (In Mathieu’s terminology the
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ii Preface

twisted module is strong.)
This conjecture, now a theorem of Mathieu, has many nice consequences.

For instance, suppose one takes a semi-simple subgroup L of G corresponding
with a subset of the set of simple roots. Then if one restricts the represen-
tation P (λ) from B to B ∩ L, that restriction has excellent filtration. For
the case of dual Weyl modules this confirms Donkin’s conjecture that the
restriction to L of a dual Weyl module has “good filtration”, i.e. a filtra-
tion whose successive quotients are dual Weyl modules again. (Unlike the
preceding statements, this is not interesting in the case of semi-simple Lie
groups, where any finite dimensional L -module has good filtration, because
of complete reducibility.)

Another consequence is a solution of the well-known problem of showing
that the tensor product of two modules with good filtration has good filtra-
tion. This problem was around at least since 1977 when J.E. Humphreys
was drawing attention to it. Actually Mathieu has to solve this problem
first, before settling Polo’s conjecture. Mathieu’s proof was the first that did
not need to exclude any cases. (And this was achieved by not having any
case distinctions to begin with.) Later a proof has been found that uses the
canonical bases of Lusztig (= crystal bases of Kashiwara).

A different type of consequence, amply demonstrated in the works of
Donkin, is that many results can be carried over from characteristic 0 to
characteristic p. This is because modules with excellent filtration have nice
cohomological properties and thus nice base change properties. (But observe
that the proofs by Mathieu start at the other end and rely very much on
characteristic p methods.)

Although the subject of the course is the contribution of Mathieu, one
should of course not forget the work of Wang, Donkin, Polo, . . . that prepared
the way. This story is not told here. To exacerbate things, but in keeping with
established practice, our choice of names of mathematicians in terminology
is quite arbitrary. We encourage the reader to check the references for all the
things that are left out.

As is already evident from the above, we place much emphasis on B-
modules (more than Mathieu did). Indeed we believe a good setting for the
theory is provided by the category of B-modules, enriched with the tensor
product operation and also with a highest weight category structure (in the
sense of Cline, Parshall, Scott [2]) with the P (λ) as “induced modules”. In
the lectures the highest weight category structure was simply disguised as
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a particular total ordering of the weights, dubbed “length–height order”.
(Weights are ordered by length according to a Weyl group invariant inner
product, and then for fixed length by height.) Indeed no derived categories
are found in the notes.

In [35] we identified another class of B-modules. The module in this class
with highest weight µ we call Q(µ). It is related to the P (λ) by the following
type of duality:

dim(ExtiB(Q(µ)∗, P (λ))) =

{
1, if i = 0 and λ = −µ;
0, otherwise.

The interaction between the P (λ) and the Q(ν) has much relevance for the
filtration conjectures.

Mathieu’s proof of these conjectures involves an innovative way to ex-
ploit Frobenius splittings on Bott-Samelson-Demazure-Hansen resolutions of
Schubert varieties and some of their generalizations. It was interesting to be
lecturing about Frobenius splittings at TIFR, with the originators of that
theory in the audience.

Warning. When we speak of highest weight, we are using the ordering in
which the roots of B are positive. This is opposite to the choice in much of the
recent literature, but we hope the reader agrees that in our situation—where
the main concern is modules P (λ) with one-dimensional socles generated by
a highest weight vector of weight λ—it would be silly to reverse the ordering.

The lectures given in Bombay have served as a starting point for the
present notes, but it was not a straightforward job to convert the oral story
into something organized and intelligible. I am very grateful to S. P. Inamdar
who wrote the main body of the notes. He smoothed out many rough spots
and mercifully removed some of my less fortunate variations.

Finally, it is a pleasure to thank colleagues and staff at TIFR for providing
such a friendly environment for us visitors.

Utrecht 1993, Wilberd van der Kallen
e-mail: vdkallen@math.ruu.nl

Utrecht 2010: Errors in this printing may differ from those in the original.
Wilberd van der Kallen

e-mail: wilberdk@xs4all.nl
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Chapter 1

Preliminaries

This chapter should be taken as a guideline of what notation and terminology
is used later on during the course rather than giving a complete treatment of
the structure theory of reductive groups. An excellent reference for a detailed
discussion of the contents of the first section is the book [Humphreys: Linear
Algebraic Groups]. Indeed, most of the material is taken from it.

1.1 Reductive Algebraic Groups

Let k be an algebraically closed field. Let G be a variety over k with the
structure of a group on its set of points. We call G an algebraic group if
the maps µ : G × G → G, where µ(x, y) = xy, and τ : G → G, where
τ(x) = x−1, are algebraic morphisms.

By a morphism of groups we mean an algebraic group homomorphism be-
tween the two varieties. A morphism from an algebraic group G to GL(n, k)
is called a (rational) representation of G of dimension n with underlying
vector space kn.

The additive group Ga is the affine line A
1 with the group law µ(x, y) =

x + y. The multiplicative group Gm is the open affine subset k∗ ⊂ A
1 with

group law µ(x, y) = xy. The set GL(n, k) of n × n invertible matrices with
entries in k is a group under matrix multiplication called the general linear
group.

A closed subgroup of an algebraic group is an algebraic group. Thus the
special linear group SL(n, k) of all the matrices of determinant 1 in GL(n, k)
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2 Chapter 1. Preliminaries

and the subgroup D(n, k) of all diagonal matrices are algebraic groups. An
algebraic group is called a torus if it is isomorphic to D(n, k) for some n.

Let G be an algebraic group, X a variety. We say that G acts (rationally)
on X if we are given a morphism ϕ : G×X → X such that for xi ∈ G, y ∈ X

we have ϕ(x1, ϕ(x2, y)) = ϕ(x1x2, y) and ϕ(e, y) = y. One usually writes g ·v
or gv for ϕ(g, v).

Let ϕ : G → GL(n, k) be a (rational) representation of an algebraic
group G. Then G acts on the affine n-space A

n via this representation, i.e.
x · v = ϕ(x)(v), and thus on a n-dimensional vector space V over k. In this
case we call V a (rational) G-module. More generally, if G acts linearly on a
k-vector space V , then V is called a (rational) G-module if it is the union of
finite dimensional subspaces on which G acts rationally.

A character of an algebraic group G is a morphism of algebraic groups
χ : G→ Gm. We denote the group of characters of G by X(G).

Let H be a diagonal subgroup (or a subgroup of GL(n, k) which is diag-
onalisable). Let V be an H-module. Then V decomposes as direct sum of
subspaces Vα, where α runs over the the character group X(H) of H and

Vα = { v ∈ V | x · v = α(x)v }.

Those α for which Vα is non-zero are called the weights of V and v ∈ Vα is
called a weight vector of weight α.

Every algebraic group contains a unique largest connected normal solvable
group. We call this subgroup of G the radical of G. It is denoted by R(G).
A group G is called semi-simple if R(G) is trivial. The subgroup of R(G)
consisting of all unipotent elements is normal in G; we call it the unipotent
radical of G. We denote it by Ru(G). We call G reductive if Ru(G) is trivial.

The group SL(n, k) is semi-simple and GL(n, k) is reductive. Note that
any semi-simple group is automatically reductive.

From now on we will assume that our group G is connected reductive.
A Borel subgroup of G is a maximal closed connected solvable subgroup

of G. A connected solvable subgroup of largest possible dimension in G is of
course a Borel subgroup and it is also true that every Borel subgroup of G
has the same dimension. In fact we have the following stronger theorem:

Theorem 1.1.1 Let B be any Borel subgroup of G. Then G/B is a projec-
tive variety, and all other Borel subgroups are conjugate to B.
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We call a closed subgroup of G parabolic if it contains a Borel subgroup.
The centralizer C of a maximal torus T of G is called a Cartan subgroup of G.
Note that we did not put the condition of it being a connected subgroup of G
as it can be shown that any Cartan subgroup of a connected algebraic group
is connected. For reductive groups, the Cartan subgroup CG(T ) equals T .

We now state the Borel Fixed Point Theorem and some of its conse-
quences.

Theorem 1.1.2 (Borel Fixed Point Theorem) Let B be a connected
solvable algebraic group, and X be a complete variety on which B acts. Then
B has a fixed point in X.

From this theorem one can deduce Theorem 1.1.1 and also:

(i) All maximal tori, and all Borel subgroups are conjugate.

(ii) P is parabolic subgroup of G if and only if G/P is a complete variety.

If S is any torus in G, we call NG(S)/CG(S) Weyl group of G relative
to S, where NG(H) and CG(H) denote the normalizer and centralizer in G
of a subgroup H of G. Since all maximal tori are conjugate, all their Weyl
groups are isomorphic. We call this group the Weyl group of G. We denote
it by W . We state here some of the important properties of this group W .
Recall that G is a connected reductive algebraic group.

(i) W is a finite group.

(ii) W is generated by elements si (1 ≤ i ≤ l), for some l, with the
following defining relations between them:
(sisj)

m(i,j) = e, with m(i, i) = 1 and 2 ≤ m(i, j) < ∞ for i 6= j. A group
generated by elements having such defining relations is called a Coxeter group.

(iii) If χ ∈ X(T ) and t ∈ T the formula

(wχ)(t) = χ(n−1tn)

gives us an action of an element w ∈ W on X(T ); here n denotes a coset
representative of w in NG(T ).
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(iv) Since the real vector space X(T ) ⊗ R is a W -module, we can put
a metric on it which is invariant under the action of the finite group W ,
i.e. there is an inner product ( , ) such that (wχ,wµ) = (χ, µ) for every
χ, µ ∈ X(T ). Put l(µ) = (µ, µ)1/2.

(v) If we fix a Borel subgroup B and a maximal torus T ⊂ B, we get a
preferred set of generators of W . We call them simple reflections. If they are
indexed by a (finite) set I (e.g. the nodes of the Dynkin diagram), then for
each i ∈ I, we also have a simple root α and we may choose a homomorphism
SL(2, k) → G, mapping

(
1 t
0 1

)
7→ xα(t),

(
1 0
t 1

)
7→ x−α(t).

Here if β is a root, xβ : Ga → B denotes a conveniently normalized injective
homomorphism satisfying hxβ(t)h

−1 = xβ(β(h)t) for t ∈ k, h ∈ T . (Cf. [34;
Chapters 9, 10].) Our homomorphism SL(2, k) → G has the property that
it has at most {1,−1} as kernel and hence the image is isomorphic to either
SL(2, k) or to the quotient PSL(2, k) of SL(2, k) by this subgroup of order 2.
We note that in characteristic 2, the above group {1,−1} does not differ
from {1} and one must replace it by a “group scheme” of order 2.

If ϕ : G → GL(V ) is a representation, the weights of V are the im-
ages in X(T ) of the weights of ϕ(T ) in V via the canonical homomorphism
X(ϕ(T )) → X(T ). We make W act on weights of V via this canonical
homomorphism.

Let us fix a Borel subgroup B and a maximal torus T of B. Let W
denote the Weyl group of G relative to T . As we have just pointed out this
choice of B and T gives us a preferred set of generators of W and for each
simple reflection we either have a copy of SL(2, k) or PSL(2, k) embedded in
G. Any such subgroup together with B generates a parabolic subgroup of G.
We call these subgroups minimal parabolic subgroups of G. If si is a simple
reflection in W and Pi denotes the associated minimal parabolic subgroup
then Pi contains a representative of si in G. Note that since T lies in B,
the double coset BnB is independent of the choice of n representing a given
w ∈ W . We thus write BwB for this double coset. Its image in G/B is called
a Bruhat cell and the closure of a Bruhat cell is called a Schubert variety .



1.2. Demazure Desingularisation of G/B 5

It is a union of Bruhat cells. Any element w ∈ W can be expressed as the
product s1 · · · sr for some sequence {s1, . . . , sr} of simple reflections in W . If
this expression is reduced and Pi is the minimal parabolic corresponding with
si, then BwB has as its closure the set P1 · · ·Pr, i.e. the image of P1×· · ·×Pr
under the multiplication map G× · · · ×G→ G.

Theorem 1.1.3 (Bruhat decomposition) For any reductive group G, we
have G =

⋃
w∈W BwB, with Bw1B = Bw2B if and only if w1 = w2 in W .

Corollary 1.1.4 Let G be a reductive group and B be a Borel subgroup of
G. We have G/B =

⋃
w∈W BwB/B with Bw1B/B = Bw2B/B if and only

if w1 = w2.

This decomposition gives a stratification of the smooth projective variety
G/B by the Bruhat cells, the ith stratum being the union of all Bruhat cells of
dimension i. A codimension one Schubert variety of G/B is called a Schubert
divisor of G/B.

1.2 Demazure Desingularisation of G/B

The projective variety G/B being homogeneous it is smooth. However, the
Schubert varieties are not all smooth subvarieties of G/B. Further, two
Schubert divisors need not intersect transversally with each other. Demazure
constructed a “desingularisation” of G/B to overcome this problem. In this
section we first discuss Kempf’s approach via the standard modifications.
Next we reformulate the resolution in terms of fibre bundles. It is the latter
description which will be used later.

Recall G is a connected semi-simple or reductive algebraic group over
an algebraically closed field of arbitrary characteristic. We fixed a maximal
torus T and a Borel subgroup B containing T . The unipotent radical of B
will be denoted U . If W is the Weyl group of G, then we have a preferred set
of generators of W , called simple reflections. We typically denote them by s
or si. Then Ps or Pi denotes the associated (minimal) parabolic subgroup of
G. For any parabolic subgroup Q ⊇ B of G, by a Schubert variety in G/Q
we mean the closure of a B-orbit in G/Q. We will be dealing mostly with
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Schubert varieties in G/B. The properties for Schubert varieties in G/Q can
be deduced from those of in G/B by studying the fibration G/B → G/Q.

We have the Bruhat decomposition G/B =
⋃
w∈W BwB/B of G/B into

B-orbits. Note that as this is a finite union, any B-invariant irreducible
closed subvariety of G/B is a Schubert variety.

Let Xw = BwB/B be a Schubert variety of dimension r. Let w = s1 · · · sr
be a reduced expression for w. We also complete it into a reduced expression
for the element wN of maximal length: wN = s1 · · · sr · · · sN . Let wj =
s1 · · · sj and Xj = Xwj

be the corresponding Schubert variety of dimension
j. Note that Xr = Xw. It is known (refer to Kempf [13]) that the varieties
Xj are saturated for the morphism πj : G/B → G/Pj and that Xj−1 maps
birationally onto its image πj(Xj−1) = πj(Xj).

The standard modification ϕj : Mj → Xj is defined by the Cartesian
square:

Mj
ϕ

−→ Xj

↓ ↓πj

Xj−1
πj
−→ πj(Xj−1)

Thus Mj is a P
1-bundle over the divisor Xj−1 in Xj.

The Demazure resolutions (or desingularisations) ψj : Zj → Xj are de-
fined inductively. We start by taking Z0 = X0, a point, and ψ0 : Z0 → X0

the identity morphism. Then ψj : Zj → Xj is defined by the diagram with
Cartesian squares:

Zj −→ Mj
ϕ

−→ Xj

↓ fj ↓ ↓πj

Zj−1
ψj−1

−→ Xj−1
πj
−→ πj(Xj−1)

Note that fj : Zj → Zj−1 is a P
1-bundle being a pullback of the P

1-bundle
Xj → πj(Xj−1). This implies that the Zj are nonsingular by induction. We
also have a section σj : Zj−1 → Zj given by the inclusion Xj−1 ⊂ Xj. Further
ψj is birational since πj is birational on Xj−1 and by inductive hypothesis we
can assume ψj−1 is birational.

Since Xr = Xw we get by this process a standard modification and De-
mazure resolution of Xw. Note that this resolution depends on the reduced
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expression chosen for w. We also get a Demazure resolution for G/B by this
process as XwN

= G/B.
We now prepare to give another description for the varieties obtained by

the desingularisation process. Recall that since G → G/B is a principal B-
fibration, given any B-space X (i.e. any variety X such that B acts on it on
the left) we can associate a fibre bundle over G/B with fibre being isomorphic
to X. We denote such associated fibre bundle by G ×B X. It is defined as
the quotient of G ×X given by the equivalence relation (g, x) ∼ (gb, b−1x).
Note that the natural left multiplication action of G on G ×X descends to
a left action on the associated fibre bundle. This action commutes with the
projection morphism and thus the associated fibre bundle is a G fibre bundle
on G/B.

Exercise 1.2.1 (i) This fibre bundle is locally trivial in the Zariski topol-
ogy. (Check that for any g ∈ G it is trivial over gBw0B/B, where w0 denotes
the longest element of the Weyl group.)

(ii) Prove similar statements for P ×B X and for G ×P Y where P is a
parabolic—always containing B—and Y is a P -space. Here it may help to be
familiar with standard coordinates in Bruhat cells, as explained for instance
in [34; Chapter 10]. Observe that the fibration G/B → G/P is an example
of an associated fibre bundle with X = P/B.

Remark 1.2.2 If X is in fact a G-space, then the fibre bundle G ×B X is
globally trivial by means of the map G×B X → G/B ×X which sends the
class of (g, x) to (gB, gx).

Now each parabolic Pi contains B, and hence they are B-invariant under
the left translation action of B on G. The Demazure desingularisation of Xw

is the associated fibre bundle Zr = P1 ×
B (P2 ×

B · · · ×B Pr/B) and the map
ψr : Zr → Xw is the multiplication map defined on the product P1 × · · ·×Pr
which actually descends to the associated fibre bundle. This description will
be very useful for us later on. It now enables us to say that in the Bruhat
decomposition of G/B, the varieties BwB/B are birational to the image of
P1×

B (P2×
B · · ·×BPr/B) under the multiplication map. Thus the dimension

of Xw is just the length of the reduced expression of w. More specifically,
the subset Bs1B×B (Bs2B×B · · ·×BBsrB/B) of Zr maps isomorphically to
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the Bruhat cell BwB/B. (Compare [34; Chapter 10].) It will also be useful
to consider the analogue of Zr for words s1 · · · sr that are not reduced. Then
of course one will not get a birational map.

To any B-module M , we can associate a fibre bundle on G/B with the
fibre being isomorphic with M as before. We denote this bundle on G/B

by L(M). This G fibre bundle is called the associated vector bundle for
the given representation. The reader will see during the course of lectures
that this construction will enable us to use “geometric” results to study the
representations of G and B.



Chapter 2

B-Module Theory

Let k be an algebraically closed field. Let H be an algebraic group over k.
Let V be vector space over k. A group morphism H → GL(V ) is called a
(rational) representation of H. When G is reductive and connected we get a
good hold on the representation theory of G by looking at the representations
of its Borel subgroup B. For example, Weyl’s highest weight theory in char-
acteristic zero gives a description of irreducible representations of G in terms
of dominant characters of B. In this chapter we introduce the dual Joseph
modules and relative Schubert modules. These two classes of B-modules are
analogues of irreducible G-modules in characteristic zero.

In the first section we prove the Frobenius reciprocity for our connected
reductive group G and its Borel subgroup B. Let CG denote the category of
G-modules. The reciprocity implies that CG is a full subcategory of CB.

In the second section, we introduce the Joseph functorHw on the category
of B-modules associated to a Schubert variety Xw ⊂ G/B.

In the third section we introduce the dual Joseph modules. For a character
λ, let w = wλ denote the minimal element of the Weyl group W such that
w−1λ ∈ X(T )− = {µ ∈ X(T ) | (µ, α) ≤ 0 for all roots α of B }. The dual
Joseph module P (λ) is then defined as Hw(w−1λ). The relative Schubert
module Q(λ) is defined as the kernel of the restriction map from Hw(w−1λ)
to the sections over the boundary ∂Xw of Xw.

In positive characteristic we do not have complete reducibility. In order
to “understand” the indecomposable B-modules we introduce the concepts
of excellent filtrations and relative Schubert filtrations. Indeed we will be
studying the excellent filtrations extensively throughout these notes.

9



10 Chapter 2. B-Module Theory

We finish this chapter by giving examples of modules with relative Schu-
bert filtration.

2.1 Frobenius Reciprocity

Let H be an algebraic group. We call an H-module M simple (and the
corresponding representation irreducible) if M 6= 0 and if M has no H-
submodules other than 0 and M . It is called indecomposable if it cannot be
decomposed into a direct sum of two proper H-submodules and it is semi-
simple if it is a direct sum of simple H-submodules. For any M the sum of
all its simple submodules is called the socle of M and denoted by socHM or
simply socM if it is clear which H is considered. It is the largest semi-simple
H-submodule of M . Each one-dimensional H-module is simple. Let CB and
CG denote the categories of B-modules and G-modules respectively.

For a subgroup H of G and a G-module M we can restrict the action of
G to H. This functor from CG to CH is called the restriction functor and
denoted by resGH(?). It takes an exact sequence of G-modules to an exact
sequence of H-modules and thus it is an exact functor.

Let G be our reductive connected algebraic group. We fix once and for
all a maximal torus T and a Borel subgroup B of G containing T . Let W be
the Weyl group of G. Recall that our choice of B gives us a set of preferred
generators S = {s1, . . . , sl} of W , called simple reflections. Let X(T ) denote
the set of characters of T . Recall that the Weyl group W acts naturally on
characters of T and fix a W -invariant inner product on X(T ) ⊗ R.

Since T ⊂ B, resBT (M) is a T -module for any B-module M . As T is
diagonalisable, M then decomposes as a direct sum of one-dimensional sub-
modules. The character with which T acts on a one-dimensional submodule
is called the weight of that submodule. The direct sum of the one-dimensional
submodules of M having the same weight λ is called the weight space Mλ

of M . Let C≤R denote the category of B-modules all of whose weights are
of length not more than R with respect to the chosen W -invariant inner
product on X(T ) ⊗ R. For a B-module M , we denote by M≤R the largest
B-submodule of M which is in C≤R. This defines a left exact functor from
CB to C≤R. For example, if R = 0, then M≤R is nothing else than H0(B,M),
the subspace of B-fixed vectors in M .
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Exercise 2.1.1 Give an example to show that the functor M 7→M≤R is not
right exact.

For M ∈ CB, let L(M) denote the associated G-vector bundle, (possibly
infinite dimensional), on G/B, as introduced before. The group G acts on
L(M) and therefore we have a natural G action on H0(G/B,L(M)), cf.
Jantzen [11; I 5.11 Remark]. We call this G-module indGB(M). Thus we
have a functor CB → CG given by M 7→ indGB(M). This functor is called
the induction functor . The reader should note that in Jantzen’s book the
induction functor is defined more algebraically but for us this equivalent
definition will prove more useful.

If M were a G-module then the associated vector bundle L(M) is isomor-
phic with the trivial bundle G/B×M . Further, as G/B is a complete variety
we have H0(G/B,L(M)) = M . Therefore if M ∈ CG, then indGB(M) = M .

Remark 2.1.2 If P is a parabolic subgroup of G then we define in
a similar way the induction functor indPB(?) by assigning the P -module
H0(P/B,L(M)) to a B-module M . As before, if M were a P -module, we
get indPB(M) = M .

Remark 2.1.3 The fibre over the B-fixed point B/B of the vector bun-
dle L(M) is canonically isomorphic with M . Therefore the restriction
map H0(G/B,L(M)) → L(M)|B/B gives a natural B-equivariant morphism
indGB(M) →M . This map is called the evaluation map.

Exercise 2.1.4 (i) Prove that the evaluation map indGB(M) → M is an
isomorphism if M is a G-module.

(ii) Give examples to prove that this map need not be injective and need
not be surjective.

Remark 2.1.5 The functor indGB(?) is left exact and commutes with form-
ing direct sums, intersections of submodules, and direct limits over directed
systems. (The latter property helps to understand the meaning of indGB(M)
for an infinite dimensional module M , as M is a union of its finite dimen-
sional submodules.) There is a transitivity of induction, that is, if B ⊆ P ,
then indGB = indGP ◦ indPB. We also have the following tensor identity:

indGB(M ⊗ resGB(N)) = (indGB(M)) ⊗N
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for any G-module N and B-module M .

The Frobenius reciprocity says that the induction functor is right adjoint
of the restriction functor.

Proposition 2.1.6 (Frobenius reciprocity) For any G-module N and
B-module M we have HomG(N, indGB(M)) = HomB(resGB(N),M).

Proof: Composing N → indGB(M) with the evaluation map indGB(M) →

M gives us a natural map HomG(N, indGB(M)) → HomB(resGB(N),M).
Conversely given a B-equivariant map f : N → M we associate to
it a G-equivariant map f̃ : N → indGB(M) by the formula f̃(n) =(
g 7→ (g, f(g−1n))

)
. 2

Corollary 2.1.7 One may view CG as a full subcategory of CB.

Proof: If M,N ∈ CG then HomG(N,M)) = HomG(N, indGB resGBM)) =
HomB(resGB(N), resGBM). 2

Remark 2.1.8 As we will see, many questions about G-modules are special
cases of questions about B-modules through this identification of CG with a
subcategory of CB.

Remark 2.1.9 Here G needed not be reductive, of course, and we will not
hesitate to use the result more generally. We will often discuss only G and/or
B, leaving it to the reader to find the scope of the arguments. When in doubt,
consult [11].

In fact the identification of CG with a full subcategory of CB even works
on the level of Ext groups. This is derived from the corollary using Kempf’s
Vanishing Theorem A.2.7. Indeed we have

Lemma 2.1.10 Let P be a parabolic subgroup containing B and let M , N
be P -modules. Then ExtiP (M,N) = ExtiB(M,N) for all i.

Proof: In [11; II Corollary 4.7] this is stated for G and P instead of P and
B, but the argument is the same. 2



2.2. Joseph’s Functors 13

2.2 Joseph’s Functors

In characteristic zero, a rational representation of G is completely reducible.
Further, the irreducible G-modules are induced up from irreducible B-
modules. We do not have such a nice result for representations of G in
characteristic p > 0. In this section we define Joseph’s functors. These func-
tors will then lead us to study dual Joseph modules and relative Schubert
modules which form some kind of building blocks for a class of representations
of B or G, sharing good properties with the G-modules of characteristic 0.

For a Schubert variety Xw of G/B, we get a natural B action on
H0(Xw,L(M)), the sections of the vector bundle L(M)|Xw over Xw.

Definition 2.2.1 The functors Hw : CB → CB given by the rule M 7→
H0(Xw,L(M)) are called Joseph’s functors.

Remark 2.2.2 The Joseph functors are also defined for Kac-Moody groups
using cohomological algebra. (See [18].) They are actually dual to the func-
tors originally studied by Joseph in [12], also with cohomological algebra.
The above definition gives a kind of “representability” of the Joseph Func-
tors.

Remark 2.2.3 It should be noted that for the element of largest length w0

of W , the two functors Hw0
and indGB are the same. (Up to resGB, which may

safely be ignored from now on, because of Corollary 2.1.7.)

Remark 2.2.4 We denote by Ps the minimal parabolic subgroup associated
to a simple reflection s ∈ S. The Schubert variety Xs ⊂ G/B is the image
of Ps under the projection map. It is thus isomorphic with the complete
variety Ps/B. Also, for any B-module M the vector bundle L(M) on Ps/B

is isomorphic with the restriction of the vector bundle L(M) to Xs ⊂ G/B.
We thus get that the functor Hs : CB → CB is the composition of two
functors resPs

B ◦ indPs
B . That is, in this particular case, the module Hs(M) is

a Ps-module viewed as a B-module.

Recall that for an element w ∈ W , the length l(w) of w is the length of
any of its reduced expressions in the chosen generators. It is independent
of which reduced expression one is using and thus defines a integer valued
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function on W . For any w ∈ W and s ∈ S, the preferred set of generators,
we have: l(sw) 6= l(w) and in fact l(sw) is either l(w) + 1 or l(w) − 1.

Proposition 2.2.5 For s ∈ S, w ∈ W and M ∈ CB, we have:

(i) HsHw(M) = Hw(M) if l(s.w) = l(w) − 1.

(ii) HsHw(M) = Hsw(M) if l(s.w) = l(w) + 1.

Proof: Let Ps denote the parabolic subgroup associated to the simple re-
flection s ∈ W . Consider the following diagram

Ps ×
B Xw

m
→ PsXw ⊂ G/B

↓π

Ps/B

where the morphism m is the multiplication map which descends to the fibre
bundle.

(i): l(s.w) = l(w) − 1.
In this case the image of the multiplication map m is BsBXw ∪ BXw =

Xs.w ∪ Xw = Xw by [9; 28.3]. Therefore the natural left action of Ps on
G/B leaves Xw invariant. The vector bundle L(M) on G/B has a natural
G (and hence Ps) action. This gives a natural Ps action on H0(Xw,L(M)).
When restricted to B, this action gives the B-module action on Hw(M).
Therefore we have Hw(M) ∈ CPs ⊂ CB. Hence indPs

B (Hw(M)) = Hw(M).
Also we have Hs(M) = resPs

B ◦ indPs
B (M). Thus by Remark 2.1.2 we get that

HsHw(M) = Hw(M).
(ii): l(s.w) = l(w) + 1.
Now the associated fibre bundle over Ps/B in the above diagram is such

that the multiplication morphism m is birational and proper with PsXw =
Xsw. As Xsw is normal (cf. [25]), this implies m∗OPs×BXw

= OXsw ([11; II
Lemma 14.5]). For a B-module M , this gives

Hsw(M) = H0(Xsw,L(M))

= H0(Xsw,m∗OPs×BXw
⊗ L(M))

= H0(Ps ×
B Xw,m

∗L(M))

= H0(Ps/B, π∗m
∗L(M)).
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But we have: π∗m
∗L(M) = L(H0(Xw,L(M))). Therefore we get that:

Hsw(M) = H0(Ps ×
B Xw,m

∗L(M))

= H0(Ps/B,L(H0(Xw,L(M))))

= Hs(Hw(M)).

This proves the proposition. 2

Exercise 2.2.6 Prove that π∗m
∗L(M) = L(H0(Xw,L(M))).

Corollary 2.2.7 Let w ∈ W and let w = si1 · · · sir be a reduced expression.
Then Hw = Hsi1

◦ · · · ◦Hsir
.

Let kλ denote the one-dimensional B-module on which B acts via a char-
acter λ. We denote by L(λ) its associated line bundle and by Hw(λ) its image
under the Joseph functor Hw(?).

Extra hypothesis 2.2.8 For all the questions we are interested in, one may
easily reduce to the case that the commutator subgroup of our connected
reductive algebraic group G is simply connected. This implies that for each
simple root, the corresponding homomorphism from SL2 into G is a closed
embedding. (Recall that the other possibility would be that the image of this
homomorphism is isomorphic to PSL2.) Let us assume simply connectedness
from now on. Then any line bundle onG/B is associated to a one-dimensional
representation of B (cf. Corollary A.4.3) and if the associated character λ
is anti-dominant i.e. λ ∈ X(T )−, then L(λ) is base point free, i.e. given
any point x ∈ G/B there exists a global section s ∈ H0(G/B,L(λ)) with
s(x) 6= 0. Conversely, if H0(G/B,L(λ)) 6= 0 then L(λ) is base point free
(because of equivariance) and λ is anti-dominant. (See [11; II 2.6], keeping
in mind that his dominant weights are our anti-dominant ones.)

Lemma 2.2.9 For any λ ∈ X(T )−, the socle of Hw(λ) is one-dimensional
and its character is wλ.

Proof: The Bruhat decomposition of G/B says that the B-orbit of w in Xw

is open (and thus dense) in Xw. Therefore for a B-module M a section of
Hw(M) on which B acts by a character is determined uniquely by its image
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under the restriction map Hw(M) → L(M)|w. Therefore, since the fibre of
L(λ) is of dimension one, we can have only one B-invariant (up to scalar
multiplication) section of Hw(λ). Further, as the restriction is T -equivariant,
B acts by the character wλ on such a section. On the other hand Hw(λ) 6= 0
because the line bundle is base point free. By the Borel Fixed Point Theorem,
(Theorem 1.1.2) there exists a fixed point for the B action on the projective
space P(Hw(λ)). This proves the existence (cf. [11; II 2.1]) of a B-invariant
one-dimensional subspace of Hw(λ). Thus the result. 2

Corollary 2.2.10 Let λ ∈ X(T )−. Then, w′λ occurs as a weight in Hw(λ)
for every w′ ≤ w in the Bruhat order.

Proof: Since the line bundle L(λ) = L(kλ) is base point free, the natural
restriction map from Hw(λ) to Hw′(λ) is not the zero map. The socle of the
image is thus a non-zero subspace of the socle of Hw′(λ). The socle of Hw′(λ)
is of dimension one and has weight w′λ. Therefore as the restriction map is
B-equivariant, w′λ occurs as a weight in Hw(λ). 2

Lemma 2.2.11 For any two B-invariant closed subsets S, S ′ of G/B and
any line bundle without base points L on G/B, we have an exact Mayer–
Vietoris sequence

0 → H0(S ∪ S ′,L) −→ H0(S,L) ⊕H0(S ′,L) −→ H0(S ∩ S ′,L) → 0

Moreover the map H0(G/B,L) → H0(S,L) is surjective.

Proof: This Mayer–Vietoris Lemma uses Ramanathan [31] for the surjec-
tivity statements (cf. Proposition A.2.6), and it uses Ramanathan once more
for knowing that S ∩S ′ is also the scheme theoretic intersection, i.e. that its
ideal sheaf in G/B is the sum of the ideal sheafs of S and S ′. This then gives
an exact sequence of sheaves

0 −→ IS∪S′ −→ IS ⊕ IS′ −→ IS∩S′ −→ 0

from which the result follows easily. (The “unattentive” reader is alerted here
that one should be worrying that the scheme theoretic intersection might not
be reduced. See the exercise below.) 2
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Remark 2.2.12 The similar Mayer–Vietoris exact sequence is valid on G/P
for any parabolic P , cf. Exercise A.2.9. The passage from G/B to G/P is
easy as the projection G/B → G/P is a P/B fibration.

Exercise 2.2.13 Find an example of an affine variety X and two closed
subvarieties S, S ′ so that H0(S ∪ S ′,OX) is not the kernel of H0(S,OX) ⊕
H0(S ′,OX) → H0(S ∩ S ′,OX). Here unions and intersections are simply
taken set theoretically.

Definition 2.2.14 We say a weight occurring in an indecomposable B-
module is extremal if it has the largest length.

The modules Hw(λ) are indecomposable as they have one-dimensional
socle. The following proposition gives a nice description of the extremal
weights of Hw(λ).

Proposition 2.2.15 Let λ ∈ X(T )−. The extremal weights of Hw(λ) are
w′λ for w′ ≤ w. Further, the weight spaces corresponding to the extremal
weights are one-dimensional.

Proof: The Corollary 2.2.10 says that these w′λ occur as a weight in Hw(λ).
For λ ∈ X(T )− the global sections module H0(G/B,L(λ)) is 6= 0. We

start with showing that the extremal weights of Hw0
(λ) := H0(G/B,L(λ))

are wλ for w ∈ W .
The module H0(G/B,L(λ)) is a G-module. Therefore for every w ∈

W and every extremal weight ν, the character wν occurs as a weight of
H0(G/B,L(λ)). Further wν is also extremal as the inner product on the
vector spaceX(T )⊗R isW -invariant. Let wν ∈ W be such that the character
ν0 = wνν is a dominant character, i.e. such that ν0 ∈ X(T )+ = {µ ∈ X(T ) |
(µ, α) ≥ 0 for all roots α of B}. Now for any positive root α occurring in
the Lie algebra of B, we consider the corresponding copy of SL2 in G and
its Borel subgroup B1. The weight space of wν is B1-invariant for otherwise
([9; 31.1]) there would be a weight space with weight wν + iα, i > 0, and
such a translate of wν will have larger length which will be a contradiction
to the extremalness of wν. Thus the dominant extremal weight ν0 occurs in
the B-socle of H0(G/B,L(λ)) which has weight w0λ by Lemma 2.2.9. Thus
ν is a W -translate of this weight w0λ. Also since the socle of H0(G/B,L(λ))
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is one-dimensional we see that the weight space for any extremal weight of
Hw0

(λ) is one-dimensional.

The line bundle L(λ) is base point free. Therefore the restriction map
on to sections over a T -fixed point w.B/B is surjective for every w ∈ W .
The torus T acts by the character wλ on the fibre of this fixed point. This
gives a geometric description of the one-dimensional extremal weight space
H0(G/B,L(λ))wλ, namely it is spanned by “the” T -semi-invariant section
of L(λ) whose restriction to the fibre L(λ)|wB/B is non-zero. This section
vanishes at zB/B for z ∈ W with zλ 6= wλ. Note that in H0(Xw,L(λ)) the
restricted section is even B-semi-invariant so that its zero set is a union of
the Schubert varieties Xz with z ≤ w and zλ 6= wλ.

To see the general case we note that the natural restriction map from
Hw0

(λ) to Hw(λ) for w ∈ W preserves the length of a weight and is surjective
by Ramanathan (Proposition A.2.6). Therefore we see that the weight wλ
of Hw(λ) is extremal and any other extremal weight of Hw(λ) is also an
extremal weight of H0(G/B,L(λ)). Now let us be given an extremal weight
µ of Hw(λ) and a non-zero section f of weight µ over G/B. Choose w′

minimal in the Bruhat order so that w′λ = µ. We claim w′ ≤ w. Otherwise
the Mayer–Vietoris Lemma 2.2.11 gives a g ∈ H0(Xw′ ∪Xw,L(λ))µ with the
same restriction to w′.B/B as f , but vanishing on Xw. By Ramanathan
Proposition A.2.6 this section g lifts to H0(G/B,L(λ))µ and thus agrees
with f , which is absurd. Here we have been using several times that T is
semi-simple, so that if M → N is a surjective T -module map, Mµ → Nµ is
surjective for every weight µ of N . 2

Remark 2.2.16 One can also prove the above proposition by induction on
the length of w, using Corollary 2.2.10 and Proposition 2.2.5.

2.3 Dual Joseph Modules

For any character µ ∈ X(T ), there exists an element w ∈ W , the Weyl group
of G, such that µ1 = wµ ∈ X(T )−. We define P (µ) = H0(Xw−1 ,L(wµ)).
Thus the socle of P (µ) is of dimension one and has weight µ.

Lemma 2.3.1 P (µ) is independent of w, i.e. for any w1, w2 ∈ W with
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w1µ = w2µ ∈ X(T )−, we have H0(Xw−1

1
,L(w1µ)) = H0(Xw−1

2
,L(w2µ)).

Proof: We denote by λ the translate of µ under W such that λ ∈ X(T )−.
Then recall ([9; 1.8, 1.10, 1.12]) that there exist elements wmin and wmax of
the Weyl group W with the property that for any other w with wµ = λ, we
have wmin ≤ w ≤ wmax. Now consider the natural restriction map

H0(Xw−1
max
,L(λ)) −→ H0(Xw−1 ,L(λ)).

Since this map restricts to identity on the socles of the two modules, socles
of both modules are one-dimensional and have weight µ, it is injective, and
it is surjective according to Proposition A.2.6. Thus it is an isomorphism.
This proves the proposition. 2

Definition 2.3.2 A B-module M is called dual Joseph module if M is iso-
morphic with P (µ) for some character µ.

Examples 2.3.3 1. For µ ∈ X(T )− we have P (µ) = kµ, the one-
dimensional B-module with character µ.

2. For µ ∈ X(T )+ we have P (µ) = H0(G/B,L(w0µ)).

Definition 2.3.4 (i) If S ′ ⊂ S are B-invariant closed subspaces of G/B
and λ ∈ X(T )−, we define a relative Schubert module Q(S, S ′, λ) by:
Q(S, S ′, λ) = ker(res : H0(S,L(λ)) → H0(S ′,L(λ))).

(ii) If Xw is a Schubert variety its “boundary” ∂Xw is defined as the union
of all Schubert varieties that are strictly contained inXw. Thus the boundary
is the complement in Xw of the Bruhat cell BwB/B.

(iii) For any µ ∈ X(T ), we define a minimal relative Schubert module,
denoted by Q(µ) by:

Q(µ) = ker(res : H0(Xw−1

min
,L(λ)) → H0(∂Xw−1

min
,L(λ)))

where as before, λ = wminµ ∈ X(T )− and wmin is a minimal such element
in W .
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Remark 2.3.5 Note that Q(µ) →֒ P (µ). Also, the geometric description of
the extremal weights of P (µ) tells us that an extremal weight of P (µ) other
than µ does not restrict to zero on the boundary. Therefore µ is the only
extremal weight of Q(µ).

Definition 2.3.6 A B-module M is said to have an excellent filtration if
and only if there exists a filtration 0 ⊂ F0 ⊂ F1 ⊂ · · · by B-modules such
that

⋃
Fi = M and Fi/Fi−1 ≈ ⊕P (λi) for some λi ∈ X(T ). Here ⊕ stands

for any number of copies, ranging from zero copies to infinitely many.

Remark 2.3.7 The property of having excellent filtration is closed under
extension for finite dimensional B-modules. Thus for any short exact se-
quence 0 → M1 → M → M2 → 0 of finite dimensional B-modules, M has
excellent filtration whenever M1 and M2 both have excellent filtration.

In the next chapter, using the cohomological criterion for excellent fil-
trations, we will remove the finite dimensionality condition (cf. Corol-
lary 3.2.10).

Definition 2.3.8 A B-moduleM is said to have a relative Schubert filtration
if and only if there exists a filtration 0 ⊂ F0 ⊂ F1 ⊂ · · · by B-modules such
that

⋃
Fi = M and Fi/Fi−1 ≈ ⊕Q(λi) for some λi ∈ X(T ).

Remark 2.3.9 The property of having relative Schubert filtration is also
closed under extension for finite dimensional B-modules.

In the next chapter we use Polo’s theorem to give a criterion for B-
modules to have an excellent filtration. Here we will now give examples of
modules with relative Schubert filtration.

Lemma 2.3.10 The relative Schubert module Q(S, S ′, λ) has relative Schu-
bert filtration for all B-invariant closed subsets S ′ ⊂ S and any anti-
dominant character λ.

Proof: The proof is by induction on the number of Schubert varieties con-
tained in S but not in S ′.
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First assume there is just one such Schubert variety, say Xw. Then Xw ∩
S ′ = ∂Xw and from the Mayer–Vietoris Lemma 2.2.11 one gets Q(S, S ′, λ) =
Q(Xw, ∂Xw, λ), which is either zero or Q(wλ).

If there are more, choose a B-invariant S ′′ strictly between S and S ′ and
consider the following exact sequence.

0 −→ Q(S, S ′′) −→ Q(S, S ′) −→ Q(S ′′, S ′) −→ 0.

Note that the exactness of this sequence is due to the Mayer–Vietoris
Lemma 2.2.11.

By the induction hypothesis both the quotient and the submodule of
Q(S, S ′) have relative Schubert filtration. Now the Remark 2.3.9 proves the
result. 2

Another set of examples of modules with relative Schubert filtration is
given by the following proposition.

Proposition 2.3.11 For any B-invariant closed subset S of G/B and λ ∈
X(T )−, H0(S,L(λ)) has a relative Schubert filtration with layers Q(wλ).
Moreover Q(wλ) occurs only when wλ is an extremal weight of H0(S,L(λ)),
and has multiplicity one.

Proof: The previous proof applies also for empty S ′ and the rest should be
clear from the discussion. 2

Corollary 2.3.12 The modules Hw(λ) has relative Schubert filtration for all
w ∈ W and λ ∈ X(T ). 2
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Polo’s Theorem

In characteristic zero, the representations of reductive algebraic groups are
completely reducible. This means that the irreducible representations are
injective, as any extension of an irreducible by an irreducible is split exact.
The dual Joseph modules introduced in the last chapter are not injective in
the category of B-modules. Due to this non-injectivity the excellent filtra-
tions are non-trivial filtrations of B-modules. However, in this chapter, we
prove certain injectivity theorems for P (λ).

In the first section, we prove Polo’s theorem which says that the dual
Joseph module P (λ) is injective in a smaller category C≤l(λ).

In the second section, using a strong version of Polo’s theorem, we give a
cohomological criterion for a B-module to have an excellent filtration.

3.1 Polo’s Theorem

We choose as in Bourbaki a linear functional height on X(T ) ⊗ R which
is positive on all roots of B and injective on the lattice X(T ). We say
that λ precedes µ in length–height order if either l(λ) < l(µ) or [l(λ) =
l(µ) and the height functional takes a higher value on µ than on λ]. This
defines a total order on X(T )—somewhat arbitrarily because of the freedom
in the choice of the height functional—which captures the “highest weight
category structure” corresponding with the dual Joseph modules. Rather
than explaining what this means we ask the reader to look how the length–
height order functions in proofs. For λ ∈ X(T ) we define C<λ to consist of

22
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the B-modules all of whose weights strictly precede λ in length–height order.
If M is a B-module then M<λ is the largest B-submodule of M that is in
C<λ. Similarly one defines C≤λ and M≤λ. (For graded B-modules we will give
a slightly different meaning to these notations.)

If R ≥ 0 then C≤R (C<R) denotes the full subcategory of CB whose objects
are the modules all of whose weights have length not more than R (strictly
less than R).

In this section we prove that the dual Joseph module P (λ) is injective
in C≤l(λ).

Lemma 3.1.1 The category CB of B-modules has enough injectives.

Proof: Recall that for any subgroup H of a group G, the restriction functor
resGH is exact. Further by the Frobenius reciprocity the induction functor indGH
is its right adjoint functor (see Proposition 2.1.6). The induction functor thus
sends injective H-modules to injective G-modules. This makes k[B], the ring
of regular functions on B, an injective B-module as k[B] = indB{e}(k), where
the {e} denotes the identity subgroup of B. Similarly, if M is a B-module,
then indB{e} resB{e}M is injective, and it contains M as a submodule (exercise).
Therefore CB has enough injectives. 2

Remark 3.1.2 A useful property of injectives in CB is that if one tensors
them with any B-module, the result is again injective ([11; I 3.10]).

Corollary 3.1.3 The subcategories C≤R, C<R, C≤λ, C<λ have enough injec-
tives.

Proof: We prove the corollary for C≤R. The proof is similar for the other
cases.

We denote by M≤R the largest B-submodule of a B-module M whose
weights have length less than or equal to R. Then M 7→ M≤R is the right
adjoint of the embedding functor C≤R → CB, which is exact. So if M is an
injective B-module, then M≤R is injective in the category C≤R. 2

Remark 3.1.4 Beware that M≤R is usually much smaller than the largest
T -submodule of M whose weights have length less than or equal to R. The
latter would be simply the sum of those weight spaces whose weight has
length less than or equal to R.
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Remark 3.1.5 The description of the extremal weights of Hw(λ) says that
Hw(λ) ∈ C≤R for kλ ∈ C≤R. Therefore for µ with l(µ) ≤ l(λ) ≤ R, the
module P (µ) (and hence Q(µ)) is an object of C≤R.

For a module M to be injective in a category C we need to have vanishing
of the Ext functors for M ([23; Ch III]). Before trying to prove such vanishing
for a dual Joseph module we first make some remarks.

Remark 3.1.6 Note that given a B-module N one may write it as a filtered
union N = limj Nj of finite dimensional submodules Nj. This construction
also has the property that the standard injective resolutions [11; Hochschild
complex] of the Nj converge to an injective resolution of N . Thus to prove
Exti(M0, ?) = 0 for a fixed finite dimensional M0 ∈ CB and fixed i, we need
only prove Exti(M0, N) = 0 for a finite dimensional N .

Remark 3.1.7 Further given a finite dimensional B-module N , using
Borel’s Fixed Point Theorem we get a one-dimensional B-module kν with
weight ν such that 0 → kν → N → Q→ 0.

Writing its associated long exact sequence of Exti groups, we see that
Exti(M0, N) = 0 whenever Exti(M0, Q) = Exti(M0, kν) = 0.

Therefore a B-module M0 with Exti(M0, kν) = 0 for all ν, is injective.

Remark 3.1.8 Let C be a category with sufficiently many injectives and let
C ′ be a full subcategory of C with the following property: whenever M1,M2 ∈

C ′, then for every exact sequence 0 → M1 → M → M2 → 0 in C, M also
lies in C ′. Then for M and N in C ′, we have Ext1

C(M,N) = Ext1
C′(M,N)

(cf. [23; Ch III §1, §8]). This observation is useful in the case of C ′ = C≤R
and C = CB. Since T -modules are semi-simple, every exact sequence of
B-modules 0 → M1 → M → M2 → 0 splits as T -modules and thus if
M1,M2 ∈ C≤R then M ∈ C≤R indeed.

Definition 3.1.9 The injective hull of a B-module M , is an injective B-
module containing M whose socle is soc(M). It is unique up to non-canonical
isomorphism.

Theorem 3.1.10 (Polo’s theorem) Let λ ∈ X(T )− with length l(λ).
Then

Hw(λ) = H0(Xw,L(λ))

is the injective hull of kwλ in C≤l(λ).
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Proof: (After H.H. Andersen.) The dual Joseph module Hw(λ) has one-
dimensional socle with weight wλ. Thus it is enough to prove that Hw(λ) is
injective in C≤l(λ).

By a familiar application of Zorn’s Lemma—cf. proof of Prop. 7.2 in [23;
Ch. III]—it suffices to prove that Hw(λ) is injective in the full subcategory
of C≤l(λ) consisting of finite dimensional modules. Also note that for finite
dimensional M (see [11; I Ch. 4])

ExtiB(M,Hw(λ)) = H i(B,Hw(λ) ⊗M∗)

= ExtiB(Hw(λ)∗,M∗).

Therefore it is enough to prove that Ext1
B,λ(Hw(λ)∗,M) = 0, where Ext1

B,λ

denotes the first derived functor of the functor Hom in the category C≤l(λ).
We will prove using induction on length of w that Ext1

B,λ(Hw(λ)∗, kν) = 0.
When w = e, we have Hw(λ) = kλ. Also HomB(k−λ,M) = MU

−λ, the
U -invariants in M−λ. But in C≤l(λ) we have MU

−λ = M−λ because λ ∈ X(T )−

(exercise, cf. proof of 2.2.15). Thus the Hom functor is identified with the
functor M 7→M−λ. This functor is exact. Therefore Ext1

B,λ(k−λ,M) = 0.
Let Hw(λ) be the injective hull of kλ. Let s ∈ W be a simple reflection

such that l(sw) = l(w) + 1. To complete the inductive argument, we need
to prove that Hsw(λ) is injective in C≤l(λ).

Recall that by Proposition 2.2.5

Hsw = Hs ◦Hw = indPs
B ◦Hw.

Further, by using the Frobenius reciprocity repeatedly, we obtain:

HomB(Hs(Hw(M))∗, N) = HomPs(Hs(Hw(M))∗, Hs(N))

= HomPs(Hs(N)∗, Hs(Hw(M)))

= HomB(Hw(M)∗, Hs(N)).

Thus we get that

(∗) HomB(Hsw(M)∗, N) = HomB(Hw(M)∗, Hs(N))

This proves that the functor HomB(Hsw(λ)∗, ?) is the composition of the two
functors Hs : CB → CB and HomB(Hw(λ)∗, ?). Now recall the Grothendieck
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spectral sequence ([11]) for two functors F : C → C′ and F ′ : C ′ → C ′′ with
F , F ′ left exact and F mapping injective objects in C to objects acyclic for
F ′. It says that

(RnF ′)(RmF )(M) ⇒ Rn+m(F ′ ◦ F )(M) ∀M ∈ C.

In particular, if M is acyclic for F , i.e. if (RmF )M = 0 for m > 0, then the
spectral sequence degenerates to

(RnF ′)F (M) = Rn(F ′ ◦ F )(M).

The latter is all we will use about the Grothendieck spectral sequence and it
can of course be proved directly—without spectral sequences—by induction
on n, using the long exact sequences associated with the exact sequence

0 −→M −→ QM −→ QM/M −→ 0,

where QM is the injective hull of M .

We want to use all this for F = Hs : CB → CB and F ′ = HomB(Hw(λ)∗, ?).
We have to check the conditions. To this end we need

Lemma 3.1.11 Let M be a B-module which is a quotient of a Ps-module.
Then M is indPs

B -acyclic. In particular, Hw(λ) is indPs
B -acyclic.

Proof: Note that the restriction map H0(G/B,L(λ)) → Hw(λ) is surjective
by Ramanathan (cf. Proposition A.2.6), so that Hw(λ) is indeed a quotient
of a Ps-module. Now Ps/B is a projective line P

1, so there is no higher
cohomology than in degree 1, and if M is a quotient of the Ps-module N
then R1 indPs

B (M) = H1(Ps/B,L(M)) is a quotient of R1 indPs
B (N), which

vanishes because L(N) is a trivial bundle (see also [7]). 2

Now for the spectral sequence to apply we must check the vanishing of
ExtmB (Hw(λ)∗, Hs(N)) = Hm(B,Hw(λ) ⊗ Hs(N)) for m > 0, when N is
an injective B-module. But then Hs(N) = indPs

B (N) is an injective Ps-
module, and if M is a finite dimensional B-module, ExtmB (Hs(M)∗, Hs(N)) =
ExtmPs

(Hs(M)∗, Hs(N)) by 2.1.10, so this vanishes and Hm(B,Hs(M) ⊗

Hs(N)) thus vanishes for any B-module M . This means (use Remark 3.1.2)
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that at least we have a spectral sequence for the functors F and F ′′,
with F ′′ = H0(B, ? ⊗ Hs(N)). The composite functor F ′′ ◦ F is just
H0(B, ?⊗Hs(N)), by Frobenius reciprocity and 2.1.10. The lemma gives us
that Hm(B,Hw(λ)⊗Hs(N)) = Rm(F ′′◦F )(Hw(λ)) = Rm(F ′′)◦F (Hw(λ)) =
0 for m > 0, as required.

We may thus state that

ExtiB(Hw(λ)∗, RjHs(kν)) ⇒ Exti+jB (Hsw(λ)∗, kν)

and finish the proof as follows.

1. The case when ν is anti-dominant with respect to s, i.e. Hs(ν) 6= 0.
In this case using Kempf’s vanishing theorem we see that kν is acyclic for
Hs. Therefore our spectral sequence degenerates and gives:

ExtiB(Hsw(λ)∗, kν) = ExtiB(Hw(λ)∗, Hs(kν))

Now we use the inductive hypothesis to get the required result.

2. ν is not anti-dominant with respect to s.
We put µ = s(ν − ρ), where ρ is the half sum of the roots of B. Then µ is
anti-dominant with reference to s and moreover kν is the socle of ρ⊗Hs(µ).
Also we have: RjHs(ρ ⊗ Hs(µ)) = RjHs(ρ) ⊗ Hs(µ) by the tensor identity
([11]). But RjHs(ρ) = 0 ∀j ≥ 0 (cohomology of line bundle O(−1) on P

1,
cf. [11; II 5.2]).
Thus we have Exti(Hw(λ), RjHs(ρ⊗Hs(µ))) = 0 for all i and j. Now consider

0 −→ kν −→ ρ⊗Hs(µ) −→ Q −→ 0.

Writing down part of the associated long exact sequence of B-cohomology
gives HomB(Hsw(λ)∗, Q) → Ext1

B(Hsw(λ)∗, kν) → 0. But one can check
(cf. [11; II 5.2]) that all weights of Q are strictly less in length than ν.
As the socle of Hsw(λ) has a weight at least as long as ν, one must have
HomB(Q∗, Hsw(λ)) = 0. This gives the vanishing of the Ext. 2

Lemma 3.1.12 Let M be a B-module with an excellent filtration. Then M

is indPs
B -acyclic.

Proof: Use Remark 2.1.5 and Lemma 3.1.11 to prove this lemma. 2
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3.2 Cohomological Criterion

In this section we give a criterion for a B-module to have an excellent filtra-
tion. First we prove a stronger version of Polo’s theorem.

Remark 3.2.1 Polo’s theorem and Remark 3.1.8 preceding it says that:
Ext1

B(Hw(λ)∗,M) = 0, where w ∈ W and λ ∈ X(T )− and M ∈ C≤λ.

The following theorem proves that this equality is true in case of the
higher derived functors too.

Theorem 3.2.2 (Strong form of Polo’s Theorem) Let λ ∈ X(T )− and
M ∈ C≤l(λ). Then, for w ∈ W , i > 0,

ExtiB(Hw(λ)∗,M) = 0.

Proof: We merely extend H.H. Andersen’s proof of Polo’s theorem (Theo-
rem 3.1.10) to prove this extension. We go through the old proof. This time
we want to prove Exti(Hw(λ)∗, kν) = 0 for i > 0 and kν ∈ C≤l(λ).

When w = e, the identity element of the Weyl group, we take the minimal
injective resolution I∗(λ) of kλ in CB, as in [11; II 4.8–9]. We claim that all
the weights other than λ occurring in I1(λ) are necessarily longer than λ.
Indeed I1(λ) = kλ ⊗ k[U ] and λ has non-negative inner product with every
non-zero weight of k[U ] because λ is anti-dominant. For higher values of i the
weights of I i(λ) are in the same region (see [11; II 4.8–9]) and are thus also
strictly longer than λ. Therefore Exti(k−λ, kν) = Exti(k−ν , kλ) = 0, which
proves the case when w has length zero.

The rest of the proof of Theorem 3.1.10 extends without trouble to give
this stronger version. At the end, where the weights of Q are all strictly
shorter than ν, use that we may assume by induction on the length of weights
that all Exti(Hsw(λ)∗, Q) vanish. 2

Exercise 3.2.3 Complete the above proof by filling in all the details.

Let M be a finite dimensional B-module. Then, Exti(M,N) =
H i(B,M∗ ⊗ N). Thus the injectivity of Hw(λ) can be interpreted in terms
of B-acyclicity. (Recall that a B-module M is B-acyclic if H i(B,M) = 0 for
i > 0.)
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Corollary 3.2.4 For λ, µ ∈ X(T ), P (λ) ⊗ P (µ) is B-acyclic.

Proof: Let (µ, µ) ≤ (λ, λ), Then we have:

H i(B,P (λ) ⊗ P (µ)) = ExtiB(P (λ)∗, P (µ))

Now the strong Polo’s theorem gives the result. 2

Recall that a B-module M is said to have an excellent filtration if there
exists a filtration 0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · · by B-modules such that

⋃
Fi =

M and Fi/Fi−1 ≈ ⊕P (λi) for some λi ∈ X(T ).

Corollary 3.2.5 The tensor product of two modules with excellent filtrations
is B-acyclic. 2

Theorem 3.2.6 For λ, µ ∈ X(T ), P (λ) ⊗Q(µ) is B-acyclic.

Proof: If l(µ) ≤ l(λ) then Q(µ) ∈ C≤l(λ) and thus H i(B,P (λ) ⊗ Q(µ)) = 0
for i > 0.

If l(µ) > l(λ) then we let wµ denote the minimal element of the Weyl
group which takes µ to the anti-dominant chamber. We will prove the theo-
rem by induction on the length of wµ.

When l(wµ) = 0, we have µ ∈ X(T )− and therefore Q(µ) = P (µ) and
the result follows.

When l(wµ) > 0, we look at the short exact sequence

0 −→ Q(µ) −→ P (µ) −→ H0(∂Xw−1
µ
,L(wµµ)) −→ 0.

The quotient has a filtration whose associated graded consists of direct sums
of relative Schubert modules Q(τ) with l(wτ ) < l(wµ) and thus we can use
an induction hypothesis for the quotient. Now the associated long exact
sequence of Ext gives the result. 2

We now prove that a weaker condition than the one suggested by Theo-
rem 3.2.6 is sufficient for a module to have an excellent filtration.

Theorem 3.2.7 (Cohomological criterion for excellent filtration)
Let M be a B-module such that for every λ ∈ X(T ), H1(B,M ⊗Q(λ)) = 0.
Then, M has excellent filtration.
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Proof: First, we order the characters in the length–height order. Let λ1, . . .
be our enumeration of X(T ) according to length–height order. Let {Fi} be
the length–height filtration of M , i.e. Fi = M≤λi

is the largest B-submodule
whose weights are in {λ1, λ2, . . . , λi}.

We will prove that the length–height filtration of M is an excellent fil-
tration of M . In fact we will show that Fi/Fi−1 ≈ ⊕P (λi) for i ≥ 0. If not,
take i to be minimal so that it fails.

Consider the short exact sequence: E : 0 → Fi−1 →M → R → 0. All the
weights occurring in soc(R) are strictly larger than λi−1 in the length–height
order. Now for a character η such that l(η) ≤ l(λi−1), we write the long exact
sequence of B-cohomology associated to E ⊗ Q(η). We get because of the
Acyclicity Theorem 3.2.6 that H1(B,R ⊗ Q(η)) = 0. Therefore we do not
cheat if we replace M by R in the sequel. The effect of this is that we may
further assume Fi−1 = 0, so that the socle of Fi is entirely of weight λi. Let
us show next that H1(B,Fi⊗ kη) = 0. There are two cases. The first case is
that the height of −η is at least that of λi. Then all weights of N := Fi⊗ kη
are of negative or zero height, as the socle of N is of weight λi− η. But then
ExtB(k,N) clearly vanishes, cf. [11; II 4.10].

The second case is that −η precedes λi in length–height order, so that
Hom(Q(η)∗,M/Fi) = 0. It follows that Ext1(Q(η)∗, Fi) = 0. Further, looking
at

(∗) 0 −→ η −→ Q(η) −→
Q(η)

η
−→ 0,

with η short for kη, we get HomB

(
(Q(η)/η)∗, Fi

)
→ Ext1(k−η, Fi) → 0. How-

ever Q(η)/η has weights which are strictly less in length than λi. Therefore
we have HomB((Q(η)

η
)∗, Fi) = 0 and the second case follows too. Thus Fi is

injective in C≤l(λi) with a socle purely of weight λi. This proves that Fi is a
direct sum of copies of P (λi), with as many copies as the dimension of the
socle of Fi. 2

From the proof we actually get:

Corollary 3.2.8 For a B-module with excellent filtration the length–height
filtration is an excellent filtration. 2
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This corollary is important for checking that the length–height order leads
to a highest weight category structure in the sense of Cline-Parshall-Scott.
We will not get into that and just tell everything in terms of the length–height
order itself.

Corollary 3.2.9 An injective B-module has an excellent filtration. 2

Corollary 3.2.10 The property of excellent filtration is closed under exten-
sion.

Proof: Let M1 and M2 be two B-modules (maybe infinite dimensional) with
excellent filtration. Let M be a B-module such that we have an exact se-
quence 0 → M1 → M → M2 → 0. Tensor this exact sequence by Q(µ)
and write its associated long exact sequence of B-cohomology and use the
cohomological criterion. 2

Lemma 3.2.11 Let M be a B-module with excellent filtration and let w be an
element of the Weyl group. Then the module Hw(M) has excellent filtration.

Proof: We fix a set of generators S = {s1, . . . , sl} of W such that each of its
elements is a simple reflection. Let w = s1 · · · sn be a reduced expression of
w. By Proposition 2.2.5, we haveHw(M) = Hs1◦· · ·◦Hsn(M). Therefore it is
enough to prove thatHs(M) has excellent filtration for every simple reflection
s ∈ S. We first consider the case when M = P (µ) for some character µ. Let
µ1 = w−1

µ µ denote the anti-dominant weight in its Weyl group orbit. Then
P (µ) = Hwµ(µ1) and Hs(P (µ)) is by Proposition 2.2.5 either isomorphic to
Hwµ(µ1) = P (µ) or to Hswµ(µ1) = P (sµ). Therefore we have proved the
claim for M = P (µ).

Now we will use induction to prove the claim for all of M .

Let 0 ⊂ F1 ⊂ F2 ⊂ · · · be an excellent filtration of M . Note that
F1 is a direct sum of copies of P (µ) for some µ. Therefore we know that
Hs(F1) has excellent filtration. Let m be the (hypothetical) least integer such
that Hs(Fm) has excellent filtration but Hs(Fm+1) does not have excellent
filtration. Consider the exact sequence

0 −→ Fm −→ Fm+1 −→M1 −→ 0.
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The module M1 is isomorphic to a direct sum of copies of P (ν) for some
character ν. This exact sequence gives rise to the exact sequence

0 −→ Hs(Fm) −→ Hs(Fm+1) −→ Hs(M1) −→ 0.

The surjectivity of this exact sequence is due to the indPs
B -acyclicity of Fm

(Lemma 3.1.12). Now the cohomological criterion for excellent filtration—or
common sense if the modules are finite dimensional—gives us the result. 2

3.3 Relative Schubert Modules

In this section we state and prove (in the form of exercises) analogous state-
ments for the relative Schubert modules.

Definition 3.3.1 Let Cλ denote the full subcategory of CB whose objects
are the modules M such that if µ is a weight of M then either µ = λ or
l(µ) < l(λ).

Note that C<l(λ) ⊆/ Cλ ⊆/ C≤l(λ) if λ 6= 0.

Exercise 3.3.2 Prove that Q(λ) is injective in Cλ.
Hint: Use the injectiveness of P (λ) in C≤l(λ) and the proof of the Corol-

lary 3.1.3.

The proof of the cohomological criterion for excellent filtration extends
easily to give us the following result.

Exercise 3.3.3 (The cohomological criterion for relative Schubert
filtration). Prove that a B-module M has relative Schubert filtration if and
only if H1(B,M ⊗ P (µ)) = 0 for all characters µ.

Hint: This time order the weights a little differently, using the negative
of the height function.
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Donkin’s Conjecture

Let k now be an algebraically closed field of positive characteristic p , and let
G be our connected reductive group over k. Let M be G-module. A filtration
F of M is called good if the successive quotients are isomorphic to a direct
sum of copies of P (µ) with µ ∈ X(T )+. In this chapter we prove Donkin’s
conjecture for good filtrations. The best known half of this conjecture is the
(older) conjecture stating that for λ, µ ∈ X(T )+, P (λ) ⊗ P (µ) has good
filtration. The crucial idea (due to O. Mathieu) is to study the G-modules
which are embedded in a graded B-algebra with a “canonical splitting”.

In the first section we give the definition and basic properties of good
filtration. We also give the relationship between the excellent filtrations and
good filtrations.

In the second section we give a criterion for existence of a good filtration
for a G-module. This criterion works in a very specialized case of a G-module
embedded inside a graded B-algebra each of whose graded components has
an excellent filtration and only one weight in its socle. However, as we will
see in the last section, this criterion gives us the proof of Donkin’s conjecture.

This criterion leads us to study what we call Frobenius-linear endomor-
phisms of a graded k-algebra R. A splitting σ of R is a Frobenius-linear
endomorphism such that σ(1) = 1. The Frobenius splittings were introduced
by Mehta and Ramanathan in [24]. Following Mathieu, we then introduce
the notion of a canonical splitting of R and prove the crucial proposition
that the image of a B-submodule of R under a canonical splitting is again a
B-submodule.

The criterion for good filtration relates the concept of canonical splitting

33
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and that of good filtration. This gives the proof of Donkin’s conjecture.

4.1 Good Filtrations

Definition 4.1.1 Let M be a G-module. A filtration F = F0 ⊂ F1 ⊂ · · · of
M by G-submodules is said to be a good filtration if

(i)
⋃
i Fi = M .

(ii) Fi/Fi−1 ≃
⊕

P (µi) with µi ∈ X(T )+.

The reader may have noticed the similarity between excellent filtration
of a B-module and good filtration of a G-module. Indeed the questions of a
B-module M having excellent filtration and indGB(M) having good filtration
are related. First we see what happens if indGB(M) = M .

Exercise 4.1.2 Let M be a G-module. Show that the length–height filtra-
tion of M is not just a filtration by B-submodules, but one by G-submodules.
(Hint: Consider a minimal counterexample and factor out an irreducible G-
submodule.)

Exercise 4.1.3 Let M be a G-module. Prove that the following are equiv-
alent:

(i) M has a good filtration.

(ii) M has an excellent filtration. (That is, resGB(M) has one, but recall
from 2.1.7 that we embed CG in CB.)

(iii) The length–height filtration of M is a good filtration.

Remark 4.1.4 As the property of having excellent filtration is closed under
extension, we see that the property of having a good filtration is also closed
under extension.

We also have a cohomological criterion for good filtration which is anal-
ogous to the one for existence of an excellent filtration. (It is much older.)
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Proposition 4.1.5 (Donkin) ([11; II 4.16]) Let M be a G-module. Then
M has a good filtration if and only if for every dual Weyl module P (λ),
λ ∈ X(T )+, one has H1(G,M ⊗ P (λ)) = 0. 2

Corollary 4.1.6 Let M = M1⊕M2 be a direct sum of two G-modules. Then
M has good filtration if and only if both M1 and M2 have good filtration. 2

Exercise 4.1.7 Use Lemma 3.2.11 to show that if M has excellent filtration,
indGB(M) has good filtration.

4.2 Criterion for Good Filtrations

In this section we give a criterion for existence of good filtrations. Unlike
the cohomological criterion, which is intrinsic, this criterion depends upon
an embedding of the given G-module into a graded B-algebra. To motivate
this approach we look at Donkin’s conjecture.

Remark 4.2.1 Donkin’s conjecture claims that for λ, µ two dominant char-
acters the module P (λ) ⊗ P (µ) has good filtration. Now geometrically
P (λ) ⊗ P (µ) can be interpreted as P (λ) ⊗ P (µ) = H0(G/B × G/B,L)
where L is the line bundle L(w0λ) × L(w0µ) on G/B × G/B. The variety
G×BG/B = G/B×G/B contains Bw0B×BG/B as an open subset. There-
fore the natural restriction map gives a natural embedding of P (λ) ⊗ P (µ)
into the graded B-algebra

⊕∞
j=0H

0(Bw0B ×B G/B,Lj). This B-algebra
is induced from the T -module

⊕
j H

0(Tw0B ×B G/B,Lj) and is therefore
injective. Hence by the cohomological criterion, it has excellent filtration.

Motivated by this remark, we state the following criterion for good filtra-
tion. First a definition.

Definition 4.2.2 Let A = ⊕iA
i be a graded B-algebra. We define a B-

subalgebra A≤λ of A by A≤λ = ⊕i A
i
≤iλ. (Recall that M≤µ is the largest

B-submodule of M which is in the category C≤µ.)

Theorem 4.2.3 ( p -root closure and good filtration) Let A =
⊕

i A
i

be a graded B-algebra such that
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(i) A0 = k.

(ii) A has excellent filtration.

(iii) There exists λ ∈ X(T )+ such that in soc(Aj) only j · λ occurs as
weight.

Let S be graded subalgebra which is a graded G-module and which is p -root
closed (i.e. ap ∈ S ⇒ a ∈ S ). Then S has good filtration.

Proof: We wish to prove that each Sr has good filtration and we may restrict
attention to a given r. We know by the cohomological criterion for excellent
filtration (Theorem 3.2.7) that each of Aj has excellent filtration. Therefore
for any m, the rescaled B-algebra A1 =

⊕
i A

m·i with Ai1 = Aim also has
excellent filtration. Therefore we may assume that S1 6= 0.

The socle of Si contains only a single weight iλ. Further as S is a G-
module, iλ is an extremal weight of Si and all extremal weights are in the
same Weyl group orbit as iλ.

Therefore we have S ⊂ A≤λ.
The length–height filtration of A is excellent. Further as the socle of Aj

has no other weight than j · λ, we see that the first non-zero module in this
filtration of Aj is (Aj)≤jλ. Therefore (A≤λ)

j is isomorphic to
⊕

P (j · λ).
To get a firm hold of the situation we need a technical sublemma that

gives more insight in the algebra structure of A≤λ. That will allow us to pass
to convenient subalgebras. The reader is advised to pass over this sublemma
quickly.

Sublemma 4.2.4 The graded B-algebra A≤λ may be reconstructed from its
“subalgebra of socles”

⊕
j socB(Aj). More generally, any graded subalgebra

of
⊕

j socB(Aj) is the subalgebra of socles of a suitable graded subalgebra Ã

of A≤λ, with Ã having excellent filtration.

Proof: We have seen already that (A≤λ)
j is isomorphic as a B-module to

a direct sum of copies of P (jλ), with the number of copies equal to the
dimension of soc((A≤λ)

j). To say it more canonically—which one must, in
view of the task at hand—there is a canonical isomorphism of B-modules

P (jλ) ⊗ soc((A≤λ)
j) ⊗ k−jλ −→ (A≤λ)

j.
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So that is how we reconstruct A≤λ as a B-module. To get the ring structure,
note that multiplication is given by B-module maps

(A≤λ)
r ⊗ (A≤λ)

s −→ (A≤λ)
r+s.

Thus we are done with the first half of the lemma if we show that restriction
defines an isomorphism from

HomB((A≤λ)
r ⊗ (A≤λ)

s, (A≤λ)
r+s)

to
HomB(soc((A≤λ)

r) ⊗ soc((A≤λ)
s), soc((A≤λ)

r+s)).

For surjectivity one uses Polo’s theorem with R equal to the length of (r+s)λ.
To see injectivity, consider a map

f : (A≤λ)
r ⊗ (A≤λ)

s −→ (A≤λ)
r+s

in the kernel. If f is not zero, its image must hit the socle of (A≤λ)
r+s. But

then it must be non-zero on the weight space ((A≤λ)
r ⊗ (A≤λ)

s)(r+s)λ. And
that is just soc((A≤λ)

r) ⊗ soc((A≤λ)
s) as one sees by looking at lengths and

heights. The rest of the sublemma follows similarly. 2

Encouraged by the sublemma we let I(S) denote the graded subalgebra
of A≤λ whose jth component is the injective hull of Sj in the category C≤j·λ.
The subalgebra I(S) ⊂ A≤λ clearly has excellent filtration. In fact I(S) is a
direct summand of A≤λ and thus the filtration from its grading is an excellent
filtration! Therefore we replace A by I(S).

We will prove that S = A.
We can assume, by rescaling again if necessary, that S1 6= I(S1). Therefore
there exists a copy of P (λ) ⊂ I(S1) such that S1 does not contain P (λ). We
denote by A1 the algebra generated by this P (λ). Phrased differently, we let
A1 be the graded subalgebra with excellent filtration whose socle algebra is
generated by the socle of our chosen copy of P (λ). Let A2 = A1 ∩ S. The
G-algebra A2 is again p -root closed in A1. One may quickly dispense of the
case that Aj1 = 0 for large j.

We choose a parabolic subgroup P such that λ extends as a character to
P and P is maximal for this property. The line bundle L = L(w0 · λ) is very
ample on G/P ([11; II 8.5]). Further, we have H0(G/B,L) = H0(G/P,L).
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Thus we can restrict our attention to the situation

S = A2 ⊂ A1 = A =
⊕

i

H0(G/P,Li).

Consider the projective space P(A1) of one-dimensional quotients of A1.
We have a rational map f : P(A1) → P(S1). However, the image of G/P ,
under the canonical embedding, lies inside the domain of this map. Therefore
we get a morphism f : G/P → IMAGE →֒ P(S1). The space IMAGE is
a G-space (a homogeneous space) and we claim the map f is bijective from
G/P to IMAGE . Indeed let us inspect the stabilizer Q of the image of
x = P/P . This is the stabilizer in (S1)∗ of a line L stabilized by P . So Q
is a parabolic subgroup containing P and by the classification of parabolic
subgroups containing B we only have to check which elements of the Weyl
group stabilize L. That is easy, as L has weight −w0λ. Note that things
would be much more subtle if we needed the scheme theoretic stabilizer
[11; I 2.6] of x. We do not need it as we do not claim our bijection is an
isomorphism of varieties.

Next, we recall a lemma from algebraic geometry. The lemma is not
stated in its full generality but only in a form which will be useful to us. The
proof is given in the Appendix (cf. Sublemma A.5.1). We wish to apply it
with the line bundle L ≈ O(1) on IMAGE . Alternatively one may apply
Sublemma A.5.1 to the structure sheaf of Spec(k[S1]) = the affine cone over
IMAGE .

Sublemma 4.2.5 Let X, Y be two projective varieties over k and let
f : X → Y be a morphism which is bijective. Then for every ample line
bundle L on Y and for s ∈ H0(X, f∗(L)) we have sp

n
∈ H0(Y,Lp

n
) for some

large n.

Therefore (cf. [7; II 7]) for every a ∈ A1, we have ap
m
∈ S for some large

m. Now using the p -root closure of S we see that a ∈ S. Thus A1 ⊂ S, a
contradiction. 2

Remark 4.2.6 There is another way to understand why ap
m
∈ S for some

large m. Namely, scheme theoretically the stabilizer Q is generated by P

and some connected infinitesimal subgroup. This connected infinitesimal



4.3. Frobenius Splittings 39

subgroup is contained in a Frobenius kernel [11] and thus acts trivially on
ap

m
for some large m.

4.3 Frobenius Splittings

In this section we define Frobenius splittings and introduce the canonical
splittings.

Let R be a k-algebra.

Definition 4.3.1 A Frobenius-linear endomorphism of R is a map σ : R →

R such that for a, b ∈ R,

(i) σ(a+ b) = σ(a) + σ(b)

(ii) σ(apb) = a · σ(b)

We denote the space of Frobenius-linear endomorphisms by EndF (R).

Definition 4.3.2 1. A Frobenius-linear endomorphism σ is called a split-
ting if σ(ap) = a. This means σ is a splitting if and only if σ(1) = 1.

2. Let I be an ideal of R. We say a σ ∈ EndF (R) is compatible with
I if and only if σ(I) ⊂ I. We denote the space of such endomorphisms by
EndF (R, I).

3. We say I is compatibly split in R if there exists a splitting σ of R such
that σ ∈ EndF (R, I).

Definition 4.3.3 Let R be a k-algebra. For a ∈ R and σ ∈ EndF (R) we
define a ∗ σ by

a ∗ σ(b) = σ(a · b).

Definition 4.3.4 Let A = ⊕i≥0A
i be a graded B-algebra. A σ ∈ EndF (A)

is called graded if σ(Aip) ⊂ Ai and σ(Ai) = 0 if i is not divisible by p.

In case R is a G-module, we define a G action on EndF (R, I) by

(g ∗ σ)(a) = g · σ(g−1 · a).
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Let R be a B-algebra. Then under the ∗ action, the module EndF (R) is a
B-module, possibly not rational. Now B is generated by the torus T and the
one-parameter subgroups Uα = {xα(t) | t ∈ k} with α a simple root. Every
σ ∈ EndF (R) defines a map B → EndF (R) by b 7→ b ∗ σ. If the B-module
EndF (R) is finite dimensional, one expects this to define a polynomial map
on each of the subgroups Uα. A T -invariant splitting is canonical if an even
stronger condition is true.

Definition 4.3.5 A splitting σ ∈ EndF (R) (or σ ∈ EndF (R, I)) is called
canonical if for every simple root α, there exist σr,α ∈ EndF (R) such that

(i) h ∗ σ = σ for every h ∈ T (k).

(ii) xα(t) ∗ σ =

p−1∑

r=0

tr ∗ σr,α for every simple root α and every t ∈ k.

Here it is important that the summation stops at p− 1.

Remark 4.3.6 If R is a B-algebra and σ a canonical splitting on R, then
σ takes weight vectors of weight pλ to weight vectors of weight λ. Therefore
σ(Rµ) = 0 if 1

p
µ is not a weight of R.

The following proposition underlines the importance of canonical split-
tings.

Proposition 4.3.7 (Key Proposition) Let σ be a canonical splitting of
the B-algebra R. Then the image under σ of a B-submodule of R is again
B-invariant—and thus a B-submodule.

Proof: Let v be in a B-submodule N . Recall that one may write xα(t)v as

a polynomial
∑

i≥0 t
iX

(i)
α v. This explains the notation X

(i)
α in what follows.

We write z(t) = (xα(−t
p) ∗ σ)(v) in two ways. On the one hand we have

z(t) =
∑

i≥0

(−tp)iX(i)
α σ

(
∑

j≥0

tjpX(j)
α v

)
=
∑

i,j≥0

tip+j(−1)iX(i)
α σ(X(j)

α v).
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On the other hand, as σ is canonical, z(t) equals

p−1∑

r=0

((−tp)r ∗ σr,α)(v) =

p−1∑

r=0

(σr,α((−t
p)rv))

=

p−1∑

r=0

(−t)r(σα,r(v)).

Write z(t) =
∑

n≥0 znt
n. Then σ(v) = z0. From the second expression

one sees that the other zpn vanish, so σ(v) =
∑

n≥0 zpnt
pn. Now we use the

first expression to rewrite this as

∑

i,s≥0

tip+sp(−1)iX(i)
α σ(X(ps)

α v).

But that is just

xα(−t
p)
∑

s≥0

σ((tp)psX(ps)
α v),

whence the result that xα(t
p)σ(v) is in σ(N). Now just substitute t for tp.

(We have t vary over an algebraically closed field.) We conclude that σ(N)
is invariant under all xα(t) with α simple. It is more or less built into the
definition of canonical that σ(N) is also invariant under T (k). Now use that
B(k) is generated by T (k) and the above xα(t). 2

This proposition together with Remark 4.3.6 immediately gives us the
following corollary. Here A<λ is the obvious variation on A≤λ. It equals⊕

i A
i
<iλ, where Ai<iλ is the largest B-submodule of Ai which is in the cat-

egory C<iλ consisting of all B-modules with weights strictly preceding iλ in
length–height order.

Corollary 4.3.8 If σ is a graded canonical splitting on A, then we have
σ(A≤λ) ⊆ A≤λ and σ(A<λ) ⊆ A<λ. 2

The Remark 4.2.1 motivates us to look for geometric examples of split-
tings and in particular canonical splittings. The Frobenius-linear endomor-
phisms have the following geometric extension.
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Let X be a variety over k. Let F : X → X denote the absolute Frobenius
morphism, i.e. the morphism which on OX restricts to the morphism induced
by taking pth power. This morphism is identity on the underlying topological
space. However, on functions, it takes a given function to its pth power.

We define EndF (X) — sheaf of Frobenius-linear endomorphisms — by
assigning the abelian group EndF (OX(U)) to each open U . Let F∗OX be
the direct image of OX . As a sheaf of abelian groups, the sheaf F∗OX is
isomorphic to OX . The OX-module structure of F∗OX is via the Frobenius
morphism. We therefore have a · s = aps for a ∈ OX and s ∈ F∗OX .
Thus, EndF (X) = (F∗OX)∗, the dual of F∗OX . This gives an OX-module
structure on EndF (X). We denote the space of global sections of EndF (X)
by EndF (X). We get

EndF (X) = H0(X, EndF (X))

= H0(X, (F∗OX)∗).

Definition 4.3.9 A variety X over k is called Frobenius split if there exists
σ ∈ EndF (X) which is a splitting.

If X is a G-variety, we can give a G-structure to EndF (X) by (g ∗σ)(s) =
g · σ(g−1 · s) for s ∈ OX .

The operation ∗ defined before gives another OX-module structure on
EndF (X). We see that this OX-module structure is obtained by using the
isomorphism between F∗OX and OX as abelian groups. If X is smooth, then
the sheaf EndF (X) is isomorphic to a line bundle under the ∗ operation. This
is best seen by passing to the completion at a point, which makes things very
computable. (Recall the completion of the local ring at a smooth point is
just a power series ring in a number of variables.)

Let Y be a closed subvariety of X. Let I be the sheaf of ideals defining Y .
We define the sheaf of Frobenius-linear endomorphisms which are compatible
with Y by assigning the abelian group EndF (OX(U), I(U)) to any open
subset U of X. We denote this sheaf by EndF (X, Y ) and its space of global
sections by EndF (X, Y ).

Definition 4.3.10 A closed subvariety Y is said to be compatibly split in
X if there exists a splitting σ ∈ EndF (X, Y ).
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We next list certain properties of splittings and canonical splittings which
are useful to us.

Direct images:

1. Let f : Z → X be a morphism such that f∗OZ = OX . Suppose σ is
a splitting on Z such that σ compatibly splits Y ⊂ Z. Then there exists a
splitting on X which compatibly splits f(Y ). 2

2. If moreover Z, Y,X are B-varieties, f is a B-equivariant morphism and
σ ∈ EndF (Z, Y ) is canonical, then the induced splitting in EndF (X, f(Y )) is
also canonical. 2

Lemma 4.3.11 Let σ ∈ EndF (X) be a splitting and L a line bundle on X.
Then σ extends uniquely to a graded splitting of R(L) = ⊕i≥0H

0(X,Li).

Proof: Let V ⊂ X be such that V = SpecA is affine and L|V is trivial. Then
R(L) is a polynomial ring A[T ]. We first prove that a splitting of A extends
uniquely to a graded splitting of A[T ]. We define σ̃V by σ̃V (

∑
i≥0 aiT

i) =∑
i≥0 σ(aip)T

i. It is clear that any splitting of A[T ] which restricts to σ on
A and which is graded has to satisfy this equation. Therefore this extension
is unique. It is this uniqueness that allows us to patch these local sections
σ̃V to get a splitting of R(L). 2

Remark 4.3.12 For a B-variety X and equivariant line bundle L, the ex-
tension of a canonical splitting will again be canonical.

Let G be our reductive algebraic group over k, with B (and T ⊂ B )
a Borel (and torus) subgroup of G. We now consider the special case of
X = G/B. We will prove that the Demazure desingularisation Z of G/B,
introduced in the second section of the first chapter, has a canonical splitting.
Therefore using the direct image property of splittings, G/B itself will have
a canonical splitting.

Let W be the Weyl group of G. Let s1 · · · sn be a reduced expression
for the longest element w0 in W . For each si, we have a minimal parabolic
subgroup Pi ofG. Then, Zn = P1×

BP2×
B · · ·×BPn/B is called the Demazure

desingularisation of G/B. The multiplication map m : P1 × · · · × Pn → G

induces a morphism ϕ : Zn → G/B. The morphism ϕ is birational. Thus as
G/B is a normal variety, we get ϕ∗OZn = OG/B ([11; II Lemma 14.5]).
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Remark 4.3.13 Later we will also have use for Zn when n is more than
the number of positive roots. Then of course s1 · · · sn will not be a reduced
expression for w0. Much of the discussion that follows applies to this more
general situation.

We define divisors D̃j = P1 ×
B · · · ×B Pj−1 ×

B B×B Pj+1 · · ·Pn/B of Zn.

Let Dn =
⋃n
j=1D̃j. The components of Dn intersect transversally at their

intersection point x = B ×B · · · ×B B/B.
Consider EndF (Zn, Dn), the sheaf of Frobenius-linear endomorphisms on

Zn which leave the ideal of Dn invariant. Since Dn is a codimension one
subvariety of the smooth variety Zn, the duality theory for the absolute
Frobenius map F : Zn → Zn tells us that EndF (Zn, Dn) ≈ ωZn(Dn)

1−p. (See
also A.3.5, A.4.6). Here ωZn denotes the canonical line bundle Ωn

Zn
of Zn.

Definition 4.3.14 Let V be a B-equivariant vector bundle on a variety X
with B action. (That is, on the corresponding geometric vector bundle there
is a B action compatible with the action on X.) Then V [λ] denotes the same
vector bundle, but with B action twisted by λ: For s ∈ H0(U,V), b ∈ B, we
let b.s be λ(b) times what it would be without the twist.

Proposition 4.3.15 The sheaf EndF (Zn, Dn) is B-equivariantly isomorphic
with ϕ∗L((1 − p)ρ)[(p − 1)ρ], so that if ϕ : Zn → G/B is surjective, its
module of global sections EndF (Zn, Dn) is B-equivariantly isomorphic with
k(p−1)ρ ⊗H0(G/B,L((1 − p)ρ)).

For the proof we refer reader to the Appendix (A.4.6). 2

Restricting the above isomorphism to global sections, we get the following
corollary.

Corollary 4.3.16 If the map ϕ : Zn → G/B is surjective, then there
exists a B-equivariant isomorphism between EndF (Zn, Dn) and k(p−1)ρ ⊗

H0(G/B,L((1 − p)ρ)). 2

Proposition 4.3.17 Let {s1, . . . , sn} denote a sequence of simple reflec-
tions, let Pi be the corresponding minimal parabolic subgroups and let Zn =
P1 ×

B · · · ×B Pn/B be as above. Let ϕ : Zn → G/B be the “multiplication”
map which we assume to be surjective. Then there exists σ ∈ EndF (Zn, Dn)
which is a canonical splitting.
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Remark 4.3.18 The surjectivity is not really needed for the conclusion to
hold.

Proof of Proposition 4.3.17: (See also the Appendix A.4.7.) To get a
candidate for the canonical splitting we use [24] to which we refer for details.
As Mehta and Ramanathan explain in [24], one gets a splitting by taking the
correct scalar multiple of any element of EndF (Zn, Dn) that does not vanish
at the intersection point x of the components of Dn. And such an element
can be obtained by pulling back a section of L((1−p)ρ)[(p−1)ρ] that does not
vanish at B/B. We claim the splitting may be taken to be T -equivariant so
that it satisfies the first condition for being canonical. Indeed, if it were not
T -equivariant we could simply take its weight zero component and we would
find that that component is also a splitting (exercise). From Proposition
4.3.15 we see that the weight zero space of EndF (Zn, Dn) is one-dimensional,
so in fact we end up with a unique splitting this way. Now the extremal
weights of H0(G/B,L((1 − p)ρ)) are in the Weyl group orbit of (1 − p)ρ, so
for a simple root α the ladder {iα | iα is a weight of EndF (ZN , DN)} stops
with (p− 1)α = (p− 1)ρ− sα(p− 1)ρ. Thus the second condition for being
canonical is also satisfied. 2

4.4 Donkin’s Conjecture

In this section we prove Donkin’s conjecture.

Theorem 4.4.1 (Canonical splittings and good filtrations) Let A be
a connected (i.e. A0 = k), graded B-algebra with excellent filtration. Let σ
be a graded canonical splitting of A. If S is a graded σ-invariant subalgebra
which is a G-module, then S has a good filtration.

Proof: We concentrate on proving that S1 has a good filtration. The other
degrees can be treated similarly, using rescaling as in the proof of 4.2.3. (We
ask the reader to figure out how a graded canonical splitting on A defines
one on the rescaled algebra

⊕
i A

m·i.)
The length–height filtration of A is an excellent filtration, therefore A≤λ

also has excellent filtration. For any weight λ of A, theB-subalgebra A≤λ of A
is invariant under the canonical splitting, as is its ideal A<λ (Corollary 4.3.8).
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Also note for λ ∈ X(T )+, that the submodule S
⋂
A≤λ is again G-invariant,

as is its ideal S
⋂
A<λ (cf. 4.1.2). We therefore replace A by A≤λ/A<λ—with

its induced canonical splitting—and S by S
⋂
A≤λ/S

⋂
A<λ. Then with these

new choices λ is such that iλ is the only weight in socAi. Also S is p -root
closed since S is invariant under σ and σ(ap) = a. We now use Theorem 4.2.3
to see that S has good filtration. 2

Next, we give a geometric implication of the above theorem. Note that
the motivating variety is G×B G/B.

Lemma 4.4.2 Let X be a B-variety and Y a B-invariant subvariety. Let
G ×B X denote the associated fibre bundle over G/B with fibre X. Assume
that there exists a canonical splitting σ of G×B X compatible with G×B Y .
Let L be a G-equivariant line bundle on G×BX. Let K(L) denote the kernel
of the restriction morphism res : H0(G ×B X,L) → H0(G ×B Y,L). Then
the G-modules H0(G×B X,L) and K(L) have good filtrations.

Proof: Let π : G ×B X → G/B be the projection map. Now ⊕nH
0(G ×B

X,Ln) →֒ ⊕nH
0(π−1(Bw0B/B),Ln). But π−1(Bw0B/B) ≈ Bw0T×

TX in a
B-equivariant way and therefore H0(π−1(Bw0B)/B,Ln) = indBT H

0(w0T ×T

X,Ln). Therefore ⊕H0(π−1(Bw0B/B),Ln) is an injective B-module. Thus
by the cohomological criterion, (Theorem 3.2.7), it has an excellent filtration.
Now we extend σ to a graded canonical splitting on ⊕nH

0(π−1(Bw0B),Ln).
This splitting leaves the G-submodule ⊕nH

0(G×B X,Ln) invariant. There-
fore, by Theorem 4.4.1, ⊕H0(G ×B X,Ln) has good filtration. Therefore
H0(G×B X,L) has good filtration.

Similar arguments show that the G-module H0(G×B Y,L) has good fil-
tration.

Consider next the following diagram:

0 0
↓ ↓

⊕nK(Ln) → ⊕nK
′(Ln)

↓ ↓
⊕nH

0(G×B X,Ln) →֒ ⊕nH
0(Bw0B ×B X,Ln)

↓ res ↓ res

⊕nH
0(G×B Y,Ln) →֒ ⊕nH

0(Bw0B ×B Y,Ln)
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Now the splitting on ⊕nH
0(Bw0B ×B X,Ln) restricts to a splitting on

the algebra k ⊕
⊕

nK
′(Ln). (We added k in degree zero to get an algebra

rather than an ideal.) Further, this splitting leaves k⊕
⊕

nK(Ln) invariant.
Therefore, by Theorem 4.4.1, K(L) also has good filtration. 2

Now we are in a position to prove Donkin’s conjecture. Like all main
results in these notes, it and its method of proof are due to Mathieu. (The
reader is invited to compare our exposition with that of Mathieu, to see
where the emphasis differs.)

Theorem 4.4.3 (Donkin’s Conjecture) Let λ, µ ∈ X(T )+.

1. P (λ) ⊗ P (µ) has a good filtration.

2. (Restriction Conjecture) Let L be the Levi factor of a parabolic
subgroup P of G and let λ ∈ X(T )−. Then resGL(indGB(λ)) as an L-module
has a good filtration.

Proof: We are now in a position to exploit Remark 4.2.1 We have P (λ) ⊗
P (µ) = H0(G×B G/B, (G×B L(µ))[λ]) with G×B G/B ≈ G/B ×G/B. If
s1, . . . , sn is a sequence of simple reflections such that—with suitable choice
of ϕ—the map Zn = P1 ×

B · · · ×B Pn/B
ϕ
→ G ×B G/B is birational, then

we have a canonical splitting on Zn inducing one on G ×B G/B and by
Lemma 4.4.2 we get the first result.

For the second result notice that similarly P×BG/B ≈ P/B×G/B. The
module we have to study is now the restriction of H0(P×BG/B, (P×BL(λ)).
As P/B is a Schubert variety, it has its Demazure resolution just like G/B.
It is thus not difficult to come up with s1, . . . , sn, such that Zn = P1 ×B

· · · ×B Pn/B
ϕ
→ P ×B G/B is birational. Thus P ×B G/B = L ×L∩B G/B

has a canonical splitting, which of course remains canonical with respect to
the Borel subgroup B ∩ L of L. Apply Lemma 4.4.2. 2

Exercise 4.4.4 Read the Appendix and fill in the details in the above proof.
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Joseph’s Conjecture

In the last chapter we proved that the tensor product of two modules with
good filtrations has good filtration. Now as the reader will see, (Exam-
ple 5.3.1), the tensor product of two modules with excellent filtration need
not have excellent filtration. However in this chapter we prove Joseph’s con-
jecture which says that the tensor product of a module with good filtration
and an anti-dominant character has excellent filtration.

We will prove that λ⊗P (µ)⊗Q(ν) is B-acyclic for λ ∈ X(T )−, µ ∈ X(T )+

and ν ∈ X(T ). This implies, by the cohomological criterion, that the tensor
product λ⊗P (µ) has excellent filtration for λ anti-dominant and µ dominant.
From this the Joseph’s conjecture follows.

To prove the vanishing of B-cohomology, we first induce these modules up
to G using the indGB functor. We then prove that the induced G-modules have
good filtration and thereby are G-acyclic. We then use the Frobenius reci-
procity to prove the B-acyclicity. The use of Frobenius reciprocity requires
the indGB-acyclicity of these modules and we use the method of Frobenius
splitting to prove the same.

5.1 Double Schubert Varieties

Let w, z ∈ W be two elements of the Weyl group of G. Let P and Q be two
parabolic subgroups of G, containing B. Let Xw and Xz denote the Schubert
varieties BwP/P ⊂ G/P and BzQ/Q ⊂ G/Q respectively. Consider the
closed B-subvariety Xw ×Xz of G/P ×G/Q.

48
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Definition 5.1.1 By a double Schubert variety we mean the subvariety
G×B (Xw ×Xz) of G×B (G/P ×G/Q).

As the total space of the fibre bundle G×B (G/P ×G/Q) is isomorphic
with G/B × G/P × G/Q, a double Schubert variety is naturally embedded
in the triple product G/B ×G/P ×G/Q.

Proposition 5.1.2 There exists a canonical splitting of G/B×G/P ×G/Q
such that all double Schubert varieties are simultaneously compatibly split in
the triple product.

For the proof we refer the reader to the Appendix (Proposition A.4.8).
Let µ ∈ X(T )−, and let Pµ be the parabolic subgroup such that µ extends

to a character on Pµ and it is maximal for this property. Therefore on G/Pµ,
the line bundle L(µ) associated to the character µ exists and is ample. Indeed
we work with G/Pµ instead of G/B for precisely this reason. One further
notes that if π : G/B → G/Pµ is the natural projection map, then we have
π∗L(µ) = L(µ).

We have Pµ = B if and only if µ is regular in X(T )−.
Let λ, µ, ν be characters in X(T )− with λ regular. Let L(λ, µ, ν) denote

the line bundle L(λ)×L(µ)×L(ν) on the product G/B×G/Pµ×G/Pν . Let
Σ1 and Σ2 be unions of double Schubert varieties in G/B × G/Pµ × G/Pν
such that Σ2 ⊂ Σ1. Then, we have

Lemma 5.1.3 (i) H0(Σ1,L(λ, µ, ν)) has good filtration.

(ii) The restriction map H0(Σ1,L(λ, µ, ν)) → H0(Σ2,L(λ, µ, ν)) is sur-
jective. Further, its kernel K(Σ1,Σ2, λ, µ, ν) has good filtration.

Proof: (i) By Corollary 4.4.2 we see that H0(Σ1,L(λ, µ, ν)) and the kernel
of the restriction map K(Σ1,Σ2, λ, µ, ν) have good filtration.

(ii) As G×B Σi are compatibly split in G×B (G/Pµ×G/Pν) and the line
bundle L(λ, µ, ν) is ample on G/B × G/Pµ × G/Pν the surjectivity of the
restriction map follows from the Appendix (see Corollary A.2.2). 2

Remark 5.1.4 Consider the short exact sequence

0 → K(Σ1,Σ2, λ, µ, ν) → H0(Σ1,L(λ, µ, ν)) → H0(Σ2,L(λ, µ, ν)) → 0.
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As the kernel K(Σ1,Σ2, λ, µ, ν) has good filtration, it is G-acyclic. Thus
H1(G,K(Σ1,Σ2, λ, µ, ν)) = 0. Therefore, by writing out the long exact
sequence of G-cohomologies corresponding to the above short exact se-
quence, we get the surjectivity of the restriction map on the G-invariants
H0(G,Σ1,L(λ, µ, ν)) → H0(G,Σ2,L(λ, µ, ν)).

The double Schubert varieties arise naturally in the context of filtrations
of B-modules in the following manner:

Let λ, µ, ν be characters. Let M = λ⊗ P (µ) ⊗ P (ν). As a vector space
M is isomorphic with P (µ) ⊗ P (ν) but the B action on M is shifted by the
character λ.

Let µ1 = w−1
µ µ and ν1 = w−1

ν ν be the anti-dominant characters in the
respective Weyl group orbits. We put P = Pµ1

and Q = Pν1 .
Using the double Schubert varieties we get the following description of

indGB(M).
Let S be the product Xwµ ×Xwν in G/Pµ×G/Pν . Consider the restricted

fibration f = π ◦ i on G/B as given below.

G×B S
i
→֒ G×B (G/Pµ ×G/Pν)

ցf
yπ

G/B

If L(M) denotes the vector bundle on G/B corresponding to the B-
representation M , we have L(M) = f∗i

∗L(λ, µ1, ν1). Therefore we have

indGB(M) = H0(G/B, f∗i
∗L(λ, µ1, ν1))

= H0(G×B S,L(λ, µ1, ν1))

If we assume λ regular anti-dominant, the line bundle L(λ, µ1, ν1) is ample on
G/B×G/P×G/Q. Further, G×BS is compatibly split in G/B×G/P×G/Q.
Therefore, we have

Rj indGB(M) = Hj(G/B,L(M))

= Hj(G×B S,L(λ, µ1, ν1)) by Remark A.2.8,

= 0 for j > 0 by Corollary A.2.2.

Thus we have the following lemma.
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Lemma 5.1.5 Let λ ∈ X(T )− be regular. Let S be a union of products
of Schubert varieties in G/Pµ × G/Pν with µ, ν ∈ X(T )−. Then, M =
λ⊗H0(S,L(µ) × L(ν)) is indGB-acyclic.

Proof: The above reasoning also works for such a union. 2

5.2 Joseph’s Conjecture

In this section we will prove Joseph’s conjecture. Moreover, for a regular,
anti-dominant character λ and any two characters µ and ν we will prove the
B-acyclicity of λ⊗Q(µ) ⊗Q(ν).

Lemma 5.1.5 gives us the following vanishing result.

Lemma 5.2.1 Let λ, µ, ν be anti-dominant with λ being regular. Let S, S1,
S2 be unions of products of Schubert varieties with S2 ⊂ S1. Then

(i) M = λ⊗H0(S,L(µ) × L(ν)) is B-acyclic.

(ii) M ′ = Ker{λ ⊗ H0(S1,L(µ) × L(ν)) → λ ⊗ H0(S2,L(µ) × L(ν))} is
B-acyclic.

Proof: (i) By Lemma 5.1.3 we see that indGB(M) has good filtration. Fur-
ther, by Lemma 5.1.5 M is indGB-acyclic. Therefore, we have H i(B,M) =
H i(G, indGB(M)) = 0.

(ii) We know that both λ ⊗ H0(Si,L(µ) × L(ν)) are B-acyclic. Fur-
ther, using Remark 5.1.4 and Frobenius reciprocity, we see that H0(B, λ ⊗
H0(S1,L(µ) × L(ν))) → H0(B, λ ⊗ H0(S2,L(µ) × L(ν))) is surjective.
Now we write the long exact sequence of B-cohomology associated with
0 → M ′ → λ ⊗ H0(S1,L(µ) × L(ν)) → λ ⊗ H0(S2,L(µ) × L(ν)) → 0 to
get the result. 2

Corollary 5.2.2 Let λ ∈ X(T )− be regular. Let µ, ν ∈ X(T ) and let Q(µ),
Q(ν) denote the relative Schubert modules with socle µ and ν respectively.
Then, λ⊗Q(µ) ⊗Q(ν) is B-acyclic.
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Proof: Recall that the relative Schubert modules Q(µ) are defined as ker-
nels of the restriction map of P (µ) onto the sections over the boundary
of the Schubert variety defining P (µ). We take S1 = Xwµ × Xwν and
S2 = (∂Xwµ × Xwν ) ∪ (Xwµ × ∂Xwν ). Then the kernel of the restriction
map λ⊗H0(S1,L(µ1) × L(ν1)) → λ⊗H0(S2,L(µ1) × L(ν1)) is canonically
isomorphic with λ⊗Q(µ)⊗Q(ν) where µ1 and ν1 are the anti-dominant char-
acters in the Weyl group orbit of µ and ν respectively. Now the Lemma 5.2.1
gives the result. 2

Corollary 5.2.3 Let λ ∈ X(T )− be regular and let µ be any character. Then
λ⊗Q(µ) has excellent filtration.

Proof: Apply the cohomological criterion for excellent filtration (Theo-
rem 3.2.7). 2

In order to prove Joseph’s conjecture we now need the following lemma.

Lemma 5.2.4 Let ρ be the character corresponding to the half sum of posi-
tive roots. Then, for λ ∈ X(T )+ we have kρ ⊗ P (λ) = Q(λ+ ρ).

Proof: We have a natural multiplication map from H0(G/B,L(w0λ) ⊗

H0(G/B,L(−ρ)) toH0(G/B,L(w0λ)⊗L(−ρ)). Let kρ be the weight space of
weight ρ of H0(G/B,L(−ρ)). We restrict the multiplication map to the sub-
space H0(G/B,L(w0λ))⊗kρ. This gives us a map m : P (λ)⊗kρ → P (λ+ρ).
This map is injective as it is injective on the one-dimensional socle of its do-
main. (Use the geometric description of extremal weights.)

We claim that m defines a natural isomorphism between P (λ) ⊗ kρ and
Q(λ+ ρ) ⊂ P (λ+ ρ).

To see this we first fix a non-zero element f ∈ kρ ⊂ H0(G/B,L(−ρ)).
Then f vanishes on lower dimensional Schubert varieties Xw. Thus the image
of the multiplication map m is contained in Q(λ+ ρ).

To see the surjectivity, view 1/f as a rational section of L(ρ). Notice
that 1/f has pole of order 1 along the codimension one Schubert varieties
(5.2.5). Now if L is a line bundle and s any section of L, we get a (possibly
rational) section s/f of the line bundle L ⊗ L(ρ). Thus, for a section s
of the line bundle L(w0λ − ρ), the element s/f gives us a rational section
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of L(w0λ). However, if we restrict this map to the subspace Q(λ + ρ) of
P (λ+ρ) = H0(G/B,L(w0λ−ρ)) we get an algebraic map as all the elements
of Q(λ+ρ) vanish on the codimension one Schubert varieties. This map from
Q(λ + ρ) to P (λ) is injective (by its injectivity on the socle). Therefore the
dimensions satisfy

dimk P (λ) ⊗ kρ = dimk P (λ) ≥ dimkQ(λ+ ρ).

Therefore the multiplication map defined above is also surjective. 2

The reader is advised to do the following illuminating exercise to see the
“geometry” involved in the apparently representation theoretic lemma above.
The exact formula for computing the degree of a line bundle L(λ) on G/B
restricted to any line of the type Ps/B can be found in [3].

Exercise 5.2.5 (cf. [14]) Let f ∈ kρ ⊂ H0(G/B,L(−ρ)) be as in the proof
of 5.2.4. Let s be a simple reflection with corresponding minimal parabolic
Ps. Show

(i) The restriction of L(−ρ) to the line Ps/B has degree 1, and the same
is true for the restriction to any left translate of Ps/B in G/B.

(ii) The line w0Ps/B intersects the zero set of f only in the point w0sB/B.

(iii) f vanishes to order one along the codimension one Schubert variety
Xw0s.

We now prove Joseph’s conjecture. The proof given here differs a little
from the one by Mathieu.

Proposition 5.2.6 (Joseph’s Conjecture) Let λ ∈ X(T )− and µ ∈
X(T )+. Then λ⊗ P (µ) has excellent filtration.

Proof: We know that for λ ∈ X(T )− which is also regular, λ ⊗ Q(µ) has
excellent filtration. Now,

λ⊗ P (µ) = (λ− ρ) ⊗ ρ⊗ P (µ)

= (λ− ρ) ⊗Q(µ+ ρ).

Further, λ−ρ ∈ X(T )− is regular. (In fact ν−ρ is regular anti-dominant
if and only if ν is anti-dominant.) Therefore by Corollary 5.2.3 we get the
result. 2
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Corollary 5.2.7 (Joseph) Let λ ∈ X(T ) and µ ∈ X(T )+. Then, P (λ) ⊗
P (µ) has excellent filtration.

Proof: Let w ∈ W be such that w−1λ = ν ∈ X(T )−. We have P (ν) = kν .
Therefore, P (ν) ⊗ P (µ) has excellent filtration. Since µ is dominant, P (µ)
is a G-module and therefore, by the tensor identity, indPs

B (P (τ) ⊗ P (µ)) =(
indPs

B P (τ)
)
⊗P (µ) for any simple reflection s and weight τ . Recall that we

haveHs◦Hz = Hsz for Joseph functors when the length of sz is more than the
length of z. Therefore we see that Hw(P (ν) ⊗ P (µ)) = P (wν) ⊗ P (ν). Now
recall that Proposition 3.2.11 states that Hw sends a module with excellent
filtration to a module with excellent filtration. Therefore the result. 2

For an application of Joseph’s conjecture see [21; Theorem 5.5], which
gives the existence of a “good basis” in a module with good filtration. One
easily checks that although the proof refers to Polo’s conjecture (cf. next
chapter), it suffices to apply Joseph’s conjecture.

5.3 An Example

In this section we give an example showing that the tensor product of modules
with excellent filtration need not have have excellent filtration.

Example 5.3.1 We take G = SL(3, k), with B the subgroup of upper tri-
angular matrices, T the subgroup of diagonal matrices. Inside the G-module
M3 of 3-by-3 matrices, upon which G acts by conjugation, we consider the
five-dimensional B-submodule E generated, as a B-module, by the matrices

C =




1 0 0
0 0 0
0 0 0


 , D =




0 0 0
0 1 0
0 0 0


 .

It has a four-dimensional submodule S generated by D, and the extension

0 −→ S −→ E −→ k −→ 0

does not split. So H1(B, S) 6= 0. Now one checks that S = P (−s2ω1) ⊗
P (−s1ω2) ⊗ Q(ρ), where ω1, ω2 denote the fundamental weights, cf. [11].
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(Recall Q(ρ) = kρ.) So S gives an example of a tensor product of the form
P (λ)⊗P (µ)⊗Q(ν) which is not B-acyclic. From the cohomological criteria
it then follows that P (λ) ⊗ P (µ) does not have excellent filtration and that
P (µ) ⊗Q(ν) does not have relative Schubert filtration.

Exercise 5.3.2 (Polo) Compute the characters of the P (ξ) for each weight
ξ of P (−s2ω1) ⊗ P (−s1ω2) and show that P (−s2ω1) ⊗ P (−s1ω2) does not
even have the character of any module with excellent filtration. Similarly
show that P (−s1ω2)⊗Q(ρ) does not even have the character of any module
with relative Schubert filtration.



Chapter 6

Polo’s Conjecture

Let ζ be a character. We denote by ζ1 (by ζ0) the anti-dominant (the domi-
nant) character in the Weyl group orbit of ζ. The Joseph Conjecture states
that for λ ∈ X(T )− and µ ∈ X(T ), the module λ ⊗ P (µ0) has excellent
filtration. Here we study a generalization of that conjecture, first stated by
P. Polo. It says that for λ ∈ X(T )− and µ arbitrary, the module λ ⊗ P (µ)
has excellent filtration. Equivalently, we need to prove that λ⊗P (µ)⊗Q(ν)
is B-acyclic.

6.1 Reformulating the Problem Repeatedly

We first look at the case when λ is regular anti-dominant. Consider the
following exact sequence:

0 −→ λ⊗K −→ λ⊗ P (µ0) −→ λ⊗ P (µ) −→ 0 (6.1.1)

By Joseph’s conjecture λ⊗P (µ0) has excellent filtration. The module K
has a filtration by relative Schubert modules and for λ regular anti-dominant
we already know that λ ⊗ Q(ν) has excellent filtration for any character ν.
Therefore λ⊗K has excellent filtration. Now, using the long exact sequence
of B-cohomology associated to 6.1.1, we see that the module λ ⊗ P (µ) also
satisfies the cohomological criterion for excellent filtration.

However this method fails when λ is not regular as it is no longer true that
λ ⊗ Q(ν) has excellent filtration. Indeed, when λ is a trivial character, we
see that Q(ν) cannot have an excellent filtration unless ν is anti-dominant.

56
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To tackle the general case we again resort to the same trick. We first
induce the B-modules to G-modules and use the canonical splitting to prove
results. But first, we need the following lemma.

Lemma 6.1.2 Let λ, µ, ν ∈ X(T )− and w ∈ W . Let S be a union of Schu-
bert varieties in G/Pν. Assume that we can prove (for all such λ, µ, ν, w,
S) that the natural restriction map

H0(B, λ⊗H0(Xw,L(µ))⊗P (ν0)) → H0(B, λ⊗H0(Xw,L(µ))⊗H0(S,L(ν)))
(6.1.3)

is surjective. Then Polo’s conjecture is true.

Proof: Let K = ker(H0(G/Pν ,L(ν))
res
→ H0(S,L(ν))). Let M = λ⊗K. We

know by Joseph’s conjecture that λ ⊗ P (ν0) has excellent filtration. There-
fore, H1(B, λ ⊗ P (ν0) ⊗ Q(τ)) = 0 for all τ . However, H0(Xw,L(µ)) has
a filtration by relative Schubert modules Q(τ). Hence, H1(B, λ ⊗ P (ν0) ⊗
H0(Xw,L(µ))) = 0. Therefore, for µ ∈ X(T )− and w ∈ W , the surjectivity
in 6.1.3 gives H1(B,M ⊗H0(Xw,L(µ))) = 0.

Thus H1(B,M⊗module with excellent filtration) = 0. Therefore, M has
filtration by relative Schubert modules by the cohomological criterion for
relative Schubert filtration (cf. Exercise 3.3.3).

This in turn means that M ⊗ P (τ) is B-acyclic for any τ ∈ X(T ).

For any zν ∈ X(T ), we have the following diagram:

0 → K1 −→ H0(G/Pν ,L(ν)) −→ H0(Xz,L(ν)) → 0

↓ ↓ ↓ res

0 → K2 −→ H0(G/Pν ,L(ν)) −→ H0(∂Xz,L(ν)) → 0

Further, K1 and K2 satisfy the following exact sequence (cf. Exer-
cise A.2.9):

0 −→ K1 −→ K2 −→ Q(zν) −→ 0.

Now we may take M = λ⊗Ki in the above, so λ⊗Ki⊗P (τ) is B-acyclic
for any τ ∈ X(T ) (i = 1, 2). But then the quotient λ ⊗ Q(zν) ⊗ P (τ) is
B acyclic too, for all λ, ν ∈ X(T )−, z ∈ W , τ ∈ X(T ). This proves the
lemma. 2
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Remark 6.1.4 Note that there is also a slightly different argument to prove
the B-acyclicity of M ⊗ P (µ) in the above: If one has that H1(B,M ⊗

module with excellent filtration) = 0, then let I0 → I1 · · · be an injective
resolution of P (µ). Consider the exact sequences

0 −→ ker(In −→ In+1) −→ In −→ im(In) −→ 0

of modules with excellent filtration. Tensoring with M and taking B-
invariants gives many short exact sequences and thus H i(B,M ⊗ P (µ)) in
fact vanishes for i > 0. The advantage of this argument is that it does not
need the cohomological criterion for relative Schubert filtrations.

To prove surjectivity of 6.1.3, we first induce both modules up to G and
there prove that the map on G-invariants is surjective. The Frobenius reci-
procity then gives us the surjectivity on B-invariants.

Recall that indGB
(
λ⊗H0(Xw,L(µ)) ⊗H0(S,L(ν))

)
= H0(G ×B (Xw ×

S),L(λ, µ, ν)). Now the line bundle L(λ, µ, ν) is not ample on G×B (G/Pµ×
G/Pν), unless λ is regular. Therefore, for all we know now, the restriction
map H0(G ×B (Xw × G/Pν),L(λ, µ, ν)) → H0(G ×B (Xw × S),L(λ, µ, ν))
need not be surjective, even though G×B (Xw×S) is compatibly split in the
product G/B ×G/Pµ ×G/Pν . However, the line bundle L(λ, µ, ν) is ample
on G/Pλ ×G/Pµ ×G/Pν . Therefore, we consider the following diagram:

Z = G×B (Xw × S) →֒ G×B (G/Pµ ×G/Pν)

↓π

G/Pλ ×G/Pµ ×G/Pν

The map π is defined by (g, x, y) 7→ (g, gx, gy), where the “bar” denotes
the image of an element of G in the corresponding quotient.

Lemma 6.1.5 If π∗OZ = Oπ(Z), then

H0
(
G, indGB

(
λ⊗H0(Xw,L(µ)) ⊗ P (ν0)

))

↓ res

H0
(
G, indGB

(
λ⊗H0(Xw,L(µ)) ⊗H0(S,L(ν))

))

is surjective.
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Proof: We have indGB
(
λ⊗H0(Xw,L(µ)) ⊗ P (ν0)

)
= H0(G ×B (Xw ×

G/Pν),L(λ, µ, ν)) and indGB
(
λ⊗H0(Xw,L(µ)) ⊗H0(S,L(ν))

)
= H0(G ×B

(Xw × S),L(λ, µ, ν)). Consider the map of pairs

(G×B (G/Pµ ×G/Pν), Z)
π

−→ (G/Pλ ×G/Pµ ×G/Pν , π(Z))

If π|Z has the direct image property π∗OZ = Oπ(Z), we have

1. π∗(L(λ, µ, ν)|Z) = L(λ, µ, ν)|π(Z) and therefore, H0(Z,L(λ, µ, ν)) =
H0(π(Z),L(λ, µ, ν)).

2. Further, the canonical splitting on the domain will give us a canonical
splitting on G/Pλ ×G/Pµ ×G/Pν , which compatibly splits π(Z).

Now, L(λ, µ, ν) = L(λ)×L(µ)×L(ν) is ample on G/Pλ×G/Pµ×G/Pν .
Therefore the restriction map H0(G/Pλ × G/Pµ × G/Pν ,L(λ, µ, ν)) →

H0(π(Z),L(λ, µ, ν)) will be surjective. Further, its kernel will have good
filtration. This allows us to apply the Remark 5.1.4 to see that the restric-
tion map on G-invariants is surjective. From this the claim follows as this
surjective map factors throughH0

(
G, indGB

(
λ⊗H0(Xw,L(µ)) ⊗ P (ν0)

) )
. 2

Therefore to prove Polo’s conjecture, we only have to prove that π|Z has
the indicated direct image property. Now we remark again that the map π is
defined on X = G/B×G/Pµ×G/Pν and we have π∗OX = OG/Pλ×G/Pµ×G/Pν .
Therefore we can “push forward” the canonical splitting of X on to its image.
This “pushed splitting” will split the image π(Z) of Z.

Consider now the following proposition. The proof of this proposition will
be given in the Appendix (A.5.2). We have to explain first what separable
means for f : X → Y . The relevant notion of separability is somewhat fancy,
as our varieties are not irreducible. What it means is that there is a dense
subset of y in Y for which there is an x ∈ f−1(y) so that the tangent map at
x is surjective. It is thus some kind of generic smoothness.

Proposition 6.1.6 Let f : X → Y be a surjective, separable, proper mor-
phism between two varieties, with connected fibres. We assume that Y is
Frobenius split. Then f∗OX = OY . 2
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Let us grant separability for the time being. Thus in order to prove
Polo’s conjecture it only remains to prove that the fibres of the map π : Z →

G/Pλ × G/Pµ × G/Pν are connected. This topological problem will also be
reformulated repeatedly.

The reader is asked to be patient about this roundabout proof. The fact
is that, as he/she will come to know in Remark 6.1.10, the statement we
want to prove is very similar to some false statements. We have to sneak
around all these false statements.

First we note a result, which tells us that having connected fibres and
having the direct image property are really the same problem, so that we
may switch back and forth between the two at our convenience. Indeed
we will later turn around and go back all the way to a problem similar to
surjectivity of 6.1.3.

Lemma 6.1.7 [7; Corollary 11.3] Let f : X → Y be a proper morphism
between two varieties and assume f∗OX = OY . Then all fibres of f are
connected. 2

Next note that G ×B (G/Pµ × G/Pν)
φ
≈ G ×Pµ G ×B G/Pν . The map φ

is defined on the product by φ(g, x, y) = (gx, x−1, y).

The image of Z under φ is G×Pµ (Pµw−1B ×B S).

We define π̃ : G ×Pµ (Pµw−1B ×B S) → G/Pµ × G/Pλ × G/Pν by
π̃((g, x, y)) = (g, gx, gxy). Up to the isomorphism φ, this π̃ is just π.

So our aim is to prove that fibres of π̃ are connected. Using the G-
equivariance of π̃ we see that we may restrict π̃ to the subspace Z ′ = (Pµ)×

Pµ

(Pµw−1B ×B S) = (e) × (Pµw−1B ×B S).

All we need is that the fibres of that restricted map are connected.

The image of Z ′ is contained in G/Pλ×G/Pν . Note that as Pµw−1B is an
irreducible two-sided B-invariant closed subvariety of G, we have by Bruhat
decomposition some y ∈ W such that Pµw−1B = ByB.

Summing up, we have to show that the map ByB×B S → G/Pλ×G/Pν
has connected fibres.

A fibre of the map ByB ×B S → G/Pλ ×G/Pν is simply an intersection
of a fibre of ByB×B S → G/Pλ with a fibre of ByB×B S → G/Pν . We first
concentrate on the projection towards G/Pλ.
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Proposition 6.1.8 Let P be a parabolic, Xw ⊂ G/B a Schubert variety.
The non-empty fibres of the projection Xw → G/P are left translates of
Schubert varieties.

Proof: Using the B-equivariance we may restrict attention to the the fibre of
zP/P , where z is a minimal representative in the Weyl group W of the coset
zW (P ), if W (P ) denotes the Weyl group of P . Recall from [10; Proposition
1.10], cf. [1; Ch. IV, §1 Exercice 3] that l(zu) = l(z) + l(u) if u ∈ W (P ),
so that BzBuB = BzuB. The fibre is thus a union of sets zBuB/B, where
u ∈ W (P ) is such that zu ≤ w. Recall also (same source) that w decomposes
uniquely as z′u′ where z′ is a minimal representative of the coset z′W (P )
and u′ ∈ W (P ). Then a lemma of Deodhar (read w ∈ WQ where it says
w ∈ W/WQ, in [16; Lemma 4.4]) says there is a unique maximal u. Then the
fibre is zBuB/B for that maximal u. 2

So what the proposition tells us is that we should prove that the fibres of
gBuB×BS → G/Pν are connected for g ∈ G, u ∈ W . And byG-equivariance
we may forget g.

Thus we have to prove

Proposition 6.1.9 The fibres of the multiplication map m : BuB ×B S →

G/Pν are connected.

Remark 6.1.10 We can now point out a subtlety, which shows that one
cannot get by just with generalities about Frobenius splittings. Namely, the
proposition fails if BuB is replaced by a union of BvB’s (v ∈ W ). This
is related to the fact that a tensor product of two modules with excellent
filtration need not have an excellent filtration (see Example 5.3.1.)

6.2 The Proof of Polo’s Conjecture

Clearly Proposition 6.1.9 presents a smaller problem than the one suggested
by Lemma 6.1.5. In this section we prove the Proposition 6.1.9 and thus also:

Theorem 6.2.1 (Mathieu; Polo’s Conjecture) Let λ ∈ X(T )− and let
µ ∈ X(T ). Then λ⊗ P (µ) has excellent filtration.
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Apart from Proposition 6.1.9 one must also must worry about separability.
But fortunately this does not require a thorough understanding of fibres. One
only needs to show that the source of our map is a finite union of pieces on
which the map to “image piece” is separable. The pieces to take are the
BuB ×B (component of S) of Proposition 6.1.9, basically. One easily finds
subvarieties that actually map birationally to the image of the piece. We
leave it at this sketch for now and return to the proof of Proposition 6.1.9.

We first note that if u = s1 · · · sn is a reduced expression of u ∈ W , then
the multiplication map m : BuB×BS → G/Pν can be lifted to the projection

Ps1 ×
B · · ·Psn ×B S −→ G/Pν .

The fibres of this projection map surjectively onto the fibres of m. Further,
the study may be broken up into little pieces like this:

Ps1 ×
B · · ·Psn ×B S −→ Ps1 ×

B · · ·Psn−1
×B PsnS −→ G/Pν .

So the trick is to show (cf. Lemma 6.1.7) that ψ : Ps ×
B S −→ PsS does

have the direct image property.

Say C is the cokernel of the map OPsS → ψ∗OPs×BS. We need to show
that H0(PsS,C ⊗ L(nν)) vanishes for large n. (That will show C = 0 by
ampleness, cf. [11; II 14.6 (4)].)

Consider the following diagram

Ps ×
B S

ψ
→ PsS ⊂ G/Pν

↓π

Ps/B

We have

H0(Ps ×
B S, ψ∗L(nν)) = H0(Ps/B, π∗ψ

∗L(nν))

= Hs(H
0(S,L(nν))).

Therefore, we have a natural injective map H0(PsS,L(nν)) → H0(Ps×
B

S, ψ∗L(nν)) = Hs(H
0(S,L(nν))). By Exercise A.2.9 the proof of Proposi-

tion 6.1.9 will be finished once we have the following lemma.
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Lemma 6.2.2 For any B-invariant closed subset S of G/B, any simple re-
flection s and λ ∈ X(T )−, the natural map H0(PsS,Lλ) → Hs(H

0(S,Lλ)) is
an isomorphism.

Proof: We will prove the lemma by induction on “size” of S. Note that if S
is irreducible, i.e. when S is a Schubert variety Xw, the image PsS is either
Xsw (when sw > w) or Xw. In either case the lemma is true. Therefore
we assume that the lemma is true if we substitute for S any of its proper
B-invariant closed subvarieties.

Now we write S as Xw ∪ S ′, and we may replace S ′ by S ′ ∪ ∂Xw to
make sure we understand S ′ ∩ Xw well. Indeed S ′ ∩ Xw is now ∂Xw (even
scheme theoretically by Ramanathan). And of course we mean that Xw, S ′

are really smaller than S. By the Mayer–Vietoris Lemma 2.2.11 we have an
exact sequence 0 → H0(S,L) → H0(Xw,L) ⊕ H0(S ′,L) → H0(∂Xw,L) →

0. This gives an exact sequence 0 → Hs(H
0(S,L)) → Hs(H

0(Xw,L)) ⊕
Hs(H

0(S ′,L)) → Hs(H
0(∂Xw)).

Thus what remains to be checked is that PsS
′∩PsXw = Ps∂Xw, to make

the computation go. If sw < w, then Ps∂Xw = Xw = PsXw, and Xw ⊂ PsS
′.

If sw > w, then PsXw = Xsw and we need that for z ∈ W , z 6= w, z 6= sw,
sz ≤ sw implies z < w. (The z to be taken are such that BzB ⊂ S ′.) That
is indeed so, and a reference is [10; 5.9]. (The reader can take this as an
exercise!) 2

We still have to explain how to handle the details of the separability
issue. We do this in a series of exercises. The reader is assumed to be
familiar with standard coordinates in Bruhat cells, as explained for instance
in [34; Chapter 10].

Exercise 6.2.3 Let g : Z → X, f : X → Y be maps between varieties, with
g surjective, so that fg is separable. Then f is separable.

Exercise 6.2.4 More generally, let gi : Zi → X, i = 1, . . . n, f : X → Y be
maps between varieties, with

⋃
i gi(Zi) = X, so that each fgi is separable to

its image. Then f is separable to its image.
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Exercise 6.2.5 Let f : X → Y be a separable Pµ-equivariant map. Then it
induces a separable map G×Pµ X → G×Pµ Y .
(Hint: Use that the fibrations G×Pµ X → G/Pµ and G×Pµ Y → G/Pµ are
locally trivial.)

Exercise 6.2.6 Let z, u be as in the proof of Proposition 6.1.8, with P = Pλ
and let C be a component of S. Let Uz be the subgroup of U generated by
the root groups Uα with Uαz∩P = (e). Then a 7→ az maps Uz isomorphically
to its image in G/P . Furthermore the rule (a, b, c) 7→ (a, azbc) maps Uz ×
BuB × C separably to its image in Uz ×G/Pν .

Hint: Replace BuB and C by suitable subvarieties to make to make
the map (b, c) 7→ bc birational towards BuBC and use the automorphism
(a, b) 7→ (a, ab) of Uz ×G/Pν .

Exercise 6.2.7 Now check that the map needed in the proof of Polo’s con-
jecture is indeed separable.

6.3 Variations and Questions

We start with an analogue of Donkin’s restriction conjecture. Let P be a
parabolic subgroup corresponding with a subset I of the simple roots, so that
P is generated by B and the U−α with α ∈ I. Let L be the Levi factor of P
with Borel subgroup B ∩ L generated by T and the Uα with α ∈ I.

Theorem 6.3.1 If M is a B-module with excellent filtration, then resBB∩LM

is a B ∩ L-module with excellent filtration.

Remark 6.3.2 Note that one may just as well restrict to B ∩ L′, where L′

is the commutator subgroup of L: Any B∩L-module breaks up into a direct
sum of weight spaces for the action of the center of L. These weight spaces
are B∩L′-modules and they have excellent filtration as B∩L′-modules if and
only if they have one as B ∩ L-modules. If you wish this is so by definition.

Proof of theorem: We may assume M is finite dimensional. Choose an
anti-dominant weight δ whose stabilizer in W is the Weyl group W (L) of
L. Thus δ lies in the reflecting hyperplanes of the simple reflections corre-
sponding with the elements of I, but not in the other reflecting hyperplanes
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(see [9; 1.12]). Let C be the closure of the anti-dominant chamber. Then δ
lies in the interior of

⋃
w∈W (L)wC. As this union is a cone, it follows that

for n sufficiently large µ + nδ is in the cone for every weight µ of M . We
proceed with such n and study M ⊗ knδ, which has excellent filtration by
Polo’s conjecture. Now for a B ∩ L-module having an excellent filtration
it does not matter whether one twists by δ: all that changes is the action
of the center of L. So we may further assume that all weights of M lie in⋃
w∈W (L)wC. In other words, in the excellent filtration of M all the P (λ)

that occur have their λ in the W (L)-orbit of an element λ1 of X(T )−. Write
P (λ) = Hs1Hs2 · · ·Hsr(λ1) with the si simple reflections that are in W (L).
Noting that Ps/B = Ps ∩L/B ∩L, we get resBB∩L P (λ) = HL

s1
HL
s2
· · ·HL

sr
(λ1),

where HL
si

is the analogue of Hsi
in the context of L: HL

si
= indPs∩L

B∩L . So the
restriction property holds for all relevant P (λ). 2

Exercise 6.3.3 State and prove a similar result for relative Schubert filtra-
tions.

Polo has introduced another notion, viz. that of having a Schubert filtra-
tion. We first give the definition, then relate it to other concepts to show that
the analogue of Polo’s conjecture holds for Schubert filtrations too. (This was
proved by Polo under some restrictions.)

Definition 6.3.4 A finite dimensional B-module M has a Schubert filtration
if and only if there exists a filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = M by B-
modules such that Fi/Fi−1 = H0(Si,L(λi)) for some λi ∈ X(T )−. Here the
Si are unions of Schubert varieties and r ≥ 0.

In [27] Polo proves the following cohomological criterion for having a Schu-
bert filtration. If λ ∈ X(T )−, y ≤ w in W , put K(w, y, λ) = kerP (wλ) →

P (yλ).

Theorem 6.3.5 (Polo) Let M be a finite dimensional B-module. Then M
has a Schubert filtration if and only for all λ ∈ X(T )− and y ≤ w in W the
module M ⊗K(w, y, λ) is B-acyclic. 2

From this it follows that if

0 −→M ′ −→M −→M ′′ −→ 0
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is exact, and M ′, M have Schubert filtration, then so does M ′′.
Clearly, a module with Schubert filtration also has a filtration by relative

Schubert modules. Also, if s is a simple reflection and M is a module with
Schubert filtration, then M is acyclic for Hs and Hs(M) has Schubert filtra-
tion. This follows by imitating the proof of Lemma 3.2.11 with the help of
Lemma 6.2.2. From Lemma 6.2.2 one then concludes that in fact a relative
Schubert module M is already acyclic for Hs. (Another way to see this is
through the formula H i

s(M) = H i(B,Hs(k[B])⊗M), see [11; I 4.10]. As k[B]
is injective, Hs(k[B]) has excellent filtration and Hs(k[B])⊗M is B-acyclic.)
This will be used in the proof of

Proposition 6.3.6 For a B-module M the following are equivalent.

(i) M has a Schubert filtration.

(ii) The evaluation map indGB(M) → M is surjective, its kernel has a
relative Schubert filtration and indGB(M) has a good filtration.

(iii) There is a module with good filtration N and a surjective B-module
map N →M whose kernel has relative Schubert filtration.

Proof: (Sketchy)

(i) ⇒ (ii). If the Schubert filtration of M has just one layer, (ii) follows
easily. The general case then follows using acyclicity for induction.

(ii) ⇒ (iii). Obvious.

(iii) ⇒ (i). Let K be the kernel of N → M . We must show that M ⊗

K(w, y, λ) is B-acyclic. As M has relative Schubert filtration, the problem is
to show thatH0(B,M⊗P (wλ)) → H0(B,M⊗P (yλ)) is surjective. It suffices
to show that H0(B,N ⊗ P (wλ)) → H0(B,M ⊗ P (yλ)) is surjective. Now
H0(B,N⊗P (wλ)) = H0(G, indGB(N⊗P (wλ))) = H0(G, indGB(N⊗P (yλ))) =
H0(B,N ⊗ P (yλ)). But K ⊗ P (yλ)) is B-acyclic. 2

Corollary 6.3.7 Let λ be a dominant or an anti-dominant weight and let
M have Schubert filtration. Then P (λ) ⊗M has Schubert filtration.

Proof: Write M as a quotient of a module with good filtration by one with
relative Schubert filtration and use that the analogue of the corollary holds
for those concepts. 2
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Remark 6.3.8 Mathieu’s proof of this corollary (for anti-dominant λ) was
similar to his proof of Polo’s conjecture. It did not rely on Polo’s conjecture,
like ours does.

We now list some open questions which are related to those answered in
these notes.

QUESTION 1 We know that excellent tensor excellent need not be ex-
cellent, (see Example 5.3.1). No counterexamples are known to the following
question: Is excellent tensor excellent relative Schubert? That is, is the
tensor product of three modules with excellent filtration B-acyclic?

QUESTION 2 Define that M preserves excellence if M ⊗ excellent =
excellent. Using the cohomological criteria one sees this is equivalent to
“preserving the existence of a relative Schubert filtration”. (It is equivalent
to M⊗P (λ)⊗Q(µ) being B-acyclic for all λ, µ.) In particular, it implies that
M⊗Q(ρ) = M⊗kρ has relative Schubert filtration. Mathieu conjectures the
converse: M preserves excellence if M ⊗ kρ has relative Schubert filtration.

Remark 6.3.9 There are many related questions one may ask. We do not
know for what tensor products one should expect B-acyclicity. It undoubt-
edly has to do with the facets the weights of the socles lie on.



Chapter 7

Other Base Rings

In this chapter we state the earlier results in their proper generality: The
base ring need not be an algebraically closed field of characteristic p, but
may in fact be any commutative ring. In particular it may be the complex
number field C. While for G-modules there is nothing to prove in that case,
the results for B-modules are also of interest over fields of characteristic 0.

7.1 The group schemes and the Schubert va-

rieties over the integers

Recall that over an algebraically closed field k we have been considering a
connected reductive group G together with a maximal torus T , a Borel group
B and embeddings of SL(2, k) or PSL(2, k) into G (one for each simple root).
Let us assume that G is in fact semi-simple simply connected, so that we are
dealing with embeddings φi : SL(2, k) → G. Now Chevalley and Demazure
have shown that corresponding to this data (G, T,B, {φi}i∈I) over k one gets
a group (affine group scheme) GZ over Z with subgroups (closed subgroup
schemes) TZ, BZ and embeddings of SL(2)Z into GZ, such that the situation
over k may be recovered from that over Z by extension of scalars from Z to
k. One says that GZ is a Z-form of G. More generally, if S is some structure
over k, a Z-form SZ of S is an analogous structure over Z together with an
isomorphism between S and the structure Sk obtained from SZ by extension
of scalars from Z to k. The group scheme SL(2)Z is the affine algebraic group
defined over Z which represents the functor R 7→ SL(2, R). The torus TZ is

68
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diagonalisable. (This means that we are discussing “split” reductive group
schemes.) We write G(R) for GZ(R), the group of points rational over the
ring R of the group scheme GZ. For each simple root we get a homomorphism
φi : SL(2,Z) → G(Z).

Remark 7.1.1 We do not just try to descend G from k to Z, but G together
with B, T and the φi. That is because G has too many automorphisms, so
that there is no canonical “descent” for it. We have “rigidified” by also
giving the rest of the data. (Assume the Z-forms TZ and SL(2)Z already
chosen.) Thanks to the rigidification we get a canonical map from G(k) to
the original G.

Remark 7.1.2 Just as one has a Z-form for G, one also has one for G/B.
In fact for (G/B)Z one simply takes GZ/BZ. It is also straightforward to get
analogues over Z of the Demazure resolutions and one may simply define the
Schubert variety (Xw)Z to be the image of (Ps1×

B · · ·×BPsm/B)Z → (G/B)Z.
Unions of Schubert varieties are defined by intersecting their ideal sheafs. It
is not obvious, but true, that these constructions do indeed yield Z-forms of
Schubert varieties and their unions respectively. In fact, if one looks in [11],
one sees that to prove that you really get Z-forms of Schubert varieties, you
should first try to understand the H0((Xw)Z,L

n) for high powers Ln of some
ample line bundle L on (G/B)Z.

7.2 Forms of the Modules

Because of the technicalities indicated in 7.1.2 it is best to avoid the Z-
forms of Schubert varieties as much as possible when looking for Z-forms
P (λ)Z, Q(λ)Z of the B-modules P (λ), Q(λ). One can then later exploit the
understanding of the P (λ)Z to get to grips with the (Xw)Z and to make
the passage to characteristic zero. (Passage to characteristic 0 uses semi-
continuity and constructibility properties, cf. [6; 9.2.6.2, 9.4.2, 12.2.4], and
generic flatness. See [11; II Chapter 14] and also [17].) Fortunately there is an
alternative, thanks to the Demazure resolution. Indeed one knows—but this
is also not obvious—that (Xw)Z is normal, and that leads to the alternative
description of H0((Xw)Z,L) as being H0((Zi)Z, ψ

∗
iL), where ψi : (Zi)Z →
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(G/B)Z is the Demazure resolution of (Xw)Z. This hopefully explains our
clumsy looking constructions below.

Definition 7.2.1 For any µ ∈ X(T ), let Zµ denote the BZ-module corre-
sponding with the character µ. As a Z-module it is free of rank 1.

Given λ ∈ X(T ) we choose simple reflections s1, . . . , sm and anti-
dominant λ1 such that λ = wλ1, where w has reduced expression s1 · · · sm.
(We also take m minimal.) Then we define

P (λ)Z = indP1

B indP1

B · · · indPm
B Zλ1

,

where we have simplified notation a bit by dropping some of the subscripts
Z. (Everything is to be done over Z.) We will see later that the notation is
justified, by showing that P (λ)Z does not depend on the choices made here.
It only depends on λ. Similarly, we define Q(λ)Z inductively:

Q(λ)Z = F1F2 · · ·FmZλ1
,

where Fi(M) := Zρ ⊗Z indPi
B (Z−siρ ⊗Z M). The reader will be asked later to

check that this is independent of the choices made.

Proposition 7.2.2 (Base change) For any algebraically closed field k of
finite characteristic, P (λ)k is the dual Joseph module of highest weight λ and
Q(λ)k is the minimal relative Schubert module of highest weight λ. In other
words, P (λ)Z and Q(λ)Z are indeed Z-forms of what the notation suggests.

Proof: A universal coefficient theorem ([11; I 4.18]) says that we have an
exact sequence

0 −→ Ri indPZ

BZ
(N) ⊗ k −→ Ri indPk

Bk
(Nk) −→ TorZ(Ri+1 indPZ

BZ
(N), k)

for any parabolic P and any flat (i.e. torsion free) Z-module N with BZ

action. So we can pass to formulas over k whenever the higher derived
functors of induction vanish. And they vanish over Z if they do over all
k. (Observe that a finitely generated Z-module M is zero if all Mk vanish.)
Thus, from what we know in finite characteristic, we may conclude that, in
the notations of 7.2.1, P (λ)k = indP1

B indP1

B · · · indPm
B kλ1

. The result for P (λ)k
thus follows from Proposition 2.2.5.
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For Q(λ) we argue similarly. So we must check over k that the higher
derived functors of induction vanish at the relevant coefficients and that
kρ ⊗ indPs

B (k−sρ ⊗Q(µ)) = Q(sµ) when s is a simple reflection with sµ > µ.
First let us consider an example. Take µ = −ρ. Then Q(−ρ) = k−ρ

and P (−sρ) is two-dimensional with weights ρ and −sρ, as the degree of
the line bundle L(−ρ) is 1 on Ps/B. So Q(−sρ) = k−sρ. In the exact
sequence 0 → Q(−sρ) → P (−sρ) → P (−ρ) → 0 we may interpret Q(−sρ)
asH0(Ps/B, I⊗L(−ρ)) where I is the ideal sheaf of the pointB/B. We claim
that I, as a B-equivariant sheaf, is just L(−sρ)[ρ]. (Notations as in 4.3.14.)
Indeed, if one substitutes that for I, one finds H0(Ps/B, I ⊗L(−ρ)) = k−sρ.
In view of the classification of B-equivariant sheafs (see Lemma A.4.1), no
other equivariant line bundle gives that answer. Of course one may also just
compute the action on I in local co-ordinates.

More generally one thus wants to see that, if sµ > µ, the evaluation map
indPs

B Q(µ) → Q(µ) is surjective and that its kernel H0(Ps/B, I ⊗ L(Q(µ)))
equals Q(sµ). (The surjectivity will yield the necessary vanishing of
H1(Ps/B, I ⊗ L(Q(µ))).) Say µ = zλ1, λ1 ∈ X(T )−, with z minimal. Now
if one has a section of Q(µ), then that is a section of P (µ) = H0(Xz,L(λ1)),
which extends by zero to ∂Xsz by the Mayer–Vietoris Lemma 2.2.11. That
section in turn extends to one of P (sµ) by Ramanathan (Proposition A.2.6),
and if one views it as a section of H0(Ps×

BXz,L(λ1)), cf. Proposition 2.2.5,
then it vanishes on H0(Ps ×

B ∂Xz,L(λ1)) by construction. This shows the
surjectivity. The kernel of the map indPs

B Q(µ) → Q(µ) consists of sections
of H0(Ps×

BXz,L(λ1)) that vanish on B×BXz ∪Ps×
B ∂Xz and that is just

the same as sections of P (sµ) that vanish on ∂Xsz. 2

It is worthwhile to make explicit what we have just shown. One may
compare it also with Proposition 2.2.15 and 2.3.11.

Lemma 7.2.3 If µ ∈ X(T ) and s is a simple reflection such that sµ > µ,
then the following sequence is exact:

0 −→ Q(sµ) −→ Hs(Q(µ))
eval
−→ Q(µ) −→ 0.

Exercise 7.2.4 Use the formula kρ ⊗ indPs
B (k−sρ ⊗Q(µ)) = Q(sµ), valid for

sµ > µ by the above, to derive a “Demazure character formula” for Q(λ),
analogous to the one for P (λ) in [11; II Proposition 14.18].
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Definition 7.2.5 Just like before in Definition 2.3.6 we say that a BZ-
module has excellent filtration if it has an exhaustive filtration whose succes-
sive filter quotients are isomorphic to direct sums of modules P (λ)Z. More
generally, if R is any commutative ring we say that a BR-module has excellent
filtration if it has an exhaustive filtration whose successive filter quotients are
isomorphic to direct sums of modules P (λ)R.

Theorem 7.2.6 Let MZ be a BZ-module, finitely generated and flat as a
Z-module. Assume that for any algebraically closed field k of finite charac-
teristic the module Mk has excellent filtration. Then so does MZ.

Proof: First observe that the integers mλ in ch(Mk) =
∑
mλ ch(P (λ)k)

do not depend on the characteristic of k because the ch(P (λ)k) are lin-
early independent and do not depend on the characteristic. (They are
given by the Demazure character formula, see [11; II Proposition 14.18].
Note that ch(P (λ)k) = eλ plus terms with weights preceding λ in length–
height order.) Fix λ minimal in length–height order with mλ 6= 0. Then
dimk(HomBk

(P (λ)k,Mk)) = mλ is independent of the characteristic, so that
we expect the injective map HomBZ

(P (λ)Z,MZ)) ⊗ k → HomBk
(P (λ)k,Mk)

to be an isomorphism. To see this is indeed so, recall the corresponding
universal coefficient theorem ([11; I 4.18]) which says that we have an exact
sequence

0 −→ H i(BZ, N) ⊗ k −→ H i(Bk, Nk) −→ TorZ(H i+1(BZ, N), k)

for any any flat (i.e. torsion free) Z-module N with BZ action.
So we wish to get hold of the Z-module H i(BZ, N), with N =

HomZ(P (λ)Z,MZ). It is finitely generated by weight considerations as in
[11; II Prop. 4.10]. (The weight spaces of the U -cohomology are finitely gen-
erated.) Now H i(Bk,HomZ(P (λ)Z,MZ) ⊗ k) = H i(Bk,Homk(P (λ)k,Mk)) =
ExtiBk

(P (λ)k,Mk) vanishes for i > 0 by the strong form of Polo’s theorem.
Next we consider the natural homomorphism

φ : P (λ)Z ⊗Z HomBZ
(P (λ)Z,MZ)) −→MZ.

When tensored with k one always gets an isomorphism from a direct sum
of mλ copies of P (λ)k with a submodule of Mk. By the elementary divisors
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theorem this means the cokernel of φ is torsion free and thus is a module as
in the theorem, but with smaller rank. The theorem follows by induction on
the rank. 2

Corollary 7.2.7 (Uniqueness) Let MZ be a BZ-module, finitely generated
and flat as a Z-module. Assume that for any algebraically closed field k
of finite characteristic the module Mk is the dual Joseph module of highest
weight λ. Then MZ is isomorphic with P (λ)Z.

Proof: In the excellent filtration of MZ we must find P (λ)Z, and nothing
else, because of characters. (Compare the proof of the preceding theorem.)
Note that it follows that the choices made in the construction of P (λ)Z do
not make a difference. 2

Exercise 7.2.8 (i) Show that ExtB(Q(λ), Q(µ)) vanishes when λ = µ and
also when −λ precedes −µ in length–height order.

(ii) Now formulate and prove a similar theorem and corollary with relative
Schubert filtrations.

Theorem 7.2.9 (Main Theorem; Mathieu [20]) Let R be a commuta-
tive ring, M a BR-module with excellent filtration. Let λ ∈ X(T )−. Then
λZ ⊗Z M has excellent filtration.

Proof: As the P (µ)Z are flat, it suffices to take R = Z. By the Local–Global
Theorem 7.2.6 it now follows from Polo’s Conjecture 6.2.1 as proved in the
previous chapter. 2

In the same vein we get

Theorem 7.2.10 (Restriction Theorem) Let R be a commutative ring,
M a BR-module with excellent filtration. Let LR be the Levi factor of a
parabolic, corresponding with a subset of the simple roots. Then resBR

LR∩BR
M

is an LR ∩BR-module with excellent filtration. 2
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7.3 Passage to Characteristic 0

Many properties that have been proved with the help of Frobenius splittings
easily extend to characteristic 0 by semi-continuity and constructibility prop-
erties as developed in [6]. We will illustrate this with an example. Observe
however that in characteristic 0 our theory says nothing interesting about
G-modules because of complete reducibility. On the other hand, the main
theorem certainly gives non-obvious results for B-modules. We do not even
know a direct proof that, for anti-dominant λ and dominant µ, the character
of λ⊗ P (µ) is a sum of characters of dual Joseph modules.

We know in finite characteristic that Schubert varieties are normal. As
is well known this yields:

Lemma 7.3.1 Over the complex numbers Schubert varieties are also normal.

Proof: Let w ∈ W . Let (Xw)Z be defined as the closure of BZwBZ/BZ in
GZ/BZ. In other words, the ideal sheaf of (Xw)Z consists of the functions
that pull back to zero on BZwBZ. It is clear that (Xw)Z is flat over Z. (We do
not really need that much; generic flatness would have been enough.) Now
(Xw)C is obtained by flat extension, and one sees it is the Schubert variety
we want to study. It is reduced, connected, irreducible of dimension l(w)
and it contains BwB/B. So by [6; 9.2.6.2, 12.2.4] and common sense (for
the containment), there is a neighborhood of the generic point of Spec(Z),
such that the analogous properties hold for (Xw)k whenever k is a geometric
point of V . (That is, k is algebraically closed and its image in Spec(Z) lies
in V .) But then for such a geometric point of finite characteristic, (Xw)k
cannot be anything else than a Schubert variety. So it is normal. Now the
same Theorem [6; 12.2.4] finishes the job. 2

Lemma 7.3.2 The BC-module P (λ)C is indeed H0(Xw,Lλ1
), with w ∈ W

and λ1 anti-dominant such that λ = wλ1.

Proof: As C is flat over Z, we have P (λ)C = indP1

B indP2

B · · · indPm
B Cλ1

. So
what we need is the analogue of Proposition 2.2.5. But that depended on
normality of Schubert varieties, so it goes through. 2



Appendix A

Geometry

In this appendix we give a more extensive discussion of Frobenius splitting
of varieties. Further we tie up some loose ends that have more to do with
algebraic geometry than with B-modules.

The notion of Frobenius split varieties was introduced by V. Mehta and
A. Ramanathan in 1984. We refer the reader to [32] for historical remarks.
Indeed, much of the material in this appendix is copied from this source.

A.1 Frobenius Splitting of Varieties

In this section and the next some proofs are sketchy or absent. For more
information see [32], [24], [31]. Let k be a algebraically closed field of char-
acteristic p > 0. Let A be any k-algebra. In this situation, we have the
Frobenius ring homomorphism a 7→ ap of A. For a variety X over k we
have the absolute Frobenius morphism F : X → X which is induced by
the Frobenius ring homomorphism on any of its affine open subsets. Note
that the map F is identity on the underlying topological space of X and on
functions it is the pth power map. By abuse of notation, we also use F to
denote the pth power map F : OX → F∗OX . If G is a coherent sheaf on X
then the direct image F∗G is the same as G as a sheaf of abelian groups; only
its OX-module structure ◦ is via the Frobenius morphism, i.e. f ◦ g = fpg,
for f ∈ OX and g ∈ F∗G.

Definition A.1.1 1. A variety X over k is called Frobenius split if the pth
power map F : OX → F∗OX has a splitting i.e. an OX-module morphism

75
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φ : F∗OX → OX such that the composite φF : OX → OX is identity.

2. If Y is a closed subvariety of X with the ideal sheaf I such that
φ(F∗I) = I then we say Y is compatibly split in X.

3. If Y1, . . . , Yn are closed subvarieties which are all compatibly split by
the same Frobenius splitting of X then we say that the closed subvarieties
Y1, . . . , Yn are simultaneously compatibly split in X.

Exercise A.1.2 Check that these definitions agree with those given earlier
in 4.3.

The following remark was used by Ramanathan to study the scheme
theoretic intersection of two unions of Schubert varieties (cf. proof of Mayer–
Vietoris Lemma 2.2.11).

Remark A.1.3 If X is a scheme and F : X → X has a splitting then X

is necessarily reduced. This is a consequence of the fact that the Frobenius
morphism is the pth power map on functions and if the scheme is Frobenius
split then this map is an injection.

A Frobenius splitting of a variety X is thus an element in the set of global
sections H0(X, (F∗OX)∗) of the dual of F∗OX . Let us assume now that X
is a smooth variety of dimension n. Let ωX be its canonical bundle. Using
duality theory—an alternative will be discussed in section A.3—we see that

H0(X, (F∗OX)∗) = Hn(X,F∗OX ⊗ ωX)

= Hn(X,F∗(OX ⊗ F ∗ωX))

= F∗H
n(X,ωpX)

= H0(X,ω1−p
X ).

The following proposition tells that a normal variety will be Frobenius
split if one of its desingularisation is Frobenius split.

Remark A.1.4 Conversely, there are proofs of normality based on Frobe-
nius splittings, using Proposition A.5.2. See [25].
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Proposition A.1.5 Let f : Z → X be a morphism of algebraic varieties.
Assume that f∗OZ = OX . (We will say that f has the direct image property.)
Then,

(i) If Z is Frobenius split then X is also Frobenius split.

(ii) If Y is a closed subvariety of Z which is compatibly split in Z then its
image f(Y ) is compatibly split in X.

Proof: (i) For an open subset U of X the splitting gives an element of
EndF (OZ(f−1(U))) that sends the function 1 to itself.

(ii) Let I ⊂ OZ be the ideal sheaf of Y . Then as f∗OZ = OX , the ideal
sheaf of f(Y ) is f∗I. Now it is an easy exercise to see that the “pushed”
splitting of X splits f(Y ). 2

Lemma A.1.6 If a splitting of the variety X is compatible with the subva-
rieties Y1 and Y2 then it is also compatible with Y1 ∩ Y2 and Y1 ∪ Y2.
It is compatible with a subvariety Y if and only if it is compatible with each
irreducible component of Y .

Proof: For the first part one uses that IY1∩Y2
= IY1

+ IY2
and IY1∪Y2

=
IY1

∩ IY2
. For the second one shows that a splitting σ is compatible with a

subvariety Z if and only if there is an open subset U such that U ∩Z is dense
in Z and such that σ|U is compatible with U ∩ Z. 2

Now we give a criterion for a section of ω1−p
X of a smooth variety to be a

splitting.

Proposition A.1.7 Let Z be a smooth projective variety of dimension n.
Let Z1, . . . , Zn be smooth irreducible subvarieties of codimension 1 such that
the scheme theoretic intersection Zi1 ∩ · · · ∩ Zir is smooth irreducible and
of dimension n − r for all 1 ≤ i1 < · · · < ir ≤ n. If there exists a section
s ∈ H0(Z, ω−1

X ) such that div(s), the divisor of zeroes of s, is Z1+· · ·+Zn+D
where D is an effective divisor not passing through the point P = Z1∩· · ·∩Zn
then the section σ = sp−1 of ω1−p

X gives, by duality, a splitting of Z (or a
non-zero multiple of one) which makes all the intersections Zi1 ∩ · · · ∩ Zir
compatibly split.
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Note that an element σ of EndF (X) is a splitting if and only if σ(1) = 1.
If X is projective, then in any case σ(1) is a global function, hence constant.
Thus it suffices to check its value at a single point. In the case of the propo-
sition one uses the point P and makes a computation in local coordinates.

Let G be a connected simply connected semi-simple algebraic group over
k. (Or let it be as in 2.2.8.) Let T be a maximal torus, B ⊃ T a Borel
subgroup and W = N(T )/T the Weyl group of G. Let w0 ∈ W denote the
longest element of the Weyl group.

The homogeneous space G/B is a projective variety. A closure of a B-
orbit in G/B is called a Schubert variety. The B-orbits in G/B are indexed
in a natural way by elements of W . If P ⊃ B is a parabolic subgroup of G,
then there are only finitely many B-orbits in the projective variety G/P . We
refer the reader to Kempf’s paper ([14]), for basic facts about the geometry
of Schubert varieties.

Let D denote the divisor sum of all codimension one Schubert varieties
of G/B. Let D̃ denote the sum of w0 translates of codimension one Schubert
varieties. Then the divisor D + D̃ gives the anti-canonical bundle ω−1

G/B of
G/B. It is the image of a divisor in a Demazure resolution that satisfies the
criterion A.1.7 for a splitting and by pushing forward with Lemma A.1.5 one
gets a splitting which simultaneously splits all the Schubert varieties of G/B.
Therefore we have the following theorem.

Theorem A.1.8 Let G be connected simply connected semi-simple algebraic
group. Let P be a parabolic subgroup of G. Then the projective variety G/P is
Frobenius split. Further, all the Schubert varieties of G/P are simultaneously
compatibly split.

Proof: One uses Lemma A.1.6 to deal with Schubert varieties of higher
codimension. 2

Theorem A.1.9 1. The product G/B × G/B is Frobenius split. Further
the diagonal ∆ = {(x, x)|x ∈ G/B} is compatibly split in G/B ×G/B.

2. The variety G ×B (G/B × G/B) is Frobenius split. Further all the
double Schubert varieties are simultaneously compatibly split.

This will be proved below (Propositions A.4.9 and A.4.8).
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A.2 Applications of Frobenius Splitting

In this section we prove certain vanishing theorems for the Frobenius split
variety X.

First some remarks on the direct and inverse images of sheaves under
the absolute Frobenius morphism F . Let M be a sheaf of OX-modules on
X. Recall that the direct image sheaf F∗M is the same as M as a sheaf of
abelian groups, but the OX-module structure is changed to f ◦m = fpm, for
f ∈ OX and m ∈ M. As a way of notation, we will identify M and F∗M as
sets. The pullback F ∗M is by definition M⊗OX

F∗O
′
X . Here the prime has

been put in to denote that the OX-module structure is given by the usual
multiplication on the second factor, i.e. f(m⊗ g) = fm⊗ g = m⊗ fg (and
not m ⊗ fpg). The sheaf M⊗ F∗OX with its OX-module structure coming
from M, i.e. f(m⊗ g) = fm⊗ g = m⊗ fpg, is by definition F∗F

∗M. This
gives us the projection formula: F∗F

∗M = M⊗OX
F∗OX .

If we consider a line bundle L on X, we get a natural isomorphism F ∗L ≈

Lp. Tensoring the Frobenius exact sequence

0 −→ OX −→ F∗OX −→ C −→ 0

by L and taking the cohomology, we get a natural map

H i(X,L) −→ H i(X,L ⊗ F∗OX) = H i(X,F∗F
∗L) = H i(X,F∗L

p).

Proposition A.2.1 Let X be a projective variety which is Frobenius split.
Let Y be a closed subvariety of X which is compatibly split. Let L be a line
bundle on X such that H i(X,Lm) = H i(Y,Lm) = 0 for some i and for all
large m. Then H i(X,L) = 0 = H i(Y,L).

Proof: We have a natural map H i(X,L) → H i(X,F∗L
p). Further as F is

affine (i.e. inverse image of an affine open set is affine), it commutes with the
cohomology. Thus H i(X,F∗L

p) = H i(X,Lp). Now as the sequence

0 −→ L −→ L⊗ F∗OX −→ L⊗ C −→ 0

is split exact this morphism is injective. Therefore, by iteration, we have an
injective morphism H i(X,L) → H i(X,Lp

ν
) for all ν. Thus H i(X,Lpν) = 0

implies that H i(X,L) = 0 = H i(Y,L). 2
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The above proposition together with Serre vanishing theorem gives us the
following corollary.

Corollary A.2.2 Let L be an ample line bundle on X. If X is Frobenius
split, then H i(X,L) = 0 for all i > 0. Further, if Y ⊂ X is compatibly split,
H i(Y,L) = 0 and the restriction map H0(X,L) → H0(Y,L) is surjective.

Proof: To see the surjectivity of the restriction map, we consider

H0(X,L) −→ H0(X,Lp
ν
)

↓ ↓

H0(Y,L) −→ H0(Y,Lp
ν
)

As the horizontal arrows are split, it is enough to see the surjectivity of the
global sections for a high power of L. Thus the result. 2

For Schubert varieties Ramanathan proved something better than what
one can achieve with the above. He also deals with base point free line
bundles on G/B that are not ample. So he deals with the L(λ) with λ

anti-dominant, but not regular anti-dominant. We need this stronger result.
Therefore let us now discuss a more refined notion of splitting (although we
have no other application than this stronger result of Ramanathan).

Definition A.2.3 Let L be a line bundle on X and s : OX → L a non-zero
section of L with zeroes precisely on D.

1. We say X is Frobenius D-split (or less precisely Frobenius L-split) if
there exists ψ : F∗L → OX such that the composite φ = ψF∗(s)

F∗OX
φ

−−→ OX

F∗(s)ց րψ

F∗L

is a Frobenius splitting of X.

2. If Y is a closed subvariety of X such that

(i) no irreducible component of Y is contained in the support suppD,
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(ii) φ gives a compatible splitting of Y in X,

then we say Y is compatibly D-split in X.

3. If all subvarieties Y1, . . . , Yr are compatibly D-split by the same D-
splitting of X then we say that Y1, . . . , Yr are simultaneously compatibly
D-split in X.

Remark A.2.4 1. We note that if X is Frobenius split, it is also
ω1−p
X -split, as any section which gives a splitting vanishes on a divisor whose

associated line bundle is ω1−p
X .

2. Let D′ be another Cartier divisor with 0 ≤ D′ ≤ D. Then if X is
D-split it is also D′-split.

We now see a consequence of D-splittings.

Proposition A.2.5 If X is L-split with L ample and M is a line bundle
without base points (i.e. for every x ∈ X, there exists s ∈ H0(X,M) such
that s(x) 6= 0) then H i(X,M) = 0 for i > 0. If further Y is compatibly
L-split then H i(Y,M) = 0 for i > 0 and the restriction map H0(X,M) →

H0(Y,M) is surjective.

For the proof we refer the reader to Ramanathan [32].

Let us now consider the case when X is the projective homogeneous
space G/B. In this case the divisor (p−1)(D+ D̃) gives a splitting. The line
bundle corresponding to the divisor D is ample, in fact it is the line bundle
given by the character −ρ. Also as G/B is homogeneous, any homogeneous
line bundle with a non-zero section is base point free. Therefore we get the
following proposition.

Proposition A.2.6 (Ramanathan, [31; Theorem 3]) Let L be a line
bundle on G/B such that H0(G/B,L) 6= 0. Then H i(X,L) = 0 for any
union of Schubert varieties X and for all i > 0. Further the restriction map
H i(G/B,L) → H i(X,L) is surjective for all i.

Remark A.2.7 The caseX = G/B is known as Kempf’s vanishing theorem.
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Remark A.2.8 Let S be a union of product of Schubert varieties. Consider
the fibration

G×B S
↓π

G/B

It is locally trivial in the Zariski topology (Exercise 1.2.1), so the structure
sheaf of G×B S is certainly flat over the base G/B. The proposition above
gives us that Riπ∗O = 0 for i > 0 because Riπ∗O is a vector bundle on G/B
with fibre isomorphic with H i(S,O) which vanishes as O is base point free
on G/B. (Use [7; Grauert’s corollary to Semicontinuity].) Similarly, if P , Q
are parabolics and L is an ample line bundle (or one without base points) on
G ×B (G/P × G/Q) then for any union S of products of Schubert varieties
in G/P × G/Q the higher Rif∗(L|G×BS) vanish, where f : G×B S → G/B.
So H i(G/B, f∗(L|G×BS)) = H i(G×B S,L|G×BS) by Leray ([7; III, Ex. 8.1]).

Exercise A.2.9 Let P be a parabolic and let S be a union of Schubert
varieties in G/P . Argue as in the remark above to show that if L is a line
bundle on G/P , then H i(S,L) = H i(π−1(S), π∗L), with π : G/B → G/P .
Next assume L is base point free and let S1 be a union of Schubert varieties
in G/B with π(S1) = S. Show that H0(S1, π

∗L) = H0(S,L).

A.3 Cartier Operators and Splittings

We now give another approach to the isomorphism EndF (X) ≈ ω1−p
X . It does

not make reference to duality theory, but only to the Cartier operator. With
this description it will be quite feasible to make explicit computations with
splittings in local coordinates, if the splittings are given as sections of ω1−p

X .
Let X be a variety of dimension n over k, with k algebraically closed of

characteristic p, as usual. We consider the DeRham complex

0 −→ Ω1
X −→ · · · −→ Ωn

X −→ 0

with as differential d the usual exterior differentiation. Because this dif-
ferential is not OX-linear, we twist the OX-module structure on Ωi

X by
putting f ∗ ω = fpω for a section f ∈ H0(U,OX) and a differential i-form
ω ∈ H0(U,Ωi

X). With this twisted module structure the DeRham complex is
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a complex of coherent OX-modules, and the exterior algebra Ω∗
X =

⊕n
i=0 Ωi

X

is a differential graded OX-algebra. We denote its cohomology sheafs Hi
dR.

So if U is an affine open subset, then H0(U,Hi
dR) consists of all closed

differential i-forms on U modulo the exact ones. Now consider the map
γ : f 7→ class of fp−1df from OX to H1

dR.

Lemma A.3.1 γ is a derivation and thus induces an OX-algebra homomor-
phism c : Ω∗

X → H∗
dR.

Remark A.3.2 Note that one should put the ordinary OX-module structure
on Ω∗

X here, not the twisted one that is used for H∗
dR.

Proof of Lemma A.3.1: With

Φ(X, Y ) = ((X + Y )p −Xp − Y p)/p ∈ Z[X, Y ]

we get

(f + g)p−1d(f + g) = fp−1df + gp−1dg + dΦ(f, g)

(fg)p−1d(fg) = g ∗ fp−1df + f ∗ gp−1dg,

where the first equality is a consequence of the fact that

p(X + Y )p−1d(X + Y ) = pXp−1dX + pY p−1dY + pdΦ(X, Y )

in the torsion free Z-module Ω1
Z[X,Y ]. 2

Proposition A.3.3 If X is smooth, the homomorphism c is bijective. The
inverse map C : H∗

dR → Ω∗
X is called the Cartier operator (cf. [26]).

Proof: To check that a map of coherent sheafs is an isomorphism it suffices
to check that one gets an isomorphism after passing to the completion at an
arbitrary closed point. But then we are simply dealing with the DeRham
complex for a power series ring in n variables over k and everything can be
made very explicit (exercise). 2

Remark A.3.4 Here are some formulas satisfied by the Cartier operator,
in sloppy notation. In view of these formulas the connection with Frobenius
splittings is not surprising.
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(i) C(fpτ) = fC(τ)

(ii) C(dτ) = 0

(iii) C(dlog f) = dlog f , where dlog f stands for (1/f)df if f is invertible
(or inverted).

(iv) C(ξ ∧ τ) = C(ξ) ∧ C(τ)

Here f is a function and ξ, τ are forms.

Proposition A.3.5 If X is smooth, we have a natural isomorphism

EndF (X) ≈ ω1−p
X = Hom(ωpX , ωX),

where ωX is the canonical line bundle Ωn
X . If τ is a local generator of ωX , f a

local section of OX , φ a local homomorphism ωpX → ωX , then the correspond-
ing local section σ of EndF (X) is defined by σ(f)τ = C(class of φ(fτ⊗p)).

Proof: One checks that C(class of φ(fτ⊗p))/τ does not depend on the choice
of τ , so that σ depends only on φ. To see that the map φ 7→ σ defines an
isomorphism of line bundles we may argue as in the previous proof. 2

A.4 Canonical splitting of the Demazure res-

olution

We wish to study EndF (Zn, Dn) for an arbitrary sequence si1 , . . . sin of simple
reflections. In particular, we wish to prove Proposition 4.3.15. We start with
the problem of recognizing B-equivariant bundles on Zn.

Lemma A.4.1 Let X be a connected projective variety with B action and x
an invariant point. Let E, F be B-equivariant line bundles that are isomor-
phic as line bundles. If their fibres over x are B-equivariantly isomorphic,
then the line bundles themselves are B-equivariantly isomorphic.

Proof: Tensoring with E∗ we reduce to the case that E , F are trivial as line
bundles. Then

H0(X, E) ≈ H0({x}, E) ≈ H0({x},F) ≈ H0(X,F)
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equivariantly. But the global sections generate a trivial sheaf everywhere,
so the B action on such a sheaf is determined by what it does on global
sections. 2

This lemma takes care of recognizing the B action, so let us now look at
the Picard group of Zn.

Lemma A.4.2 The isomorphism type of a line bundle on Zn is determined
exactly by the degrees of the restrictions to the n embedded P

1’s of the form
B ×B · · · ×B Pi ×

B · · · ×B B/B.

Proof: This is clear for Zn,n ≈ P
1, so we work our way back to Zn by means

of the fibrations πj : Zj,n = Pj ×
B Pj+1 · · ·Pn/B → Pj/B ≈ P

1 with fibre
Zj+1,n. Use [7; Ch. II, Prop. 6.5] with as divisor the fibre of the point “at
infinity” sij of Pj/B and observe that the complement of this fibre is a direct
product of Zj+1,n with an affine line. Apply [7; Ch. II, Prop. 6.6] to this
complement. 2

Corollary A.4.3 Under the standing hypothesis 2.2.8 all line bundles on
G/B come from G-equivariant ones. The equivariant structure is unique up
to a twist by a character of G. In particular, if G is its own commutator
subgroup then the equivariant structure is unique.

Proof: The regular representation of G restricts to a faithful representation
of its commutator group, so the fundamental weights of the commutator
group are restrictions of weights of B. Therefore the set of degrees of re-
strictions to the projective lines Ps/B (s ∈ S) runs through all possibilities
as we vary the line bundle over all L(λ), λ ∈ X(T ). And a line bundle is
clearly determined by its pullback to a Demazure resolution of G/B. To
finish, argue as in the proof of Lemma A.4.1. 2

Exercise A.4.4 Let P be a parabolic and X a space with B action. Show
that every P -equivariant vector bundle on P ×B X is of the form P ×B V
with V a B-equivariant bundle on X.

The following lemma may be used to pass between EndF (Zn, Dn) and
EndF (Zn) ⊗ Ip−1

Dn
.
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Lemma A.4.5 Let A be a domain of characteristic p and (f) a principal
ideal in it. Then EndF (A, (f)) = (f)p−1 ∗ EndF (A).

Proof: That the left-hand side contains the right-hand side is clear. Let
σ ∈ EndF (A, (f)). Then σ(fa) = fτ(a) defines a map τ from A to itself.
One checks that τ ∈ EndF (A) and that fσ = f(fp−1 ∗ τ). 2

Proposition A.4.6 The sheaf EndF (Zn, Dn) is B-equivariantly isomorphic
with ϕ∗L((1 − p)ρ)[(p − 1)ρ], so that if ϕ : Zn → G/B is surjective,
EndF (Zn, Dn) is B-equivariantly isomorphic with
k(p−1)ρ ⊗H0(G/B,L((1 − p)ρ)).

Proof: By Lemmas A.4.5 and A.3.5 all we have to show for the first state-
ment is that ωZn(−Dn) ∼= ϕ∗L(ρ)[−ρ], equivariantly. We argue again by
induction, using the fibration πj : Zj,n = Pj ×

B Pj+1 · · ·Pn/B → Pj/B ≈ P
1

with fibre Zj+1,n. Let Dj,n denote the analogue of Dn in Zj,n. Thus Dj,n is
a divisor with n− j + 1 components intersecting in a point x. The required
result is easy for j = n. Indeed if α is the simple root corresponding with Pn,
one gets a local coordinate t on Pn/B ≈ P

1 from t 7→ x−α(t)B/B and the
stalk at the “origin” x of ωZn,n(−Dn,n) is generated by dt/t on which T acts
trivially. Further the degree of the line bundle is −1, so by our recognition
Lemma A.4.1 we must have ωZn,n(−Dn,n) ∼= ϕ∗

n,nL(ρ)[−ρ], equivariantly.
Now assume such a result for ωZj+1,n

(−Dj+1,n) and consider ωZj,n
(−Dj,n).

It is the tensor product of two line bundles. The first one, say R, is the is the
relative canonical bundle ωZj,n/P1 =

∧n−j Ωj,n/P1 , twisted by L(Pj×
BDj+1,n).

The second is the pullback of ωP1(−{x}), with x “as above”. Let us study
R through its restrictions to the various copies of P

1, cf. Lemmas A.4.1 and
A.4.2. By base change for relative differentials, see [7; II, 8.2], the restriction
of ωZj,n/P1 to B ×B Zj+1,n is just ωZj+1,n

. So R restricts to ωZj+1,n
(−Dj+1,n),

which we know. We also need the restriction of R to Pj/B. Now that is
a Pj-equivariant sheaf whose fibre at x has trivial T action, so it must be
the structure sheaf on Pj/B. The sheaf ωP1(−{x}) we have already found
to be the pullback from G/B of L(ρ)[−ρ], and its pullback to Zj,n is easy to
understand in terms of its restrictions to the relevant P

1’s. So we have all the
ingredients to conclude ωZj,n

(−Dj,n) ∼= ϕ∗L(ρ)[−ρ], equivariantly. To prove
the last statement of the proposition, use Exercise A.4.4 and the fibrations
πj to see that H0(ϕ∗L((1 − p)ρ)) = Hs1 ◦ · · · ◦Hsn((1 − p)ρ). 2
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Proposition A.4.7 (Proposition 4.3.17) There exists σ ∈ EndF (Zn, Dn)
which is a canonical splitting.

Proof: We have already described in 4.3.17 how one proves this with the
criterion A.1.7. Let us tell it a little differently now. Let s ∈ H0(G/B,L((1−
p)ρ)[(p− 1)ρ]) be a weight vector of weight zero. It does not vanish at B/B.
We wish to show that its pullback defines σn ∈ EndF (Zn, Dn) with σn(1) 6= 0.
As Zn is complete, σn(1) is a constant function. Call the constant cn. We
argue by induction, the case n = 0 being easy. Now an exercise in chasing
duality, say with the Cartier operator, shows that the restriction of σj,n(1) to
Zj+1,n is just σj+1,n(1) in hopefully self-explanatory notation. (Use reasonable
identifications, choose a local coordinate t on Pj/B which vanishes at B/B
and use that the fibration Zj,n → Pj/B is trivial in a neighborhood of B/B.)
So cj,n = cj+1,n, which is non-zero by inductive assumption. This proves that
up to a scalar multiple we have produced a splitting, and by construction
it has weight 0 so that it must be canonical because of the position of the
weights of EndF (ZN , DN). (See proof of 4.3.17.) 2

Proposition A.4.8 (A.1.9 part 2.) Let P and Q be parabolic subgroups.
There is a canonical splitting on G×B (G/P ×G/Q) which is compatible with
all double Schubert varieties.

Proof: Choose a reduced expression of a minimal representative of w0 mod-
ulo the Weyl group of P . Let it be followed by a reduced expression for w0 and
let that finally be followed by a reduced expression for a minimal represen-
tative of w0 modulo the Weyl group of Q. Together that is a long expression
based on which one gets a Zn which maps birationally onto G×P G×B G/Q

by “multiplication”. This proper birational map has the direct image prop-
erty because the target is normal. One now takes the canonical splitting of
A.4.7. It is compatible with all unions of intersections of components of Dn.

Next note that G ×B (G/P × G/Q)
φ
≈ G ×P G ×B G/Q. The map φ is

defined by φ(g, x, y) = (gx, x−1, y) (cf. 1.2.2). The image of G×B (Xv×Xw)
under φ is G×P (Pv−1B)×BXw, which is clearly the image of an intersection
of components of Dn. So the splitting is compatible with it. 2

We are also ready to prove
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Proposition A.4.9 (A.1.9 part 1.) The product G/B×G/B is Frobenius
split. Further the diagonal ∆ = {(x, x)|x ∈ G/B} is compatibly split in
G/B ×G/B.

Proof: Take Q = G, P = B in the previous proof and recall (1.2.2) that

G ×B G/B
φ
≈ G/B × G/B with φ(g, h) = (g, gh). We get a splitting which

is compatible with G×B B/B, and that subspace is mapped to the diagonal
by φ. 2

A.5 Two Technical Results

Sublemma A.5.1 Let X, Y be two quasi-projective schemes over an al-
gebraically closed field k of characteristic p > 0. Let f : X → Y be
a bijective proper morphism. Then for every line bundle L on Y and for
s ∈ H0(X, f∗(L)) we have sp

n
∈ image(H0(Y,Lp

n
)) for some large n.

Proof: As f is proper and quasi-finite, it is finite and affine. We may assume
X and Y to be reduced, in which case H0(Y,Ln) may be identified with its
image. Then the problem is local on Y . Thus we may assume that Y and
X are affine and that the line bundles are trivial. We identify them with the
structure sheafs. Say Y = Spec(A), X = Spec(B), A ⊂ B. [See erratum.99]
As B is finite over A, we have a bound on the dimension of B ⊗φ k for any
point φ : A→ k. We may replace B by BpA. Repeating that if necessary we
may assume that for all points φ the local artin algebra B ⊗φ k is reduced.
But then it must simply be k, as k is algebraically closed. By Nakayama’s
Lemma the map A→ B is now surjective at all points, hence surjective. 2

Proposition A.5.2 Let f : X → Y be a surjective, separable, proper mor-
phism between two varieties, with connected fibres. We assume that Y is
Frobenius split. Then f∗OX = OY .

Proof: By Stein factorisation we may assume f to be finite. Then it is
actually a bijection, so that our earlier Lemma A.5.1 applies. We may assume
again that X = Spec(B), Y = Spec(A), A ⊂ B and we have to show that A
is p -root closed in B.
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First consider a smooth point x of X, such that the tangent map is
surjective at x and f(x) is smooth in Y . As the dimensions are the same
at x and f(x), the surjectivity of the tangent map implies an “analytic”
isomorphism Ôx ≈ Ôf(x). Thus f(x) is outside the support of the A-module
B/A. Therefore there is c ∈ A which annihilates that module—one says c is
in the conductor of B over A—such that c(f(x)) 6= 0.

Return to the question of p -root closure. Let b ∈ B with b p ∈ A and let
σ : A → A be the splitting. For c in the conductor we have cb, c, b p ∈ A,
so cσ(b p) = σ(cpb p) = cb. So b equals σ(b p) at all points where c does
not vanish. Varying c we get a dense set of points where b equals σ(b p), so
b ∈ σ(A) ⊂ A. 2
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174 (1989), 281–311.

[31] A. Ramanathan, Schubert varieties are arithmetically Cohen Macaulay,
Invent. Math. 80 (1985), 283–294.

[32] A. Ramanathan, Equations defining Schubert varieties and Frobenius
splitting of diagonals, Publ. Math. IHES 65 (1987), 61–90.

[33] C.M. Ringel, The category of modules with good filtrations over a quasi-
hereditary algebra has almost split sequences, Math. Z. 208 (1991), 209–
223.

[34] T.A. Springer, Linear Algebraic Groups, Boston Basel Stuttgart:
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Glossary of Notations

( , ) W -invariant inner product, 4
w′ ≤ w w′ precedes w in the Bruhat order, i.e. Xw′ ⊂ Xw, 17
sµ > µ (ρ− sρ, sµ− µ) > 0, 71
µ1 anti-dominant weight in W -orbit of µ, 18
ν0 dominant weight in W -orbit of ν, 17
indGP ◦ indPB composite functor, 11
a ∗ σ b 7→ σ(a · b) when a is ring element, 39
g ∗ σ b 7→ g · σ(g−1 · a) when g is group element, 39
m∗L pullback of L, see [7], 14
m∗O direct image of O, 14
M∗ dual of M , 25
(F∗OX)∗ Hom(F∗OX ,OX), 42
G×B X total space of associated fibre bundle, 7
L|X restriction of bundle to subspace X, 11
A<λ

⊕
i A

i
<iλ when A is graded, 41

A≤λ also in graded case: ⊕i A
i
≤iλ, 35

M<λ largest B-submodule of M that is in C<λ, 23
M≤R largest B-submodule with weights of length ≤ R, 10
M≤λ largest B-submodule of M that is in C≤λ, 23
Mµ weight space of weight µ, 2
GZ Z-form of G, 68
B Borel subgroup, 2
BwB double coset, 4
CB the category of rational B-modules, 10
CG the category of rational G-modules, 9
C≤λ category of B-modules whose weights precede λ, 23
C<λ subcategory with weights strictly preceding λ, 22
C≤R subcategory of CB with length of weights ≤ R, 10
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C<R subcategory of CB with length of weights < R, 23
ch(Mk) formal character of M , 72

D̃j irreducible divisor in Zn, 44
Dn divisor with normal crossing in Zn, 44
EndF (R) space of Frobenius-linear endomorphisms of R, 39
EndF (R, I) subspace of those compatible with I, 39
EndF (X) global sections of EndF (X), 42
EndF (X, Y ) global sections of EndF (X, Y ), 42
Exti i-th Ext functor [23; Ch III], 24
ExtiB(M,N) Ext group in the category CB, 12
Ext1

B,λ Ext in C≤l(λ), 25
EndF (X) sheaf of Frobenius-linear endomorphisms, 42
EndF (X, Y ) subsheaf of those compatible with Y , 42
F absolute Frobenius morphism, 42
F∗OX the direct image of OX under F , 42
Ga additive group, 1
Gm multiplicative group, 1
GL(n, k) general linear group, 1
G algebraic group, 1

reductive connected, 2
simply connected too, 15

H0(B,M) submodule of M consisting of vectors fixed by B, 10
H0(X,L) global sections over X of L, 11, 13
H i(B,M) i-th cohomology of M in CB ([11]), 25
Hw Joseph’s functor M 7→ H0(Xw,L(M)), 13
Hw(λ) Hw(kλ), 15
IS ideal sheaf of S, 16
indGB induction functor CB → CG, 11
k algebraically closed field, 1

of characteristic p > 0, 33
k[B] the ring of regular functions on B, 23
kλ one-dimensional B-module of weight λ, 15
K(w, y, λ) kerP (wλ) → P (yλ), 65
K(Σ1,Σ2, λ, µ, ν) ker : H0(Σ1,L(λ, µ, ν)) → H0(Σ2,L(λ, µ, ν)) , 49
l(µ) length of weight µ, 4
L(M) vector bundle G×B M over G/B with fibre M , 8
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L(λ) L(kλ), 15
L(λ, µ, ν) line bundle L(λ) × L(µ) × L(ν), 49
n has no fixed value, 44
O(n) power of twisting sheaf [7], 27
OX structure sheaf of X, 14
p the characteristic, 33
P
n projective n-space [7], 26
P (µ) dual Joseph module with socle kµ, 18
Pi minimal parabolic BsiB ∪B, 4
Ps minimal parabolic BsB ∪B, 5
Pµ parabolic with L(µ) very ample on G/Pµ, 49
Q(µ) minimal relative Schubert module with socle kµ, 19
Q(S, S ′, λ) ker(res : H0(S,L(λ)) → H0(S ′,L(λ))), 19
RnF n-th derived functor of F , 26
Ru(G) unipotent radical of G, 2
resGH restriction functor CG → CH , 10
SL(n, k) special linear group, 1
socM socle of M , usually as B-module, 10
si i-th simple reflection in a sequence, 3
T maximal torus, contained in B, 4
U unipotent radical of B, 5
Uα root subgroup {xα(t) | t ∈ k}, 40
W Weyl group, 3
w0 longest element, 7
X(G) character group of G, 2
X(T )+ the set of dominant weights in X(T ), 17
X(T )− the set of anti-dominant weights in X(T ), 9
Xw the Schubert variety BwB/B, 6
∂Xw complement of the open Bruhat cell in Xw, 19
xβ isomorphism Ga → Uβ, 4
Zj Demazure resolution, 6
ρ half sum of the roots of B, 27
Σ1 union of double Schubert varieties, 49
ωX Ωn

X where X is smooth of dimension n, 44
Ωq
X sheaf of q -forms on X, 44



Index

First some notions for which we
refer to textbooks, as indicated.

acyclic for a functor [11], 26
ample [7], 37
birational map [9], 6
Bruhat order [34], 16
canonical line bundle [7], 44
character (formal) [8], 72
coherent sheaf [7], 75
complete variety [9], 3
crystal basis [22], ii
degree of line bundle on P

1 [7; II
Exercise 6.2], 53

derived functor [7], 25
direct image [7], 42
direct limit [11], 11
divisor [7], 6
duality [7], 76
Dynkin diagram [9], 4
equivariant [9], 16
Ext functor [23; Ch III], 24
geometric vector bundle [7; II Ex-

ercise 5.18], 44
highest weight category [2], ii
highest weight theory [8], 9
ideal sheaf [7], 16
injective (module) [11], 23
length of element of W [9], 6

Levi factor [9], 47
Lusztig’s canonical basis [22], ii
multiplicity of a weight [9], 21
normal variety [7], 14
proper map [7], 14
rational map [7], 38
reduced expression [9], 5
regular function [9], 23
regular representation [11], 85
regular weight [8], 49
semi-invariant [9], 18
simple reflection [9], 4
simple root [9], 4
simply connected [9], 15
smooth variety [7], 42
unipotent [9], 2
very ample [7], 37

Now the terms that are
explained in the notes.

B-acyclic, 28
p -root closure, 35
Z-form, 68
action (rational), 2
anti-dominant, 15
associated fibre bundle, 7
associated vector bundle, 8
base point, 15
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Borel Fixed Point Theorem, 3
Borel subgroup, 2
Borel–Weil–Bott Theorem, i
boundary of Schubert variety, 19
Bruhat cell, 4
Bruhat decomposition, 5
canonical splitting, 40
Cartan subgroup, 3
Cartier operator, 83
character, 2
cohomological criterion

for excellent filtration, 29
for good filtration, 35
for rel. Schubert filtration, 32

compatible with ideal, 39
with subvariety, 42

compatibly split, 39
subvariety, 42
simultaneously, 76

Coxeter group, 3
Demazure character formula, 71
Demazure resolutions, 6
direct image property, 77
dominant, 17
Donkin’s conjecture, 47
double Schubert variety, 48
dual Joseph module, 19
dual Weyl module, i, 35
equivariant vector bundle, 44
evaluation map, 11
excellent filtration, 20
extremal weight, 17
Frobenius reciprocity, 12
Frobenius split variety, 42
Frobenius-linear, 39
geometric description of extremal

weight, 18

good filtration, 34
graded splitting, 39
Grothendieck spectral sequence, 26
height of character, 22
indecomposable module, 10
induction functor, 11
injective hull, 24
irreducible representation, 10
Joseph’s Conjecture, 53
Joseph’s functor, 13

and reduced expression, 15
Kempf vanishing, 81
length of element of W [9], 6
length of Weyl group element, 13
length–height filtration, 30
length–height order, 22
Main Theorem, 73
Mayer–Vietoris Lemma, 16
minimal parabolic, 4
module (rational), 2
parabolic, 3
Polo’s theorem, 24

strong form, 28
radical, 2
rational representation, 1
reductive, 2
regular anti-dominant, 49, 53
relative Schubert filtration, 20
relative Schubert module, 19
Restriction Conjecture, 47
restriction functor, 10
Restriction Theorem, 73
Schubert divisor, 5
Schubert filtration, 65
Schubert variety, 4

in G/Q, 5
semi-simple group, 2
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semi-simple module, 10
separable map, 59
simple module, 10
socle, 10
splitting, 39
standard modification of Kempf, 6
subalgebra of socles, 36
tensor identity for induction, 11
torus, 2
transitivity of induction, 11
weight space, 10
weight vector, 2
weights of representation, 2, 4
Weyl group, 3



Erratum 99

September 29, 2005
see also pages 181-182 in
Documenta Mathematica, Extra Volume Suslin (2010).

Frank Grosshans has pointed out that the proof of sublemma A.5.1 is not
convincing after the reduction to the affine case.

Let me take another way, much more slowly, making sure that this time
there is an actual proof. If I remember correctly the argument below is
basically the original one. Sometimes it is better not to simplify.

So we are at the stage where Y = Spec(A), X = Spec(B), A ⊂ B. Both
A and B are of finite type over the algebraically closed field k of characteristic
p > 0, B is finite over A, X → Y is bijective (between k valued points). [We
will not use that it is actually a bijection of scheme theoretic points.] Then
sublemma A.5.1 claims that for all b ∈ B there is an m with bp

m
∈ A. We

will argue by induction on the Krull dimension of A.

Say B as an A-module is generated by d elements b1, . . . , bd. Let p1,
. . . ps be the minimal prime ideals of A.

Suppose we can show that for every i, j we have mi,j so that bp
mi,j

j ∈
A+piB. Then for every i we have mi so that bp

mi ∈ A+piB for every b ∈ B.
Then bp

m1+···ms
∈ A+p1 · · · psB for every b ∈ B. As p1 · · · ps is nilpotent, one

finds m with bp
m
∈ A for all b ∈ B. The upshot is that it suffices to prove

the sublemma for the inclusion A/pi ⊂ B/piB. [It is an inclusion because
there is a prime ideal qi in B with A∩ qi = pi.] Therefore we further assume
that A is a domain.

Let r denote the nilradical of B. If we can show that for all b ∈ B there
is m with bp

m
∈ A + r, then clearly we can also find an u with bp

u
∈ A. So

we may as well replace A ⊂ B with A ⊂ B/r and assume that B is reduced.
But then at least one component of Spec(B) must map onto Spec(A), so
bijectivity implies there is only one component. In other words, B is also a
domain.

Choose t so that the field extension Frac(A) ⊂ Frac(ABpt
) is separable.

(So it is the separable closure of Frac(A) in Frac(B).) As X → Spec(ABpt
)

is also bijective, we have that Spec(ABpt
) → Spec(A) is bijective. It clearly

suffices to prove the sublemma for A ⊂ ABpt
. So we replace B with ABpt

and further assume that Frac(B) is separable over Frac(A).

http://www.mathematik.uni-bielefeld.de/documenta/vol-suslin/vol-suslin-eng.html
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Now the idea is that X → Y has a degree which is the degree of the
separable field extension. But the degree must be one because of bijectivity.

Suppose, to contradict, Frac(B) 6= Frac(A). Choose b in B outside
Frac(A). It has a separable minimal polynomial f(x) = anx

n + an−1x
n−1 +

· · · + a0 over Frac(A), with ai ∈ A. We localize to make it monic and
then invert its discriminant: As f is separable, there is a nonzero s′ in
the intersection of A with f(x)A[x] + f ′(x)A[x]. Put s = ans

′. The
maps Spec(B[1/s]) → Spec(A[b][1/s]) and Spec(A[b][1/s]) → Spec(A[1/s])
are surjective and their composite is bijective, so both are bijective. The
ring A[b][1/s] is a free A[1/s]-module with basis 1, b, . . . bn−1. Choose
φ : A[1/s] → k. We have that A[b][1/s] ⊗φ k equals k[x]/(φ(an)x

n +
φ(an−1)x

n−1 + · · ·+ φ(a0)), which has more than one maximal ideal because
the polynomial φ(an)x

n + φ(an−1)x
n−1 + · · · + φ(a0) is separable and k is

algebraically closed. We have arrived at the desired contradiction.
So we now are considering the case that Frac(B) = Frac(A). Let Let c

be the conductor of A ⊂ B. So c = { b ∈ B | bB ⊂ A }. We know it
is nonzero. If it is the unit ideal then we are done. Suppose it is not. By
induction applied to A/c ⊂ B/c (we need the induction hypothesis for the
original problem without any of the intermediate simplifications) we have
that for each b ∈ B there is an m so that bp

m
∈ A+ c = A. We are done.

WvdK
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