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Abstract
In this paper, Hecke eigenvalues of several automorphic forms for congruence subgroups

of SL(3,Z) are listed. To compute such tables, we describe an algorithm which combines
techniques developed by Ash, Grayson and Green with the Lenstra–Lenstra–Lovász algorithm.
With our implementation of this new algorithm we were able to handle much larger levels
than those treated by Ash, Grayson and Green and by Top and van Geemen in previous
work. Comparing our tables with results from computations of Galois representations, we
find some new numerical evidence for the conjectured relation between modular forms and
Galois representations.

1 Introduction

1.1 It is well known that one can associate Galois representations to Hecke eigenforms on con-
gruence subgroups of SL(2,Z). It has been conjectured, as part of the Langlands program, that
one can do the same for SL(3,Z) and in [vG-T] we provided some evidence for this.

For any prime number p not dividing the level of the modular form/conductor of the Galois
representation, one defines a local L-factor which in the SL3(Z) case has the form:

(1− app
−s + āpp

1−2s − p3−3s)−1.

Here ap is the eigenvalue of a Hecke operator Ep on the eigenform/trace of a Frobenius element at
p in a 3-dimensional Gal(Q/Q) representation and āp is its complex conjugate.

The experimental evidence consists of an eigenform and a Galois representation with the same
L-factors (that is ap’s) for small primes.

It is actually rather easy to find candidate Galois representations in the etale cohomology of
surfaces. One family of such surfaces was discussed in [vG-T] (see also § 3.8), two other families
are constructed in [vG-T2]. The (computational) problem is rather to find Hecke eigenforms. (We
hasten to add that none of the authors is an expert on modular forms, our interests were mainly
in Galois representations and/or Algebraic Geometry and/or computational aspects).

It is a pleasure to thank Avner Ash for his comments on an earlier version of this manuscript,
and Henri Cohen and John Cremona for generously providing data and performing calculations
which have been very useful in our Example 3.5.
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1.2 In this paper we list some Hecke eigenvalues of several automorphic forms for congruence
subgroups of SL(3,Z). Combining the methods from [AGG] with the Lenstra–Lenstra–Lovász
algorithm we were able to handle much larger levels than in [AGG] and [vG-T]. Comparing these
tables with results from computations of Galois representations, we find further evidence for the
conjectured relation between modular forms and Galois representations, see Theorem 3.9.

1.3 In the first section we recall the methods from Ash et al. to determine the spaces of auto-
morphic forms in terms of group cohomology and we discuss some computational aspects. Since
we do not know a formula which gives the dimensions of these spaces (as function of the level of
the form), we give a table with the results we found (see § 3.3). One would also like to have a
table which lists the dimension of the cuspidal part, but (with exception of the prime level case),
no criterion which singles out the cuspidal forms is known to us.

Next we recall how to compute the action of the Hecke operators on the space of modular forms.
In view of properties of cusp forms and the examples of Galois representations we know, we are
mostly interested in Hecke eigenvalues which lie in CM-fields and which are small (so they satisfy
the Ramanujan hypothesis). The selection criterion upon which our tables are based is given in
§ 2.6.

In contrast with the SL(2,Z) case, one finds very few cusp forms of prime level for SL(3,Z).
In fact the only prime levels ≤ 337 with cusp forms are the levels 53, 61, 79, 89 and 223. The
CM-fields generated by the eigenvalues were imaginary quadratic with exception of the case of level
245 where we found a degree 4 extension of Q.

2 Modular forms and Hecke operators

2.1 We briefly recall how to compute the modular forms under consideration, the standard refer-
ence is [AGG].

In the case of SL(2,Z), the space S2(Γ) of holomorphic modular forms of weight two on a
congruence subgroup Γ is a subspace of the cohomology group H1(Γ,C). This generalizes as
follows.

2.2 Define, for N ≥ 1

Γ0(N) =
{
(aij) ∈ SL(3,Z) | a21 ≡ 0 mod N and a31 ≡ 0 mod N

}
.

This group has our primary interest. It is neither normal in SL(3,Z) nor torsion-free. To compute
its cohomology, we introduce a finite set:

P2(Z/N) =
{
(x̄, ȳ, z̄) ∈ (Z/N)3 | x̄Z/N + ȳZ/N + z̄Z/N = Z/N

} /
(Z/N)×.

When the elements of this set are viewed as column vectors, there is a natural left action of SL(3,Z)
on P2(Z/N). This action is transitive, and the stabilizer of (1̄: 0̄: 0̄) equals Γ0(N). Therefore

SL(3,Z)/Γ0(N) ∼= P2(Z/N).

Under this correspondence, an element of SL(3,Z) is mapped to its first column viewed as homo-
geneous coordinates modulo N .

The dual of the vector space H3(Γ0(N),C) is H3(Γ0(N),C) and it can be computed as follows:
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2.3 Theorem. ([AGG], Thm 3.2, Prop 3.12)
There is a canonical isomorphism between H3(Γ0(N),C) and the vector space of mappings

f : P2(Z/N) → C that satisfy

1. f(x̄: ȳ: z̄) = −f(−ȳ: x̄: z̄),

2. f(x̄: ȳ: z̄) = f(z̄: x̄: ȳ),

3. f(x̄: ȳ: z̄) + f(−ȳ: x̄− ȳ: z̄) + f(ȳ − x̄:−x̄: ȳ) = 0.

2.4 For any α ∈ GL(3,Q) one has a (C-linear) Hecke operator:

Tα : H3(Γ0(N),C) −→ H3(Γ0(N),C)

which defines an adjoint operator T ∗
α on the dual space H3(Γ0(N),C). We now explain how to

determine this adjoint.
Let

Γ0(N)αΓ0(N) =
∐
i

βiΓ0(N)

be the decomposition of the double coset in a (finite) disjoint union of left cosets. Such βi’s can be
found in [AGG], p. 430.

First we need the definition of modular symbol (compare [AR], where however column rather
than row vectors are used). These modular symbols are elements of H1(T3,Z), with T3 the Tits
building for SL(3,Q), and they give rise to cohomology classes in H3(Γ0(N),C). For the purposes of
this paper it however suffices to know the following. For three non-zero row vectors q1, q2, q3 ∈ Q3

we define a modular symbol
[Q] =

[
q1
q2
q3

]
(where we can view Q as a 3× 3 matrix with rows qi) which satisfies the following rules:

1. permuting the rows of
[

q1
q2
q3

]
changes the sign of the symbol according to the sign of the per-

mutation,

2.
[

a1q1
a2q2
a3q3

]
=

[
q1
q2
q3

]
,

3.
[

q1
q2
q3

]
= 0 when det

(
q1
q2
q3

)
= 0,

4.
[

q1
q2
q3

]
−

[
q0
q2
q3

]
+

[
q0
q1
q3

]
−

[
q0
q1
q2

]
= 0,

5.
[

q1α
q2α
q3α

]
=

[
q1
q2
q3

]
· α,

where q0, q1, q2, q3 ∈ Q3 are non-zero row vectors, a1, a2, a3 ∈ Q×, α ∈ GL(3,Q) and · denotes the
right action of GL(3,Q) on H1(T3,Z) induced by its natural right action on T3

A modular symbol [Q] is called unimodular if Q ∈ SL(3,Z). Using these relations, any modular
symbol is equal to the sum of unimodular symbols. An explicit algorithm we used to do this is
given in 2.10. Finally we observe that if [Q] is unimodular, then it defines a point of P2(Z/N) =
SL3(Z)/Γ0(N), denoted by the same symbol.
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We continue the description of the Hecke operator. Let βi be a coset representative as above,
and let x ∈ P2(Z/N) be represented by Qx ∈ SL(3,Z). Then, as modular symbols, we can write:

[Qxβi] =
∑
j

[Rij], Rij ∈ SL(3,Z).

Finally we then have the formula for the adjoint of the Hecke operator Tα:

T ∗
α : H3(Γ0(N),C) −→ H3(Γ0(N),C), (T ∗

αf)(x) =
∑
ij

f(Rij)

where the Rij on the right hand side are considered as elements of P2(Z/N).

2.5 The Hecke algebra T is defined to be the subalgebra of End(H3(Γ0(N),C)) generated by
the Tα’s with det(α) relatively prime with N . The Hecke algebra is a commutative algebra and
H3(Γ0(N),C) may be decomposed as a direct sum of common eigenspaces of the operators from
T :

H3(Γ0(N),C) =
⊕
λ

Vλ

where each λ is a homomorphism of algebras T → C, and

Tf = λ(T )f

for T ∈ T and f ∈ Vλ.
Of particular interest are the Hecke operators Ep, p prime, p - N defined by αp ∈ GL(3,Q):

αp :=

 p 0 0
0 1 0
0 0 1

 .

Given a character λ of T , the number ap in the local L-factor of the corresponding Hecke eigenform
is:

ap := λ(Ep).

2.6 We are interested in relating Hecke eigenforms and non-selfdual Galois representations. It
is known that the corresponding Hecke eigenvalues must then generate a CM-field (a degree two
imaginary extension of a totally real field).

The computer determined and factorized (over Q) the eigenvalue polynomial of the Hecke
operators Ep for the first 5 primes p which do not divide N . We then considered only those Vλ

for which at least one (of the five) numbers λ(Ep) generated a CM-field. (Thus examples of non-
selfdual modular forms with, say, λ(Ep) ∈ Q for the first 5 primes not dividing N , but with λ(Ep)
generating a CM-field for the sixth prime were certainly overlooked). For such λ we computed the
values ap := λ(Ep) for the first 40 prime numbers (that is, all primes p ≤ 173).

We are interested in relating these eigenforms to Galois representations. Conjecturally, the
roots of the polynomial X3 − apX

2 + āppX − p3 should be the eigenvalues of a Frobenius element
(in Gal(Q/Q)) in a 3-dimensional representation (at least if the eigenform is a cusp form). These
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eigenvalues of the Frobenius element should have absolute value p. Therefore we consider only
eigenforms which satisfy Ramanujan’s conjecture

|ap| ≤ 3p.

Examples where this is not satisfied are not listed here either, with the exception of the second
column of the table in 3.5. The first example of CM-eigenvalues (the field is Q(

√
−3)) which do

not satisfy Ramanujan’s conjecture is for N = 49.

2.7 Dimensions. The computer first of all determined the space H3(Γ0(N),C) using 2.3. The
dimension of that space is listed in table 3.3. Representing a map f : P2(Z/N) → C by the vector
of its values, the equations listed in 2.3 give a system of linear equations. The number of variables
is first reduced using the first two equations and there remains a sparse linear system with small
integer coefficients. This system is reduced further, roughly by eliminating equations with fewer
than three terms. For example, in case N = 223 (a prime number) we are left with a system of
7005 equations in 1963 variables. We will use this example to explain how we proceed.

2.8 Lattice reduction. In smaller cases we solved the sparse linear system by Gauss elimi-
nation, mixed with a Euclidean algorithm to keep the entries small. In these smaller cases we
observed that the solution space is always spanned by vectors with remarkably small coordinates.
But for larger systems like in our example case N = 223 our Pascal program crashes because of
integer overflow during the Gauss elimination. Therefore we solve the system only modulo the
prime 32503. (As 2 ∗ 32503 ∗ 32503 < Maxint in our Pascal implementation, overflow is now easily
avoided without much change to the program.)

We find that over the field Z/32503Z the solution space is spanned by a basis of 38 vectors. Now
the trick is to apply the Lenstra–Lenstra–Lovász algorithm [LLL], [P] to the lattice L of integral
vectors of length 1963 whose reduction modulo 32503 is spanned by these 38 vectors. The LLL
algorithm finds 38 independent vectors with their 1963 integer coordinates all between −42 and
64, and so that their residues mod 32503 still form a basis of the solution space of the modular
system. (The program aims for coordinates between −150 and 150. This works in all examples,
with some room to spare.) One now plugs these new vectors in the original system, to see that we
are in luck and that they satisfy it over Z. (In all cases we had such luck.) It follows that they
span the solution space over Q, so by this trick we succeeded in solving the 7005 by 1963 system
over Q. Here the LLL algorithm that we use is lllint in GP/PARI CALCULATOR Version 1.37.

Actually we do not really apply the LLL algorithm to the lattice L ⊂ Z1963. This Z1963 is too
big. But note that, to describe a new basis of the solution space of the modular system, all one
needs is a 38 by 38 transformation matrix. One can start looking for a useful matrix using just
a small sample of the 1963 coordinates. We increase the sample until success is achieved. This
finishes the explanation of how we solve our large sparse linear systems.

2.9 Finding a subspace. Next we compute the 38 by 38 matrix describing the Hecke operator
for some prime p, compute its minimal polynomial and factorize it. There is just one factor that
has CM-eigenvalues and it has degree two. Next we plug the matrix into this factor of degree
two. This results in a corank two matrix of which we compute the kernel. From this we get two
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vectors of length 1963, spanning our interesting subspace. Applying LLL once more, now with the
prime 224737, we can get a new pair, spanning the same subspace over Q (this we check), and with
coordinates between −72 and 90. (At this step we aimed for coordinates between −4500 and 4500,
as in practice the coordinates of the generators of the subspace are not as small as those for the
full solution space.)

2.10 Reducing symbols. We now describe the algorithm we used to reduce a modular symbol
to a sum of unimodular symbols. Large parts of it are borrowed from the algorithm given by Ash
and Rudolph [AR]. We shall constantly refer to the properties enjoyed by the modular symbol,
listed in Section 2.4.

By property 2, we may restrict our attention to modular symbols whose underlying matrices
have integer entries. Let Q be a 3 × 3 matrix (with integer entries), all whose rows are non-zero.
By properties 2 and 3, we may assume that | det Q| > 1. For any non-zero row vector v ∈ Z3

and 1 ≤ i ≤ 3, let Qi{v} denote the matrix Q with its ith row replaced with v. It follows from
properties 1 and 4 that

[Q] = [Q1{v}] + [Q2{v}] + [Q3{v}]. (2.10.1)

A vector v will be constructed such that each matrix Qi{v} has smaller | det | than Q. Let q1, q2

and q3 denote the rows of Q, and write

v = t1q1 + t2q2 + t3q3 (2.10.2)

with t1, t2, t3 ∈ Q. Since

det Qi{v} =
3∑

j=1

tj det Qi{qj} = ti det Q, (2.10.3)

we need to find ti with |ti| < 1 such that the vector given in (2.10.2) has integer coefficients.
In order to do this, we shall find a row vector x ∈ Z3 and an integer m such that

xQ ≡ 0 mod m (2.10.4)

and
x 6≡ 0 mod m. (2.10.5)

From such a congruence, a suitable vector v can be constructed as follows. Write x = (x1, x2, x3).
We may assume that |xi| ≤ 1

2
|m| for 1 ≤ i ≤ 3. It then follows easily from (2.10.4) and (2.10.5)

that we may take ti = xi

m
.

It remains to find x and m satisfying (2.10.4) and (2.10.5). A Gauss-like elimination procedure
is applied to (2.10.4), without specifying the value of m yet. The trick is to choose the modulus m
only after enough elimination steps have been performed. We begin working on the first row of Q.
By means of elementary column operations, (2.10.4) is transformed into an equivalent congruence
relation

(x1, x2, x3)

 m1 0 0
∗ ∗ ∗
∗ ∗ ∗

 ≡ (0, 0, 0) mod m. (2.10.6)
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Since | det Q| > 1 and the column operations do not change | det | of the matrix, m1 cannot vanish.
Now if |m1| > 1, we take x = (1, 0, 0) and m = m1, and we have found a solution to (2.10.4)
and (2.10.5). If |m1| = 1, we turn to the second row of the matrix in (2.10.6). By elementary
column operations we get

(x1, x2, x3)

±1 0 0
∗ m2 0
∗ ∗ ∗

 ≡ (0, 0, 0) mod m. (2.10.7)

Again m2 cannot vanish. If |m2| > 1, we take m = m2 and find a solution of the form x = (∗, 1, 0).
If |m2| = 1, (2.10.7) takes the form

(x1, x2, x3)

±1 0 0
∗ ±1 0
∗ ∗ m3

 ≡ (0, 0, 0) mod m.

Since m3 = ± det Q, we have |m3| > 1, so we can take m = m3 and find a solution of the form
x = (∗, ∗, 1).

A close look at the algorithm reveals that | det Qi{v}| ≤ 1
2
| det Q| for i = 1, 2 and | det Q3{v}| ≤

1. Also we would like to point out that our algorithm, like that of Ash and Rudolph, works over
any Euclidean domain and for any dimension.

3 Numerical results

3.1 Remark. For prime level p one knows that ([AGG], Thm. 3.19)

dim H3(Γ0(p),C) = dim H3
cusp(Γ0(p),C) + 2 dim S2(p),

where S2(p) is the dimension of the space of weight two cusp forms for the congruence subgroup
Γ0(p) ⊂ SL(2,Z). Recall that dim S2(p) = k − 1, k, k, k + 1 when p = 12k + r and r = 1, 5, 7, 11.
Thus in this case it is easy to determine if H3

cusp is non-zero.

3.2 Remark. In case there is a newform of level N , then in level pN we find 3 copies of it (for
example, the form of level 53 appears 3 times in level 106 and 3 times in level 159). It appears 6
times in level 212 = 22 · 53. Such old forms, especially for levels N = pk, were studied in [R].
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3.3 Dimension of H3(Γ0(N),C).

x = 0 1 2 3 4 5 6 7 8 9

N dim
1x 2 2 7 0 4 4 6 2 7 2
2x 9 4 8 4 17 4 6 6 13 4
3x 20 4 12 10 10 8 21 4 12 8
4x 23 6 26 6 21 15 16 8 34 9
5x 20 14 21 10 25 14 31 14 20 10
6x 55 10 20 19 26 12 42 10 29 20
7x 38 12 51 10 22 28 33 18 44 14
8x 48 23 26 14 71 18 28 24 49 16
9x 67 16 24 41 32 22 68 14 43 33
10x 59 16 60 16 51 48 42 18 69 16
11x 58 28 64 18 66 28 57 35 40 26
12x 125 29 44 40 53 28 89 20 58 34
13x 60 22 107 26 44 51 67 22 82 22
14x 101 40 50 30 111 32 46 55 61 24
15x 122 24 75 51 76 36 119 24 62 50
16x 100 36 101 26 69 74 56 28 161 40
17x 80 53 73 28 106 56 102 50 64 30
18x 177 28 82 54 93 40 106 40 81 67
19x 94 32 146 30 62 80 121 32 139 32
20x 141 54 66 44 ? 48 68 67 108 44
21x ? 34 109 60 72 50 ? 44 70 58
22x ? 44 ? 38 ? ? 74 38 ? 36
23x ? 94 ? 38 ? 56 ? 70 ? 40
24x 38 ? ? ? ? 83 ? 46 ? 70
25x 42 ? ? 54 84 ? ? 42 ? ?

3.4 In the following table we list the Hecke eigenvalues ap for Hecke operators Ep, with 2 ≤ p ≤
173, of eigenforms of certain levels. The eigenvalues for small p and level 53, 61 and 79 were already
given in [AGG].

(Note that in [AGG] the table for level 79 is not consistent for p = 13 since the eigenvalue listed
is not a root of the quadratic polynomial listed, our results show −1 + 4ω should be replaced by
1 + 4ω.)

For each column of the table we fix an algebraic integer with the following property:

α2 = −2, β2 = −3, γ2 = −7, δ2 = −11, ε2 = −15, ι2 = −23.
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N = 53 58 61 79 88 153 223

p eigenvalue
2 −2− δ ∗∗ −β −1 ∗∗ 1 1
3 −1 + δ −1 + γ −3 + 2β −1 + ε −1 + γ ∗∗ −3 + ι
5 1 −4− 2γ 2β −4− 2ε −4− 2γ 1 1
7 −3 1 + 2γ −3− 3β −3− ε 1− 2γ −3 + 6α 1
11 1 7− γ −1 + β 1 + 2ε ∗∗ −5 + 6α 1− ι
13 −8− 6δ −6− 2γ −4− 2β −6− 2ε 1 + 4γ −9− 12α −1
17 22 13 −15 + 4β −1 −1 ∗∗ −2− 4ι
19 11 + 3δ −11− 4γ 17 + 4β 5 + 4ε −11− 4γ 9 −3
23 −11 + δ −7 + 8γ 5− 9β 17 + 2ε 21− 5γ −11 + 6α −11− ι
29 16 + 2δ ∗∗ 7 + 4β −9 −11− 4γ 13 22
31 −7 −15− 11γ 17− 4β 1 + 2ε −15− γ −15− 6α −3 + 6ι
37 −24 + 6δ 21 + 4γ 1− 16β −1 −14 + 18γ −15 −2
41 −17 15 −22− 36β 43 1− 8γ 31 −32− 4ι
43 29 + 6δ −25 + 7γ −27 + 16β −11− 8ε 17− 6γ 33 + 12α −11 + 6ι
47 1− 14δ −39 + 13γ 33 + 4β −39− 5ε 17 + 16γ −11− 12α −11− 6ι
53 −38 + 14δ 56− 2γ −25 −15− 4ε −21 + 8γ 19− 12α −44− 12ι
59 1− 14δ 69 19− β 15− ε −1 + 7γ 49 + 12α 25− 11ι
61 −7 17 + 4γ 30 + 30β 9 + 4ε −39− 28γ 9 17
67 −11− 12δ −35 + 8γ 71 + 3β −43 + 4ε −21 + 23γ −27− 36α 25− 9ι
71 13− 5δ 17− 14γ −15 + 4β −67 + 31ε 101 + γ −35− 30α 25− 4ι
73 −39− 12δ 13− 24γ −42− 4β 27 13 + 8γ −33 + 72α 20 + 12ι
79 −39 + 9δ −7− 17γ −7 + 31β 41− 17ε −63− 10γ 33− 18α 25
83 67− δ −27− 36γ 13 + 32β 33 + 10ε 1− 6γ −47 + 12α −23 + 22ι
89 −29 + 16δ −53− 16γ −19 + 8β −18− 12ε −60− 4γ −89 + 96α 16− 4ι
97 −58 −69 + 48γ 3 + 32β −58 + 16ε 106 + 16γ 27− 24α −81 + 24ι
101 43− 20δ −43 + 4γ −15− 48β 46− 6ε 27 + 8γ 55 −53 + 16ι
103 −99 + 33δ 129 + 6γ −67− 72β −51 + 15ε −39 69− 36α −79 + 15ι
107 85− 18δ −63− 38γ 81 + 38β −89− 41ε −63 + 18γ −89 + 114α −11− 24ι
109 101 + 12δ 84 + 18γ 14− 14β −61− 8ε −77− 40γ −63 + 72α 63
113 −68 + 24δ 3 −94 + 80β 69− 16ε 122 + 8γ 115− 24α −41 + 24ι
127 −7− 21δ 129 5− 46β −15 + 9ε −95− 8γ −99− 144α −79 + 6ι
131 −107− 50δ 45 + 16γ −127− 64β 25 + 22ε −39 + 6γ −53− 102α 25 + 10ι
137 25 + 12δ 21 + 8γ 90− 36β 117 + 8ε 70− 4γ 43 −149 + 44ι
139 −19− 12δ −83 + 4γ −21− 13β 115− 23ε 113 + 26γ 39− 6α 5 + 6ι
149 46− 38δ 14− 30γ −10− 58β −1− 32ε 231− 16γ −137 + 12α 175 + 8ι
151 −35− 45δ 49− 26γ −75− 57β −79 + 58ε 49 + 34γ −27− 72α −11− 15ι
157 −51 + 48δ −113 221 −85 + 8ε 104 + 18γ −57− 96α −45
163 277− 6δ 91− 25γ 85− 66β −19 189− 24γ 39 + 54α 125− 12ι
167 157 + 15δ 1 + 22γ −147− 136β −31 + 6ε −55 + 12γ −107− 150α −155− 59ι
173 −53− 56δ −109 + 56γ 19 + 56β −135− 12ε 3− 8γ 13 + 24α 181− 8ι
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3.5 At level 245 we found two 4-dimensional spaces, Va, Vb invariant under the Hecke action, and
the eigenvalue polynomial of the Ep’s, for p ∈ {2, 3, 11, 13, 17} on each space is an irreducible
polynomial of degree 4. The field K generated by the roots of these polynomials is the same for
both spaces:

K = Q[X]/(x4 + 2x2 + 4) ∼= Q(
√
−1 +

√
−3) = Q(

√
2,
√
−3).

p Va Vb

2 x4 + 6x3 + 35x2 + 6x + 1 x4 + 10x3 + 77x2 + 230x + 529
3 x4 + 8x3 + 66x2 − 16x + 4 x4 + 20x3 + 302x2 + 1960x + 9604
11 x4 + 46x3 + 2555x2 − 20194x + 192721 x4 + 246x3 + 45395x2 + 3719766x + 228644641
13 x4 + 100x3 + 1046x2 − 72700x + 528529 x4 − 668x3 + 167318x2 − 18624508x + 777350161
17 x4 + 70x3 + 5987x2 − 76090x + 1181569 x4 + 582x3 + 254051x2 + 49279686x + 7169516929

The four roots of each of these polynomials X4 − cpX
3 + . . . are the eigenvalues of Ep, and by

the Ramanujan conjecture for cusp forms their absolute value should be at most 3p, so |cp| ≤ 12p.
The cp we found on Vb do not satisfy this condition, those listed for Va do. Of course, this condition
on cp is weaker than the one on ap given in 2.6. For instance, taking p = 11, two of the eigenvalues
of Ep on Va have absolute value 23 + 22

√
2 > 3p = 33.

In fact, following a suggestion given to us by Avner Ash, it is easy to give a precise description
of the spaces Va and Vb in terms of classical modular forms. This description shows that neither of
them contains any cusp forms. Namely, using (unpublished) tables of Cohen, Skoruppa and Zagier
it turns out that there exists a unique newform f = q + b2q

2 + b3q
3 + . . . of weight 2, level 245 and

with trivial character, having b2 = 1 +
√

2, b3 = 1−
√

2, b11 = 2− 2
√

2 and b13 = −2− 2
√

2. Such
a newform lifts in two different ways to eigenclasses in our H3. One of them has eigenvalue pbp + 1
at Ep; the other bp + p2. (On the Galois side of the Langlands correspondence, if f corresponds to
a 2-dimensional representation V , then the two lifts are V (−1)⊕ 1 and V ⊕ 1(−2); the (−1) and
(−2) denote Tate twists and 1 is the trivial representation.)

Now take χ0 to be a non-trivial cubic Dirichlet character modulo 7. Twisting the lifted eigen-
classes by χ0 and by the complex conjugate character, one again finds eigenclasses which in our
case are still of level 245. (In terms of Galois representations, this means one takes χ to be the char-
acter of Gal(Q/Q) corresponding to χ0 and one considers (V (−1)⊕ 1)⊗ χ and (V ⊕ 1(−2))⊗ χ,
respectively.

Running over f and its conjugate, and χ0 and its complex conjugate one finds in this way 4
lifted eigenclasses of the first type, exactly generating Va, and similarly 4 lifts of the other type
generating Vb. It is well known that the space of such ‘Eisenstein lifts’ contains no non-zero cuspidal
classes.

3.6 In the last table we list the Hecke eigenvalues for Hecke operators Ep, with 2 ≤ p ≤ 173, of
eigenforms with eigenvalues ap ∈ Z[i].
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N = 89 106 = 2·53 128 = 27 160 = 25 ·5 205 = 5·41 212 = 22 ·53 221 = 13·17
p eigenvalue
2 −1− 2i ∗∗ ∗∗ ∗∗ −1 ∗∗ −1 + 2i

3 −1 + i −1 + i 1 + 2i 1 + 2i 1 + 2i −1 + i −1 + 4i

5 2− 2i −4− 5i −1− 4i ∗∗ ∗∗ −1 + 4i −1− 4i

7 −7 + 14i 2 + 5i 1 + 4i 1− 2i 1 + 2i 5 + 2i 3− 4i

11 −3− 10i 6 + 5i −7− 10i −3− 12i −7− 10i −3− 10i 5
13 −1− 4i −8 + 4i −1 + 4i −5− 8i 3− 8i 16− 2i ∗∗
17 −6 + 8i −8− 10i 7 −5 −5 −2− 16i ∗∗
19 11− i −9 + 13i 1− 14i 13 + 8i −15− 14i −9 + i 21 + 8i

23 −11− 19i −1− 9i 17− 4i −15 + 26i −7− 20i −19 + 3i 37− 4i

29 −19 + 32i 6− 28i −9− 12i 15− 16i −13 + 24i 6 + 26i −19− 32i

31 17− 5i −7 1 33 + 4i 1 −7− 30i −1− 20i

37 15 + 32i 26− 24i −25 + 28i 11 + 24i −13 + 8i −10− 18i 3 + 36i

41 25− 20i −7 + 50i −5 47− 16i ∗∗ −37− 40i −35− 40i

43 19 + i −26− 19i −7 + 30i −31− 22i 53− 8i −23− 16i 25 + 8i

47 13− 16i 1 + 16i 17 + 40i 1 + 54i 17 + 14i −23 + 10i 9 + 32i

53 −22− 10i ∗∗ 23− 20i −45− 24i 83− 8i ∗∗ 3 + 40i

59 41 + 30i −49− 34i −39 + 22i −11− 16i −43 + 16i 41 + 14i 41− 32i

61 15 + 20i 18− 25i 63 + 20i −21 + 24i 31− 16i −9 + 20i −7
67 −7− 76i −11− 62i 65− 22i −23− 58i −23 + 22i −23 + 70i −55 + 48i

71 −55− 10i −67 + 125i −31 + 20i −23− 28i −31 + 38i 77 + 35i 11 + 20i

73 60− 28i 86− 7i −57− 80i −45− 32i −33 + 80i −85− 148i −35− 72i

79 41− 46i 41 + 19i 81− 24i −15− 88i −63− 74i 41− 35i −59− 52i

83 −47 + 130i 7 + 49i −63 + 106i 17 + 58i −43 + 28i 103 + 25i −11− 56i

89 ∗∗ 51 + 6i −9 + 16i 107 −21 −69 11 + 24i

97 −12− 16i 72− 40i 7 −77 + 64i −77− 128i −24− 64i 13− 64i

101 45 58 + 25i −105− 100i −33 + 64i 115− 40i 61 + 40i −25 + 40i

103 −27 + 85i −69− 137i −127− 220i 113 + 50i −39− 40i 117 + 19i −59 + 152i

107 33− 26i 40 + 17i −7 + 86i −39− 130i 109− 36i −95 + 32i 35 + 68i

109 −74− 94i −39 + 92i −9 + 68i −21− 40i 59 + 40i 21 + 20i −69− 36i

113 87− 76i 222− 16i −61 + 64i 11− 64i −1 + 64i −78 + 104i 91 + 32i

127 −111 + 183i 3− i 161− 16i 1− 34i 161− 44i −87 + 119i −19 + 64i

131 −31− 20i −82− 125i −63− 70i 69 + 12i −91− 52i −79− 80i −25− 60i

137 −125 + 72i −30 + 77i 235− 32i −13 + 160i −45 + 96i −57 + 44i −37 + 176i

139 −59− 8i 81 + 28i 121− 50i 37− 16i −155− 224i −39 + 166i −149 + 180i

149 101 + 36i −124 + 2i −49 + 76i 259 + 8i 99 + 56i 146 + 86i 11 + 64i

151 −47− 50i −145− 175i 17 + 60i −71 + 148i −63 + 126i 101− 115i 5− 80i

157 −141 + 48i −146− 197i −113− 140i 19 + 136i 155 + 8i −77 + 124i 31− 56i

163 −141 + 31i −138 + 149i 1 + 2i −143− 70i −139 + 164i −63 + 104i −79 + 152i

167 −175− 188i 77 + 5i −95− 172i 1− 34i 65 + 50i −163− 205i 7 + 100i

173 54− 54i 87 + 14i −49− 188i 99 + 104i −153− 288i −189 + 248i 49− 136i
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3.7 Remark. The numbers ap listed are conjectured to be the traces of the automorphisms
through which a Frobenius element at p acts on 3-dimensional Ql vector spaces. Note that the
trace of the identity map on such a vector space is equal to three.

For p ≤ 173 we verified that the ap’s for the modular form of level 128 are such traces. R. Schoof
observed that as far as the table goes we have:

ap ≡


3 mod 4 for p ≡ 1 mod 4 and ap ≡ 3 mod 8 when p = a2 + 32b2

1 + 2i mod 8 for p ≡ 3 mod 8
1 mod 8 for p ≡ 7 mod 8

(Note 41 = 32 + 32 · 12, 113 = 92 + 32 · 12, 137 = 32 + 32 · 22.)

3.8 The background for this paragraph can be found in [vG-T]. There a 3-dimensional (compatible
system of l-adic) Galois representation Vl was constructed in H2(Sa,Ql) (etale cohomology) of the
(smooth, minimal, projective) surface Sa defined by the (affine) equation:

t2 = xy(x2 − 1)(y2 − 1)(x2 − y2 + axy)

After a twist by the non-trivial character χ : Gal(Q/Q) → Gal(Q(
√
−2)/Q) ∼= ±1, the L-factors

of the Galois representation on Vl for a = 2 coincide with the L-factors of a modular form of level
128 (the one also listed in the table here) for all primes ≤ 173. With similar computations we
found two more examples:

3.9 Theorem. For all odd primes p ≤ 173 the L-factors of the modular form of level 160
(205 resp.) listed here coincide with the twist by the non-trivial character ε : Gal(Q/Q) →
Gal(Q(

√
−1)/Q) ∼= ±1 of the L-factors of the Galois representation Vl from the surface Sa with

a = 1 (a = 1/16 resp. ).

3.10 It may be expected that more examples of the kind given in Theorem 3.9 can be found.
There is no particular reason why the family of surfaces Sa given above will provide such examples.
In fact, in [vG-T2] different families of surfaces were used to compute tables of traces of Frobenius
for the corresponding 3-dimensional Galois representations Vl. Here we give a similar such table
in which for various values a ∈ Z the traces of Frobenius on Vl are given, for good primes p ≤ 29.
‘Good primes’ here means primes p which do not divide 2a(a2+4); our table displays the symbol (∗)
for primes which do divide this quantity. The method by which traces are computed, is explained
in [vG-T, (3.6–9)]. For amusement, and to stress the point that it is indeed easy to do such
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calculations for many primes, the prime p = 173 is included as well.

a = 1 2 3 4 5 6 7 8 9
p trace
3 −1 + 2i 1 + 2i (∗) −1 + 2i 1 + 2i (∗) −1 + 2i 1 + 2i (∗)
5 (∗) 1 + 4i 1− 4i (∗) (∗) (∗) 1 + 4i 1− 4i (∗)
7 −1− 2i −1− 4i 1 + 2i −1 + 2i 1− 4i 1− 2i (∗) −1− 2i −1− 4i

11 3− 12i −7− 10i −9 + 6i −13 7 + 14i −7 + 14i 13 9 + 6i 7− 10i

13 −5 + 8i 1− 4i (∗) 3− 8i 9− 8i −3− 8i −3 + 8i 9 + 8i 3 + 8i

17 −5 7 5− 8i 3 + 16i −15 + 4i 9 + 20i 1 + 8i (∗) (∗)
19 −13 + 8i 1− 14i −7− 18i 3 + 20i −9− 2i 15− 14i 15 + 18i 5 −21− 4i

23 15 + 26i −17 + 4i −17 15− 26i −7 + 12i −1− 10i 33 + 2i 15− 2i 15 + 24i

29 15 + 16i 9 + 12i −7 + 16i 23 + 16i (∗) −13− 8i −21 + 24i 1− 4i −13 + 24i

173 99− 104i 49 + 188i −43− 96i −93− 56i 99 + 56i 27− 72i −135 + 68i −79− 68i 295 + 48i
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