

Contents lists available at SciVerse ScienceDirect

www.elsevier.com/locate/jalgebra

Cohomological finite generation for the group scheme SL₂

Wilberd van der Kallen

Universiteit Utrecht, Freudenthal Gebouw, Budapestlaan 6, 3584 CD, Utrecht, Netherlands

ARTICLE INFO

Article history: Received 25 January 2013 Available online 17 June 2013 Communicated by Leonard L. Scott, Jr.

Dedicated to the memory of T.A. Springer

Keywords: Group scheme Rational cohomology Finite generation

ABSTRACT

Let *G* be the group scheme SL_2 defined over a noetherian ring **k**. If *G* acts on a finitely generated commutative **k**-algebra *A*, then $H^*(G, A)$ is a finitely generated **k**-algebra.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let **k** be a noetherian ring. Consider a flat linear algebraic group scheme *G* defined over **k**. Recall that *G* has the cohomological finite generation property (CFG) if the following holds: Let *A* be a finitely generated commutative **k**-algebra on which *G* acts rationally by **k**-algebra automorphisms. (So *G* acts from the right on Spec(*A*).) Then the cohomology ring $H^*(G, A)$ is finitely generated as a **k**-algebra. Here, as in [3, 1.4], we use the cohomology introduced by Hochschild, also known as 'rational cohomology'.

This note is part of the project of studying (CFG) for reductive *G*. Recall that the breakthrough of Touzé [4] settled the case when **k** is a field [7]. And [8, Theorem 10.1] extended this to the case that **k** contains a field. In this paper we show that in the case $G = SL_2$ one can dispense with the condition that **k** contains a field. According to the last item of [8, Theorem 10.5] it suffices to show that $H^*(G, A/pA)$ is a noetherian module over $H^*(G, A)$ whenever *p* is a prime number. We fix *p*. To prove the noetherian property we employ universal cohomology classes as in earlier work. More specifically, we lift the cohomology classes $c_r[a]^{(j)}$ of [5, 4.6] to classes in cohomology of SL_2 over the integers with flat coefficient module $\Gamma^m \Gamma^{p^{r+j}}(\mathfrak{gl}_2)$. We get the lifts with explicit formulas that do not seem to generalize to SL_n with n > 2. Once we have the lifts of the cohomology classes we can lift enough of the mod *p* constructions to conclude that $H^*(G, A)$ hits much of $H^*(G, A/pA)$.

0021-8693/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.05.030

E-mail address: W.vanderKallen@uu.nl.

As $H^*(G, A/pA)$ itself is a finitely generated **k**-algebra this will then imply that $H^*(G, A/pA)$ is a noetherian module over $H^*(G, A)$.

For simplicity of reference we use [8]. As we are working with SL_2 that amounts to serious overkill. For instance, the work of Touzé is not needed for SL_2 . Further the 'functorial resolution of the ideal of the diagonal in a product of Grassmannians' now just means that the ideal sheaf of the diagonal divisor in a product of two projective lines is the familiar line bundle $\mathcal{O}(-1) \boxtimes \mathcal{O}(-1)$. And Kempf vanishing for SL_2 is immediate from the computation of the cohomology of line bundles on \mathbb{P}^1 .

2. Rank one

We take $G = SL_2$ as group scheme over the noetherian ring **k**. Initially **k** is just \mathbb{Z} . Let *T* be the diagonal torus and *B* the Borel subgroup of lower triangular matrices. Its root α is the negative root.

2.1. Cocycles for the additive group

We have fixed a prime *p*. Define $\Phi(X, Y) \in \mathbb{Z}[X, Y]$ by

$$(X+Y)^p = X^p + Y^p + p\Phi(X,Y).$$

By induction one gets for $r \ge 1$

$$(X+Y)^{p^r} \equiv X^{p^r} + Y^{p^r} + p\Phi(X^{p^{r-1}}, Y^{p^{r-1}}) \mod p^2$$

Put

$$c_r^{\mathbb{Z}}(X,Y) = \frac{(X+Y)^{p^r} - X^{p^r} - Y^{p^r}}{p} \in \mathbb{Z}[X,Y].$$

We think of $c_r^{\mathbb{Z}}$ as a 2-cochain in the Hochschild complex $C^{\bullet}(\mathbb{G}_a, \mathbb{Z})$ as treated in [3, 1 4.14, 1 4.20]. Then $c_r^{\mathbb{Z}}$ is a 2-cocycle because $pc_r^{\mathbb{Z}}$ is a coboundary. One has

$$c_r^{\mathbb{Z}}(X,Y) \equiv \Phi\left(X^{p^{r-1}},Y^{p^{r-1}}\right) \mod p.$$

Taking cup products one finds a 2m-cocycle $c_r^{\mathbb{Z}}(X, Y)^{\cup m}$ representing a class in $H^{2m}(\mathbb{G}_a, \mathbb{Z})$. The cocycle $c_r^{\mathbb{Z}}$ lifts the (r-1)-st Frobenius twist of the Witt vector class that was our starting point in [5, Section 4]. Now our strategy will be to follow [5, Section 4], lifting all relevant mod p constructions to the integers. That will do the trick.

2.2. Universal classes

Our next task is to construct a universal class $c_r[m]^{(j)}$ in $H^{2mp^{r-1}}(G, \Gamma^m \Gamma^{p^{r+j}}(\mathfrak{gl}_2))$.

Let $r \ge 1$, $j \ge 0$, $m \ge 1$. Let α be the negative root, and let $x_{\alpha} : \mathbb{G}_{\alpha} \to SL_2$ be its root homomorphism, with image U_{α} . For a \mathbb{Z} -module V its *m*-th module of divided powers is written as $\Gamma^m V$ and its dual Hom_{\mathbb{Z}} (V, \mathbb{Z}) is written as $V^{\#}$.

Consider the representation $\Gamma^{mp^{r+j}}(\mathfrak{gl}_2)$ of G with its restriction $x_{\alpha}^* \Gamma^{mp^{r+j}}(\mathfrak{gl}_2)$ to \mathbb{G}_a . Its lowest weight is $mp^{r+j}\alpha$. Say e_{α} is the elementary matrix $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ that spans the α weight space of \mathfrak{gl}_2 , and $e_{\alpha}^{[mp^{r+j}]}$ denotes its divided power in $\Gamma^{mp^{r+j}}(\mathfrak{gl}_2)$. Then $c_{j+1}^{\mathbb{Z}}(X, Y)^{\cup mp^{r-1}}e_{\alpha}^{[mp^{r+j}]}$ represents a class in $H^{2mp^{r-1}}(\mathbb{G}_a, x_{\alpha}^* \Gamma^{mp^{r+j}}(\mathfrak{gl}_2))$ and the corresponding element of $H^{2mp^{r-1}}(U_{\alpha}, \Gamma^{mp^{r+j}}(\mathfrak{gl}_2))$ is T-invariant. So we get a class in $H^{2mp^{r-1}}(B, \Gamma^{mp^{r+j}}(\mathfrak{gl}_2))$ and by Kempf vanishing ([3, II B.3] with $\lambda = 0$) a class in $H^{2mp^{r-1}}(G, \Gamma^{mp^{r+j}}(\mathfrak{gl}_2))$. Recall that one obtains a natural map from $\Gamma^{p^{r+j}}(\mathfrak{gl}_2 \mod p)$ to the (r+j)-th Frobenius twist $(\mathfrak{gl}_2 \mod p)^{(r+j)}$ by dualizing the map from $(\mathfrak{gl}_2^{\#} \mod p)$ to $S^{p^{r+j}}(\mathfrak{gl}_2^{\#} \mod p)$ that raises a vector $v \in (\mathfrak{gl}_2^{\#} \mod p)$ to its p^{r+j} -th power. So $\Gamma^{mp^{r+j}}(\mathfrak{gl}_2)$ maps naturally to $\Gamma^m((\mathfrak{gl}_2 \mod p)^{(r+j)})$ by way of $\Gamma^m\Gamma^{p^{r+j}}(\mathfrak{gl}_2)$. Applying this to our class in $H^{2mp^{r-1}}(G, \Gamma^{mp^{r+j}}(\mathfrak{gl}_2))$ we hit a class in $H^{2mp^{r-1}}(G, \Gamma^m((\mathfrak{gl}_2 \mod p)^{(r+j)}))$, which is where $c_r[m]^{(j)}$ of [5, 4.6] lives. On the root subgroup U_α mod p it is given by the cocycle $\Phi(X^{p^j}, Y^{p^j})^{\cup mp^{r-1}}e_\alpha^{(r+j)[m]} \mod p$, where $e_\alpha^{(r+j)[m]} \mod p$ is our notation for the obvious basis vector of the lowest weight space of $\Gamma^m((\mathfrak{gl}_2 \mod p)^{(r+j)})$. This cocycle is the same as the one used in [5, 4.6] to construct $c_r[m]^{(j)}$. But then their cohomology classes agree on B and G also. So we have lifted the $c_r[m]^{(j)}$ of [5, 4.6] to a cohomology group with a coefficient module $\Gamma^m\Gamma^{p^{r+j}}(\mathfrak{gl}_2)$ that is flat over the integers.

Notation 2.3. Simply write $c_r[m]^{(j)}$ for the lift in $H^{2mp^{r-1}}(G, \Gamma^m \Gamma^{p^{r+j}}(\mathfrak{gl}_2))$.

2.4. Pairings

In [5, 4.7] we used the pairing between the modules $\Gamma^m(\mathfrak{gl}_2 \mod p)^{(r)}$ and $S^m(\mathfrak{gl}_2^{\#} \mod p)^{(r)}$. We want to lift it to a pairing between representations $\Gamma^m(X_r)$ and $S^m(Y_r)$ of G over \mathbb{Z} . We take $X = X_r = \Gamma^{p^r}(\mathfrak{gl}_2)$ and define $K = \ker(X \to (\mathfrak{gl}_2 \mod p)^{(r)})$.

Put $Y = Y_r = \text{ker}(\text{Hom}_{\mathbb{Z}}(X, \mathbb{Z}) \to \text{Hom}_{\mathbb{Z}}(K, \mathbb{Z}/p\mathbb{Z}))$. Then $Y \to \text{Hom}_{\mathbb{Z}}((X/K), \mathbb{Z}/p\mathbb{Z})$ is surjective because X is a free \mathbb{Z} -module. Notice that $\text{Hom}_{\mathbb{Z}}((X/K), \mathbb{Z}/p\mathbb{Z})$ is just $(\mathfrak{gl}_2^{\#} \mod p)^{(r)}$. Thus Y_r is flat and maps onto $(\mathfrak{gl}_2^{\#} \mod p)^{(r)}$.

We have a commutative diagram

and the left vertical arrow is surjective. So we have found our lift of the pairing from [5, 4.7].

Remark 2.5. Notice that we do not use the precise shape of *X* here. What matters is that *X* is free over \mathbb{Z} , with a surjection of *G* modules $X \to (\mathfrak{gl}_2 \mod p)^{(r)}$, and that, for $1 \leq i \leq r$, we have an element in $H^{2mp^{i-1}}(G, \Gamma^m X)$, suggestively denoted by $c_i[m]^{(r-i)}$, that is mapped to the $c_i[m]^{(r-i)}$ of [5] under the map induced by $X \to (\mathfrak{gl}_2 \mod p)^{(r)}$.

2.6. Noetherian base ring

From now on let **k** be an arbitrary commutative noetherian ring. By base change to **k** we get a group scheme over **k** that we write again as $G = SL_2$. We simply write X_r for $X_r \otimes_{\mathbb{Z}} \mathbf{k}$ and we write Y_r for $Y_r \otimes_{\mathbb{Z}} \mathbf{k}$. We keep suppressing the base ring **k** in most notations, so that $X_r = \Gamma^{p^r}(\mathfrak{gl}_2)$, with classes $c_i[m]^{(r-i)}$ in $H^{2mp^{i-1}}(G, \Gamma^m X_r)$. The commutative diagram above becomes after base change

Lemma 2.7. If V is a representation of G and $v \in V$, then the subrepresentation generated by v exists and is finitely generated as a k-module.

Proof. As $\mathbf{k}[G]$ is a free **k**-module, this follows from [6, Exposé VI, Lemme 11.8]. \Box

2.8. Cup products from pairings

Let U, V, W, Z be G-modules, and $\phi: U \otimes V \to Z$ a G-module map. We call ϕ a pairing. Computing with Hochschild complexes one gets cup products $H^i(G, U) \otimes H^j(G, V \otimes W) \to H^{i+j}(G, Z \otimes W)$ induced by ϕ . Note that we are not assuming that the modules are flat over **k**. We think of the Hochschild complex for computing $H^i(G, M)$ as $(C^*(G, \mathbf{k}[G]) \otimes M)^G$, where $C^*(G, \mathbf{k}[G])$ has a differential graded algebra structure as described in [7, Section 6.3].

2.9. Hitting invariant classes

Definition 2.10. Recall that we call a homomorphism of **k**-algebras $f : A \to B$ noetherian if f makes B into a noetherian left A-module. It is called *power surjective* [2, Definition 2.1] if for every $b \in B$ there is an $n \ge 1$ so that the power b^n is in the image of f.

See [7, Section 6.2] for some relevant properties of noetherian maps in cohomology. We are now going to look for noetherian maps. We keep the prime p fixed. Let $r \ge 1$. Let \overline{G} denote G base changed to (**k** mod p), and let \overline{G}_r denote its r-th Frobenius kernel. More specifically, take the Frobenius kernel $(G_r)_{\mathbb{Z}/p\mathbb{Z}}$ of $(SL_2)_{\mathbb{Z}/p\mathbb{Z}}$ and let \overline{G}_r be obtained from $(G_r)_{\mathbb{Z}/p\mathbb{Z}}$ by base change $\mathbb{Z}/p\mathbb{Z} \to \mathbf{k} \mod p$. Now $(SL_2)_{\mathbb{Z}/p\mathbb{Z}}/(G_r)_{\mathbb{Z}/p\mathbb{Z}}$ is affine, and quotients remain affine under base change, cf. [3, I.5.5(1), I.5.4(5)], so $\overline{G}/\overline{G}_r$ is affine. Thus \overline{G}_r is a (**k** mod p)-flat exact normal subgroup scheme of \overline{G} [3, I 6.5], and we have a Hochschild–Serre spectral sequence as in [3, I 6.6] for \overline{G}_r in \overline{G} . We use bars to indicate structures having (**k** mod p) as base ring. Let \overline{C} be a finitely generated commutative (**k** mod p)-algebra with \overline{G} action on which \overline{G}_r acts trivially. By [2, Remark 52] we may view \overline{C} also as an algebra with G action. Let C be a finitely generated commutative **k**-algebra with G action and let $\pi : C \to \overline{C}$ be a power surjective equivariant homomorphism.

Theorem 2.11. $H^{\text{even}}(G, \mathcal{C}) \to H^0(G, H^*(\overline{G}_r, \overline{C}))$ is noetherian.

Proof. By [1, Theorem 1.5, Remark 1.5.1] $H^*(\bar{G}_r, \bar{C})$ is a noetherian module over the finitely generated graded algebra

$$\bar{R} = \bigotimes_{a=1}^{r} S^* \left(\left(\bar{\mathfrak{gl}}_2^{(r)} \right)^{\#} (2p^{a-1}) \right) \otimes \bar{C}.$$

Here $(\bar{\mathfrak{gl}}_2^{(r)})^{\#}(2p^{a-1})$ means that one places a copy of $(\bar{\mathfrak{gl}}_2^{(r)})^{\#}$ in degree $2p^{a-1}$. It is easy to see that the obvious map from $\mathcal{R} = \bigotimes_{a=1}^r S^*(Y_r(2p^{a-1})) \otimes \mathcal{C}$ to \bar{R} is noetherian. So by invariant theory [2, Theorem 9], $H^0(G, H^*(\bar{G}_r, \bar{C}))$ is a noetherian module over the finitely generated algebra $H^0(G, \mathcal{R})$. By [7, Remark 6.7] it now suffices to factor the map $H^0(G, \mathcal{R}) \to H^0(G, H^*(\bar{G}_r, \bar{C}))$ as a set map through $H^{\text{even}}(G, \mathcal{C}) \to H^0(G, H^*(\bar{G}_r, \bar{C}))$.

On a summand

$$H^0\left(G,\bigotimes_{a=1}^r S^{i_a}(Y_r(2p^{a-1}))\otimes \mathcal{C}\right)$$

of $H^0(G, \mathcal{R})$ we simply take cup product with the (lifted) $c_a[i_a]^{(r-a)}$ according to the pairing of $S^{i_a}(Y_r)$ with $\Gamma^{i_a}(X_r) = \Gamma^{i_a}\Gamma^{p^r}(\mathfrak{gl}_2)$. In the proof of [5, Corollary 4.8] one has a similar description of the map to $H^*(\bar{G}_r, \bar{C})$ on the summand

$$H^0\left(G,\bigotimes_{a=1}^r S^{i_a}((\bar{\mathfrak{gl}}_2^{(r)})^{\#}(2p^{a-1}))\otimes \bar{C}\right)$$

of $H^0(G, R)$. The required factoring as a set map thus follows from the compatibility of the pairings and the fact that the lifted $c_a[i_a]^{(r-a)}$ are lifts of their mod p namesakes. \Box

Recall that *G* is the group scheme SL_2 over the noetherian base ring **k**. Now let *A* be a finitely generated commutative **k**-algebra with *G* action.

Theorem 2.12 (CFG in rank one). $H^*(G, A)$ is a finitely generated algebra.

Proof. Recall that *A* comes with an increasing filtration $A_{\leq 0} \subseteq A_{\leq 1} \subseteq \cdots$ where $A_{\leq i}$ denotes the largest *G*-submodule all whose weights λ satisfy $ht \lambda = \sum_{\beta>0} \langle \lambda, \beta^{\vee} \rangle \leq i$. (Actually there is now only one positive root, so that the sum has just one term.) The associated graded algebra is the Grosshans graded ring gr A. Let A be the Rees ring of the filtration. So A is the subring of the polynomial ring A[t] generated by the subsets $t^i A_{\leq i}$. Let $\bar{A} = A/pA$. As in [5, Section 3] we choose r so big that $x^{p^r} \in \operatorname{gr} \overline{A}$ for all $x \in \operatorname{hull}_{\nabla}(\operatorname{gr} \overline{A})$. Put $\overline{C} = (\operatorname{gr} \overline{A})^{\overline{C}_r}$. By [2, Theorem 30] the algebra A/tA = grA is finitely generated. Now t has degree one in the positively graded algebra A, so \mathcal{A} is also finitely generated. By [2, Theorem 35] the map $\operatorname{gr} A \to \operatorname{gr} \overline{A}$ is power surjective. Then so is the map $\mathcal{A} \to \operatorname{gr} \overline{\mathcal{A}}$, because $\mathcal{A} \to \operatorname{gr} \mathcal{A}$ is surjective. Now take a finitely generated G invariant subalgebra C of the inverse image of \overline{C} in A in such a way that $C \to \overline{C}$ is power surjective. By Theorem 2.11 the map $H^{\text{even}}(G, \mathcal{C}) \to H^0(G, H^*(\overline{G}_r, \overline{C}))$ is noetherian. By [1, Theorem 1.5, Remark 1.5.1] the $H^*(\bar{G}_r, \bar{C})$ -module $H^*(\bar{G}_r, \operatorname{gr} \bar{A})$ is noetherian and by [2, Theorems 9, 12] it follows that $H^0(G, H^*(\overline{G}_r, \overline{C})) \to H^0(G, H^*(\overline{G}_r, \operatorname{gr} \overline{A}))$ is noetherian. Then so is $H^{\operatorname{even}}(G, \mathcal{C}) \to H^0(G, H^*(\overline{G}_r, \operatorname{gr} \overline{A}))$, hence also $H^{\text{even}}(G, \mathcal{A}) \to H^0(G, H^*(\overline{G}_r, \text{gr} \overline{A}))$. This is what is needed to argue as in [5, 4.10] that $H^{\text{even}}(G, \mathcal{A}) \to H^*(G, \operatorname{gr} \bar{\mathcal{A}})$ is noetherian. And then one concludes as in [5, 4.11] that $H^{\text{even}}(G, \mathcal{A}) \to$ $H^*(G, \overline{A})$ is noetherian. But $\mathcal{A} \to \overline{A}$ factors through A. It follows that $H^{\text{even}}(G, A) \to H^*(G, \overline{A})$ is noetherian. As p was an arbitrary prime, [2, Theorem 49], or rather the last item of [8, Theorem 10.5], applies.

References

- [1] Eric Friedlander, Andrei Suslin, Cohomology of finite group scheme over a field, Invent. Math. 127 (1997) 209-270.
- [2] Vincent Franjou, Wilberd van der Kallen, Power reductivity over an arbitrary base, Doc. Math. Extra Volume: Suslin (2010) 171–195.
- [3] Jens Carsten Jantzen, Representations of Algebraic Groups, second edition, Math. Surveys Monogr., vol. 107, Amer. Math. Soc., Providence, RI, 2003.
- [4] A. Touzé, Universal classes for algebraic groups, Duke Math. J. 151 (2010) 219-249.
- [5] Wilberd van der Kallen, Cohomology with Grosshans graded coefficients, in: H.E.A. Eddy Campbell, David L. Wehlau (Eds.), Invariant Theory in All Characteristics, in: CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 127–138.
- [6] M. Demazure, A. Grothendieck, Schémas en groupes I, Lecture Notes in Math., vol. 151, Springer-Verlag, New York, 1970; M. Demazure, A. Grothendieck, Schémas en groupes II, Lecture Notes in Math., vol. 152, Springer-Verlag, New York, 1970; M. Demazure, A. Grothendieck, Schémas en groupes III, Lecture Notes in Math., vol. 153, Springer-Verlag, New York, 1970; New edition in: Doc. Math. (Paris), vol. 7, Société Mathématique de France, 2011; Doc. Math. (Paris), vol. 8, Société Mathématique de France, 2011.
- [7] Antoine Touzé, Wilberd van der Kallen, Bifunctor cohomology and cohomological finite generation for reductive groups, Duke Math. J. 151 (2010) 251–278.
- [8] Wilberd van der Kallen, Good Grosshans filtration in a family, arXiv:1109.5822v3.