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Introduction

Let @ be a reduced, irreducible root system [Bo] and 4 a commutative ring
with 1. Define the Steinberg group St(®, 4) by generators and relations as in
[Stb] and [S1, §3]. In [S1, §§5 and 6] it was proved that H,(St(®, A), Z)
=H,(St(®, A), Z)=0 if the rank of @ is large enough or if 4 satisfies certain
additional conditions. In particular, H,(St(®, 4), Z)=0 whenever rk®>3. In
this paper we will compute the exact structure of the Schur multiplier M(St(®, A))
=H,(St(®, A), Z) for such &. We need to consider only the five cases
®=A4,,B,,C;,D,, F, since M(St(®, A))=0 in all other cases for which rk >3
[S1, Theorem 5.3]. In two earlier papers we solved this problem A=Z, even
when ®=4,[vdK 2; S2], and the solution presented here for general 4 depends
on similar calculations. (Unfortunately the calculations for St(3, Z)=St(4,, Z)
don’t seem to generalize.)

For each of these five root systems, the problem is reduced to the case of
a small ring A: either a finite field or IF, [¢]/(t?). For finite fields the answers are
in the literature [G1]; for IF, [t]/(t?) we must find the answer ourselves. This
is postponed to §3. (The solution is modeled after [vdK 1], so that the compu-
tations are tedious.) Along the way we also find the Schur multiplier of St(4, 4)
for a (not necessarily commutative) associative ring 4 with 1. In the last section
we display the connection of this work with the Schur multipliers and K,’s of
Chevalley groups.

§1. Preliminaries

We recall the setting of the computations in [S2], with suitable modifications.
Unexplained notation and terminology is that of [S1] or [S2].

*  Partially supported by National Science Foundation Grant
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(1.1) Commutator Formulas. Let G be a group, a, b, ceG, and write “b=aba™";
[a,b]=°b-b~1. Then
(@) [b,a]~'=[a,b],
(b) °[b~",a]l="[b,a~']=""[a~ ", b~ ]="[a"},b~']=[a,b],
(c) [ab,c]="[b,c][a,c]=[b,%c][a,c], [a,bcl=[a,b]%[a,c]=[a,b][%a,’],
(d) [“a, [b, c11[%¢, [a, b11[°b, [c, a]l=1 (Hall’s identity).

(1.2) Steinberg’s Central Trick. Let n: G — G be a group homomorphism and
suppose ker(n) is contained in the center of G. Let a,a’, b, b’ e G with n(a)=n(a),
n(b)=n(b). Then [a, b]=[a’, b']. Typical application of (1.1) and (1.2): If x, y, ze G
with [TC(JC), n(,V)] = 7[(2)’ then [x29 YJ = [xx’ xy] [X, .V] = [x’ z y] [x, y1.

(1.3) Now let @ be a reduced irreducible root system of rank =3 and 4 a
commutative ring with 1. Let n: G — St(®, 4) be the universal central extension
of St(®, A) and choose, for each ae® and teA, fixed elements y,(t)eG with
n(y,(t) =x,(t). (The choice of these liftings will be irrelevant so long as they
appear inside commutators so that the central trick (1.2) applies.) Recall that
Zy(2)={Be®|(a|p)=0 and a+ B¢ ®}. Define R<ker(n) to be the subgroup of G
generated by

{[ya(t)’ yp(u)] |ae<P, ﬁezo(“)’ L, MEA}.

(14) Theorem. Assume tk®=3 and ®+F,. Then R= M (St(®P, A)). Moreover it
suffices to restrict the generators of R to one fixed a of each length.

Proof. As in [S2, Theorem 1.5].

(1.5) Let ¢: A— B be a surjective ring homomorphism and let @ be as in (1.4).
Then ¢ induces a surjection M(St(®, A)) —» M(St(®, B)) sending the generator
[, (1), y,)] to [y.(@(1)), ys(¢®)]. Thus the order of M(St(®,B)) is a lower
bound for the order of M(St(®, 4)). .

(1.6) Suppose ®=F, with simple roots a,=¢,—¢;, 0, =&3—¢,, 03=¢,,
o, =3(e; —&,—&3—¢,) [Bo, p.272]. Then {a,,,,a;} span a root system of
type B;. The following facts are implicit in [S1, §§5, 6]. The inclusion of this
B;-system into F, induces a homomorphism St(B,, A) — St(F,, A) which factors
(uniquely) through the universal central extension n: G — St(F,, 4). (This is a
consequence of the fact that M(St(Bs, A)) has trivial image in G (cf. [S1, Lemma
6.2]). One may also check this using Theorem 2.8 below.) Let y2(r) denote the
image in G of the generator x,(t) of St(B;, 4). Note that n(y2(t)) =x,()eSt(F,, A).

Similarly {«,,a;,a,} span a root system of type C, and there is an induced
homomorphism St(C,, A) — G. The image in G of the generator x,(t) of St(C;, A)
is denoted yC(1). As before, n(yS(£))=x,(t)e St(F,, A).

Let R'cker(n) be the subgroup of G generated by all y2(t) yS(t)~?, teA,
where « is in the intersection of the B, and C, subsystems described above
(S0 a=te3, +&,, +&1E,).

(1.7) Theorem. R'=M(St(F,, A)). It suffices to restrict the generators of R’ to
one fixed o of each length. A surjective ring homomorphism ¢: A— B induces a
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surjection M(St(F,, A)) — M(St(F,, B)) sending yZ(t) y< (t)~* to y2 (@ (1)) ys (@ (1) ~*;
thus the order of M(St(F,, B)) is a lower bound for the order of M(St(F,, A)).

Proof. As in [S2, Theorem 1.5].

§ 2. Calculation of the Multipliers

In (2.6), (2.8) and (2.10) we will assume the results of §3. The remainder of this
section is independent of §3 and may, therefore, be used in §3. We will not
elaborate much on detailed computations when they are analogous to those
in [S2].

We will label our root systems as in [Bo, pp.250-275]. In order to keep
our subscripts manageable, we adopt the following notation. The subscript ij
stands for the root ¢;+¢;. If &= B, or F,, the single subscript i denotes the root ¢;
if = C,, it stands for the root 2¢;. A primed subscript denotes a minus sign:
thus i'j stands for —e¢;+¢; and i’ stands for —¢;, except if ®=C, when it stands
for —2¢;. (This notation was inspired by Griess’ thesis; cf. [G 2].)

(2.1) We will often use Hall’s identity (1.1d) to find a relation in G. Relations
(1.1)(a)~(c) and the central trick (1.2) can then be used to simplify the relation.
The central trick usually allows us to eliminate any repetition of a root within
a commutator, e.g.

D0 @) ¥, (8) ", p, @)1= [V p(E 1) y W), y,(v)]

when [x, (1), x5 ()] =x, ., z(t u).

As a rule we consider the right hand sides of (1.1) (a)-(c) to be better than
their other members. An exception occurs when n([b, c])=1, so that [b,c] is
central. Then, naturally, we prefer [b, c] [a, c] over °[b, c] [a, c].

Our procedure for simplifying relations is to apply alternately the central

trick and the commutator relations. The following fact [S1, Proposition 5.12]
allows us to delete many commutators: If (¢|8)>0, a=+f, a+ f¢ P, and rk $=3,
then [,(2), y,(w)]=1.
(22) The Case G=St(C;,A). We set P(r,s)=[y;,.(r),ys()], Q(r,s)=
[y3(r), y,(s)], for r, se A. Then the elements P(r,s), Q(r, s) generate R =M(G) (cf.
[S2, (2.1)]). The commutator relations and the central trick imply P(r,s+t)=
P(r,s) P(r,t); P(r+s,t)=P(r,t) P(s,t), and similarly for Q. Applying (1.1d) to
a=y,(r), b=y, ,(s), c=y,.,(1) and simplifying, we obtain [y;(r), y,(£2s)]=1,
which implies Q(r, s)*> =1. It follows as in [S2, (2.1)] that [y,(r), y;(s)]=Q(r, 5) for
i%j. In particular, Q(r, s)=0Q(s, r).

Next apply (1.1d) to a=y, ,(t), b=y,.(r), c=y;(s). Simplifying, we learn that
P(rt, s)=Q(s, rt?); hence P(rt, s)=Q(rt?,s). Setting t=1, we have P(r, s)=Q(r, s).
Thus P(r(t*—t), s)=0.

Finally apply (1.1d) to a=y;(1), b=y 5. (t), c=y,.5(r), to obtain P(r, t)= P(1, rt).
Therefore the map sending ae A to P(1, a) is a homomorphism from the additive
group of A onto the Schur multiplier R=M(G). Call this homomorphism ¢.
Then ker (¢) contains the ideal I generated by {t*—t|te A}, which is the intersec-
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tion of all maximal ideals m of A with A/m=IF, [S1,(4.2) (c)]. Set A=A/l Thus
if 0%eeA, there is a homomorphism f: A— IF, with f(e)=1. This yields a
commutative diagram

A A L T,

]

M(St(C3, A)) = M(St(C3, A)) —> M(St(C3, IF,))

in which the vertical maps are onto. Since M (St(C,, IF,))%0 [G, p. 70], the right-
hand vertical map is an isomorphism, and the image of e in M(St(C,, 4)) must
be non-zero.

We conclude that ker(¢)=1.

Theorem. There is a homomorphism from the additive group of A onto M(St(C;, A))
sending ac A to [y, _,,(1), y,,,(@)]. Its kernel is the ideal generated by {t?—t|teA}.

Remark. Thus we retrieve the result of [S1, Theorem 5.3]: M(St(C,, A))=0if A
has no residue field isomorphic to IF;,.

(2.3) The Case G=St(F,, A). Let P(r)=y5(r) y5()~", Q(r)=y34(r) y54(r)~" for
reA. Then R’ = M(G) is generated by P(r), Q(r) (cf. (1.6)). The central trick implies

[Am), y54 @)]1=05w), ¥54 ()]

The left-hand side equals y2 ,( u? v) y5(w u v); the right-hand side equals y§ ,(n u? v)

yS(@wuv), for n=+1, o= +1. Hence P(wuv)=Q(nu?v)~' using the centrality
of P(wuv), which implies P(wv)=Q(nv)"'=P(—wv). It is easy to check that
P(r+5)=P(r) P(s), so this implies P(wv)>*=1, P(wv)=P@®)=Q(nv)~!, P=Q,
P(u—u?)v)=1. Argu"ng as for C, we obtain the following generalization of
[S1, Theorem 5.3].

Theorem. There is a homomorphism from the additive group of A onto M(St(F,, A))
sending acA to y2(a)y< (a)~". Its kernel is the ideal generated by {t*—t|te A}.

(2.4) The Case G=St(4, A). Taking ®= A, yields the group St(4, A) of algebraic
K-theory [M, p. 39]. We prefer the notation St (4, 4) here since the group in question
is defined even if 4 is not commutative. So let A4 be an associative ring with 1.
Theorem (1.4) (R=M(G)) still holds with the same proof as for commutative
rings.

We use the standard notations of algebraic K-theory in place of the notation
introduced at the beginning of this section. (Thus we write x;; for what was pre-
viously called x;;; they denote x,, _, .) Let y;,(r) be fixed llftmgs to G of the gener-
ators x;;(r) of G and set P(r, s)= [yn(r) V3 4(s)] Then the P(r, s), r, se A, generate
R=M(G). As usual, P(r+s,t)=P(r,t) P(s,t) and P(r,s+t)=P(r,s) P(r,t). Also
if 4, j, k, I are distinct, standard computations show [y,,(r), y,,(s)]=P(r, s)tL

Now recall that [y;;(r), ()] =Ly;(r), yxi(s)] = 1(this is the situation referred
to at the end of (2.1)). Applying (1.1d) with a=y,,(p), b=y;,(q), c=y,4(r), we
find that [y,,(p), ¥34(@)1=[y32(a), y14(—p )]~ . Both sides are central, so let
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us conjugate the right-hand side by y,;(1) y5,(—1) y,5(1) while leaving the left-
hand side alone. This yields [y,,(p), y34(@1]1=0[y12(q)y34(pr)]1~", that is,
P(p,qr)=P(q, pr)~1. If we set F(r)=P(1,r)~! and make the proper substitutions,
we learn P(p,r)=F(pr), F(pqr)=F(qpr)~*, F(r+s)=F(r)F(s), F(r)*=1, F(pq)
=F(qp), Fpqrs)=F(qrsp)=F(rqsp)=F(prqs). Thus F annihilates the 2-sided
ideal J of 4 generated by all gr—rq and 2.

Next apply (1.1d) with a=y,,(p), b=y, ,(q), c=y,5(r) to obtain

[y1200), ¥23@NI1F(@rpq) [yas(r), yialpg)l=1.

Substituting 1 for g, gr for r and comparing with the original identity yields

(x) F@rpa—arp)=0ys3(ar), y14@] s, y1a(p 01"
Substitute pq for p, r for g, 1 for r and multiply with () to find that

F@rpq—qrp+rpqr—rpq)=[y43qr), y1a@1[yas(1), y14l0gr)] "

But this also equals F(qrpgqr—gqrp), as one sees by substituting 1 for r and qr
for g in (x). Thus we learn that F(qrpgq—qrp+rpqr—rpq—qrpqr+qrp)=1,
or, since F annihilates J, F(p(q>+q)(r*+r))=1. Hence F annihilates the two-
sided ideal I of A generated by 2, gr—rq and (g*>+q)(r*>+71), g,re A. Let A=A/L
Then A4 is commutative and x*—x2=(x2+x)?=0 for all x. Thus every square
in A4 is an idempotent (possibly 0).

(2.5) Let IF,[e]=IF,[t]/(t?), e=t/(t?), be the ring of dual numbers over IF,.

Lemma. Let xe A. Then x =0 if and only if there is a homomorphism ¢: A — TF,[¢]
with ¢(x)=*0.

Proof. Let xe 4, x+0, and let p be a prime ideal of A contammg the anmhllator
of x, so that the image of x in 4, is non-zero. If ye A —p, the image of y in A,
is an invertible idempotent in a local ring, hence equals 1. This proves that the
localization map A— A is surjective (in particular, the ideal of A generated
by 2 and all (u2+u)(v? +v) vanishes) and we may assume that A 1s local with
maximal ideal m. If x ¢ m, its image in the residue field is non-zero and that residue
field is IF, which is a subrmg of IF, [e]. If xem, we argue as follows Each uem
has square O since u? is 1dempotent Hence u=u?+u and m -(0) Since A4 is
additively generated by 1 and m, each additive subgroup of m is actually an
ideal. And since 4 is an IF,-vector space, there is an ideal n which is a comple-
mentary vector subspace to the subring generated by 1 and x. Clearly 4/n is
isomorphic to IF, [e].

(2.6) We will show in § 3 that if 4=IF,[e], the homomorphism F: 4 — M(G)
is injective. Therefore we conclude as in (2.2):

Theorem. Let A be an associative ring with 1. There is a homomorphism from the
additive group of A onto M(St(4, A)) sending acA to [yu(l) V3 4(a)] Its kernel
is the two-sided ideal generated by 2, all qr—rq and all (q*+q)(r*+7), q,re A.
In particular, M(St(4, A))=1 if and only if A admits no non-trivial homomorphism
to TF,.



88 W. van der Kallen and M.R. Stein

(2.7) The Case G=St(B,, A). We assume once again that 4 is commutative
and resume our usual notation. The long roots in B, form a subsystem of type
A, which allows us to use the results of (2.5) as follows. Set F(r)=[y, 5(1), y, - (")].
Then F(r) F(s)=F(r+s5); F annihilates the ideal generated by 2 and all (g*>+ q)
(r*+7); and [,(r), y4(s)]=F(rs) when o and f are long and («|f)=0. Now set
Q(r,)=[y,(r), y25(s)]. One checks as usual that Q(r+s,8)=Q(r, 1) Q(s, 1);
O(r, s+0=0(r,5) Q(,1) and that [y, () Vsree&1=00,5)" if i,j k are
distinct.

Applying (1.1d) to a=y,(1), b=y, ,(v), c=y,3(1) yields Q(t,v)=0Q(n, tv) for
some = =+ 1. Substituting 1 for ¢ and tv for v, we deduce that Q(t, v)=Q(1, tv).
Set H(v)=Q(1,v). Apply (1.1d) with a=y, (1), b=y,.5(1), c=Y, 5.(v) and simplify
(see (2.1)) to obtain

[y23: @), y13(£I0y1(0), 1 o(20)] H(£ 22 v) H(xt0) F(:? v?)
=[}’13(it2)’ V1 2(£0)]Dya(£10), ¥, 5. 0]

If we apply n, the image in G of the left-hand side is x,,(*) x,(+tv) while the
image of the right-hand side is x, ;(*') x,(Ztv). Since these must be the same,
we conclude that *=* =0 and their common image under 7 is x,(+tv).

Call the left-hand side of this expression y and let w=y, 5.(1) y;.5(—1) y; 3.(1).
Then conjugating y by w is the same as multiplying y on the left by [w, y]=
[w, x,(£tv)]=H(%tv) H(t£tv) H(ttv) (by the central trick). Let us conjugate y
in this way and also conjugate the right-hand side by w in the ordinary way, ie.
factor by factor. This yields

(#%) H(Ztottvttvottv+20) F(2v?)[y,30), y13(sy 2110, vy (s, 0)]
=[y;13(531%), ¥2 3. (54 V)1 [V1(55 1), ¥y 2(S6 )]

for some set of signs s;,= + 1. We may assume s; =1 (otherwise use w~"' instead
of w). It is easy to see that

[yy3(s3 t?), V2384 0)]=01y23:(v), 1305, i ] I

Again projecting to G, we see that s, =s¢ and 5,53 s, = — 1. Hence the commuta-
tors in () cancel so that H(+tv+tv+tv+tv+t3v) F(t?v?)=1. (One can also
do the computations with a set of consistent structure constants. Then one sees
directly that these signs behave in the way described above.) Thus there is an
Ne{—4, —2,0,2, 4} such that H(N tv—t3v)=F(t?> v?), and this N is independent
of the ring 4. For A=Z, we know [S2, Theorem 2.6] that M(G) has order 6 and
is generated by H(1). Putting t=1, v=2, we obtain H(2N —2)=F(4)=1; hence
N=4 or N=-2. If N=—2, put t=—1, v=2u to obtain H(6 u)=F(4u?)=1.
Thus H@tv—t3v)=H(—2tv—t>v)=F(t?v?) and we may as well assume that
N =4. A similar calculation then shows that we still have H(6u)=1.

Now set L(a)=H(2a) F(a), acA. Then L(3a)=F(a), L(3v*)=F(v*)=H(3v).
So L is a homomorphism from the additive group of 4 onto M(G). The kernel
of L contains the ideal I generated by 6, 3(¢g2+q) (r*+r) and 8:—2¢> (setting
v=2u). The ring A = A/I is the product of 4/2 4 and A4/3 A. The latter has trivial
nilradical. If A=IF; or IF,[¢], the map L is injective (see [G1, p.70] and §3).
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Hence we conclude:

(2.8) Theorem. There is a homomorphism from the additive group of A onto
M(St(Bj, A)) sending a€A to [y, (2), Ve, e, (@] 1V, 4e,(1), Ve, —o,(@)]. Its kernel is
the ideal generated by 6, 3(q*+q)(r*+r) and 2q—2q°(q,reA). In particular,
M(St(B;, A))=1 if and only if A admits no non-trivial homomorphisms to IF,
and TF,.

(29) The Case G=St(D,, A). For reA, set
K()=L[y12(1), y12(0)], Hr)=Ly,,(1), y34()],

F(r)=[y,,-(1), y34-(r)]. Using the various subsystems of D, of type 4, and the
results of (2.5), we see that F, H and K annihilate the ideal generated by 2 and
all (g% +q) (r* +r). Moreover, according to (1.4), {F(r), H(r), K(r)|re A} generates
M(G). For aeD,, set 5,=y,(1)y_,(~1) y,(1). Conjugate y=[y,5(q).5,(1)] in
2 ways by w=s, s s, . (The usual way is factor by factor; the unusual

e +£2 V83 +84 V83 —24

way is left multiplication by [w, y]=[w, y,,.(£¢)]. Cf. (2.7).) We obtain

K(@) H(@) F(@ y=[y;(£9),y13(£1)]
=[y;3(1), y3 2'(‘1)]il

and the exponent of the last term must be +1 because the images of the 2 sides
under 7 must agree in G. Since &, —¢,, &, — €5, &3 — &, Span a subsystem of type 4,,
we may apply relation () of (2.4). Performing the cyclic permutation (432) on the
indices in that relation and substituting p=r=1, we see that [y,;.(1), y3,.(9)]
=yF(q*—q). We conclude that F(q?)=H(q)K(q), so that 1=F((r*+r)*)=
H(r*+7r)K(@*+r), or Hr?+r)=K(r*+7r). Similarly, F(r>4+r)=K(r*+7r), and it
follows that M(G) is generated by all K(q) and L(q)=F(q*)=K(q*+q) F(q).

(2.10) Using the results of § 3 we conclude:

Theorem. There are homomorphisms K and L from the additive group of A into
M(St(D,, A) defined by

K(@)=0yy, —,(1), Y, +e,(@)]
L(a)'—-[))el—ez(l)s ye;—e,(az)]
such that
(i) M(St(D,, A)) is the direct product of K(A) and L(A);
(ii) the kernel of K is the ideal generated by 2 and all (g +q)(r* +71), q, re A;
(iii) the kernel of L is the ideal generated by all > +q, qe A.

In particular, M(St(D,, A))=1 if and only if A admits no non-trivial homo-
morphisms to IF,.

§3. The Case 4 =IF, [¢]

We still must show that the theorems in (2.6), (2.8), (2.10) hold when A4 =1IF, [e].
We begin with (2.10), i.e. type D,, and deduce from it the results for A, and B,.
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(3.1) Let #=D, and let 4c ® be a simple subsystem. Let A=IF,[¢]. The maps
K and L from A to M(St(D,, A)) are defined in (2.9); we must show they satisfy
(i)-(iii) of Theorem 2.10. The kernel of L contains e=¢%+¢ and we know from
(2.9) that L(A), K(A) generate R=M(St(D,, 4)). Hence (i)-(iii) will follow once
we show that R has (at least) eight elements. Now the surjection IF,[¢] —IF,
sending ¢ to 0 induces a surjection M(St(D,, A)) — M(St(D,, IF,)) whose kernel
contains K (¢). Since M(St(D,,IF,)) has four elements ([G1, Table 1]; cf. [S2,
(2.4)]), it thus suffices to show:

(3.2) Theorem. K(¢)%1 in M(St(D,, IF,[£])).
The proof of this theorem will be completed in (3.12).

(3.3) Consider the Chevalley group Spin(8) in characteristic 2 (the simply
connected group of type D,). Let L be the points defined over IF, in the Lie
algebra of Spin(8). Then L is a Lie algebra over IF, containing elements X,, H,,
aed (the set {X,, H;, ae @, §e 4} is a basis for L over IF,). Let Z be the center of L,
which is generated by H,,+ H;, and H,,.+H;,.. The group G=St(D,,IF,)
maps onto a subgroup of Spin (8) (isomorphically, but we don’t need that). Thus
G acts on L via the adjoint representation, and this action leaves Z invariant.
Thus L=L/Z is a G-module (irreducible, but we won’t need that either). We will
work with L and denote the images of X,, H, in L by the same letters. Normalize
the inner product so that («|a)=2. Then in L, H,=H; if (x|y)—(B|y)€2Z for
all ye®. So Hy,,,, =H H ,=H;,, and H,,., H,; and {X |ac®} are a

! =ch &itegj?
basis for L.

(34) Let L act trivially on Z/2 Z. Any bilinear map from L to Z/2 Z is a 2-cocycle
with respect to this action. We choose as our cocycle the bilinear map B: L x L
— Z/2Z satisfying

B(X,, X4)=0 if a+pf+0 or a<0.
B(X,,X_p=1 if a>0.
B(HG,X‘,)=B(X”,H,)=O.
B(H,;.,H,,)=B(H,,,H,3)=B(H;5, Hy3)=1.
B(H, 3., Hy,)=0.

(3.5) Aside. The group H?(L,Z/2 Z) is well understood. As a G-module (G acts
on L and leaves Z/2Z alone) it is the degree two part of the symmetric algebra
on the dual, I*, of L (over IF,). The class of B spans the unique one-dimensional
invariant subspace. If we knew H?(G,I*)=0, we could use a spectral sequence
to find an element in the Schur multiplier of the semi-direct product of L and G
[E, §2]. Since we don’t know this, we will apply brute force to split the relevant
extension of G by I*. (In our exposition we will point out only the splitting, not
the extension.) If k is a field of characteristic 2 larger than IF,, the same spectral
sequence shows that the relevant extension of St (D,, k) by its irreducible module
of highest weight ¢,+¢; does not split (assuming the results of this section for
A=k[e]). So the splitting is exceptional and we are not to blame for the strange
looking formulas that describe it.
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(3.6) The 2-cocycle B of (3.4) defines a group extension 1 - Z/2Z > M 5 L— 1.
Let C generate the image of Z/2Z in M. We want to write the composition in M
multiplicatively because M is not commutative (B is not symmetric). The map i
is then given by the formula i(n)= C", which depends, of course, only on whether
n is odd or even. There is a set —theoretic cross-section s: L— M satisfying
CB& =5(x) s(y) s(x+y)~ !, x, yeL. Since B(0,0)=0, we have s(0)=1.

(3.7) Set n,=s(X,), d,=s(H,). We now want to forget B and characterize M in
terms of its generators n,, d, and C. (The construction of M above can be seen
as an existence proof.)

Proposition. M has a presentation with generators C,n
relations:

d, (xe®) subject to the

a’

[n,nl=1 if a4+ B0,

[nam’ n—a] =C,
[n,, dﬁ]= 1,
nz=1,

d?=_C,

ld,, dﬂ] =C@lp
C?=1,

dy,dy3=d;5C,
d,=d; if (x+ply)e2Z forall yed.

Proof. First check that these relations hold in M. (Start with the last one; then
show that if a relation involves d,, we may assume a=g, +¢&,, &, +€; OI & +¢£5.)
Let M’ be the group defined by the presentation. Then C is central in M’ and
clearly M’/C is isomorphic to the additive group L. So M’ is at most twice as big
as L, and the surjection M’ — M must be a bijection.

(3.8) Lemma. Let (i,j, k,I) be a permutation of (1,2,3,4). Then d:mte,»:d
.=dsk+£1
is even.

ei+e)

and d;;d;,=d;, C° C where a=1 if the permutation is odd and ¢=0 if it

Proof. The first statement is obvious (cf. (3.3)). We may rewrite the second as

dd, d,=C,

ij%jk
which clearly holds for the identity permutation. Suppose it holds for a particular
choice (i, j, k, I). Then using what we have already proved,
djn'dik dkj=dij [dix, dkj] djk di
=d!j Cd]k dyi
which proves the second statement for (j, i, k, I) as well. Similarly one shows that
it holds for (i, k, j, I) and (i, j, I, k) whenever it holds for (i, j, k, I). This completes

the proof, since the full permutation group is generated by transpositions of
adjacent elements.
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(39) Next we want to construct an action of G=St(D,,IF,) on M so that
p: M — L is equivariant with respect to this action (and the usual action of
G on L). We denote by (i, J, k, [) some permutation of (1, 2, 3, 4). Define

C“={C r<s
1 r>s.

For each ae®, define p, as follows:
Pa(np)="pna+p Cii Cyi if a=+4eg+e;,f==x¢;teg, («|p)=—1,

Pa(ny)=n, C if (x|B)=0,
po(ng)=ny if (a|p)>0,
Pa(n_z)=n_,d,n

p,(C)=C,
p.(d)=d,n CEM if o= tgte

i—%j

B=+e;+e, and i<j k<l

(Note that f is determined by a.)

In particular, p,(d,)=d,n,C,, C,, if a=t¢,t¢, y=+¢,t¢,, and p,(d,)
=d, C, if (p, g, 1, s) is a permutation of (1, 2, 3,4).

We claim that this list defines p, as an element of Aut(M), the automorphism
group of M. To check this, we must show that p, preserves the defining relations
of M (Proposition (3.7)). We also claim that the automorphism of L induced by
p, is the same as the action of x,(1). Finally we claim that {p,|ac®} satisfy the
defining relations of G so that x,(1)~ p, defines a homomorphism G — Aut(M)
(in (3.5) we referred to this homomorphism as a “splitting”). So, for instance, we
claim that p, pg=p, . ;ps P, When («| f)= — 1. This is proved by evaluating both
sides on the generators of M. Since the analogous relation is valid in L, all that
might go wrong is that the powers of C which are produced in this way don’t
match. Before the powers of C can be compared, however, one first must see that
all the other factors cancel. This may involve a rearrangement of the other factors,
which produces a C,e.g. n_gng=nzn_, C. It may also involve combining factors
as in Lemma (3.8), which may also produce a C.

(3.10) Example. Take a=e¢,+¢;, B=—¢;+¢, y=—¢—¢. Then p,p4(n)
=Ny Meiy ij Cilnﬂ+ydana Clj Ckls and pa+ﬁpppa(ny)=nyda+ﬂna+ﬂnﬁ+7nﬁ Cjk
CuCi;Ciynyyn, C;;Cydgn,  ;Cy Cyny Cy;Cy . By Lemma (38),d, , ydy=d, C°C,
where a=0 if (i, k, j, [) is an even permutation and o =1 otherwise. Thus in order
that p, pg(n,)=p,,5PpP.(n,), We must have

1=C"C; C; C,y C;; Cy Cyy
or
Cc'= Cjk Cji le Cik Cut Cyy.

But this last term on the right is C°, where t is the length of the permutation
(I, k, i, j). (The length counts the number of roots that are made negative, or the
number of transpositions of neighbors necessary to build the permutation.)
Clearly (I, k, i, j) and (i, k, j, [) have the same signature, so that C°= C® indeed.
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(3.11) Example (3.10) deals with the worst case. We leave to the reader the task
of checking that p2=1, p,p,=p, p, if (|7)=0 and the remaining cases of p, Pp
=Pq45PpPq if (2| B)=—1. These relations suffice to define the homomorphism
G — Aut(M) (cf. (3.9)), since the relation [p,,p, z]=1 if (x|f)=—1 follows
from them:

1=[pZ, p;]
="*[py, Pg] (P> Pg]
=Py * Pasp Pa  Parp
=[Pas Pussl-

(3.12) Now let H=M x G, the semi-direct product of M and G. Since p: M — L
is equivariant with respect to the actions of G on M and L, there is an induced
surjective homomorphism H — L x G with kernel generated by C. In particular,
C is central in H. There is also a surjection St(D,,IF,[¢])— LxG defined by
x,(1)—x,(1), x, () X, which induces a homomorphism M(St(D,,IF, [¢]))— H.
The image of [y, (1), y,(e)] is the commutator of x,(1) and n, in H by the central
trick. So if (| f)=0, the image of [y, (1), y,(e)] in H is p,(ng) ny' = C=+0. In par-
ticular, K (&) has non-trivial image in H, proving Theorem (3.2) and, therefore,
Theorem (2.10).

(3.13) A homomorphism St(B,,IF,[e])—>St(D,,IF,[¢]) may be defined by
X, (O X o oy (8) Xy () fOr s= 21, x, () x,(¢) if a is long (e.g. a=¢ +¢;).
This induces a homomorphism M(St(B,,IF, [€]))—> M(St(D,, IF,[€])) sending
[Vi2:(1), y12(r)] to [yy5:(1), y,,(r)]. Thus it follows from (2.7) and (2.10) that
Theorem (2.8) holds for A=IF, [¢], which completes the proof of that theorem.

(3.14) There is also a homomorphism St(4,,IF, [¢]) — St(D,,IF, [¢]) induced
by the inclusion of Dynkin diagrams A,= D, ({oy, a,, 3} = {a,, a,, a3, a,}). We
use it as in (3.13) to complete the proof of Theorem (2.6).

§ 4. Applications

(4.1) There is a natural homomorphism St(®, 4) — G(®, A), sending x,(t) to
e,(t) [S3, § 1A]. Its kernel is denoted K, (P, A), its image by E(®, 4), and K (P, A)
is the pointed set G(®, A)/E(®, A) which is its cokernel.
(4.2) Whenever K, (@, 4) is central in St(®, A), there is an exact sequence [S2,
Proposition 1.1]

0— M(St(®, A)) » M(E(®, A)) —» K, (P, A)— 0.
If rk @ =3, we have computed the kernel in this sequence and have seen that it
depends only on what homomorphisms exist from A to IF; and IF,[e]. Thus
whenever K,(®, A) is central and computable, we can compute the Schur multi-
plier of the subgroup E(®, A).
(4.3) Examples. If ®=A,, K,(®,A) is central in St(®, A)=St(4,4) for any
commutative ring A (van der Kallen, to appear). In general if A satisfies Bass’
stable range condition SR,, [S3, § 1C] for small enough m, K,(®, 4) is central
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in St(®, A) [S3, Corollary (3.4)]. Here is a list of sufficient conditions on m.
&=B,, m=2,
d=C,, m=2,
&=D,, m=3,
&=F,, m=3.

(44) If K,(®,A)=1, we may replace E(®,A) by the Chevalley group G(®, A)
in (4.2).

Examples. 1. If A is semi-local, K,(®, A)=1 [Ma, Cor.4.4b; S3, Theorem 2.2
and Cor. 2.3].

2. If A is the ring of integers in an algebraic number field, K, (@, 4)=1 if
tk #>2 [Ma, Cor. 4.6; B-M-S, Cor.4.3a and Cor. 12.5].

(4.5) If the maximal spectrum of A has dimension<1, K,(4;,A4)=K,(4)
[vdK3]. Hence:

Proposition. If A is the ring of integers in an algebraic number field, there is an
exact sequence

0 — M(St(4, A)) > M(SL(4, 4)) - K,(4)— 0.
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