
1 Lie algebra cohomology

Lie algebra cohomology was invented by E.Cartan in an attempt to compute
the de Rham cohomology of a compact Lie group. Thus let G be a compact
semi-simple Lie group with Lie algebra g. The de Rham cohomology is
computed by way of a complex Ω∗G of smooth differential forms on G. By
averaging one may deform an arbitrary form on G to a right invariant one.
One easily shows (see Bourbaki) that that the averaging process induces
a map Ω∗G → (Ω∗G)G which is homotopic to the identity map, so that
de Rham cohomology may just as well be computed as cohomology of the
complex (Ω∗G)G of right invariant forms. The elements of the Lie algebra are
right invariant vector fields, so one can dualize and get a complex computing
de Rham cohomology of G in terms of the Lie algebra (Cartan’s theorem).
This complex is now known as the Koszul complex. Let us write it down a
little more generally, namely with coefficients in a g module M . (Think of a
connection in a bundle.) So we must dualize the formulas for the de Rham
complex (with values in a bundle with integrable connection?)

1.1 Koszul complex. We tensor the exterior algebra
∧

g over the
ground field k (usually R or C) with M and define a differential ∂ by

∂(a⊗ (g1 ∧ · · · ∧ gq)) =∑
1≤s<t≤q(−1)s+t−1a⊗ ([gs, gt] ∧ g1 ∧ · · · ĝs · · · ĝt · · · ∧ gq)+∑
1≤s≤q(−1)sgsa⊗ (g1 ∧ · · · ĝs · · · ∧ gq).

The homology groups of this complex are denoted Hi(g, M), or simply Hi(g)
if M is the module k with trivial action. If

0→M ′ →M →M ′′ → 0

is an exact sequence of g modules one gets a long exact sequence

. . . Hi(g, M ′)→ Hi(g, M)→ Hi(g, M ′′)→ Hi−1(g, M ′) . . .

and if M is the universal enveloping algebra U(g) one sees, by constructing

an algebraic homotopy, that Hi(g,U(g)) =
{

k if i = 0
0 if i > 0.

This is used to show that

Hi(g, M) = Tor
U(g)
i (k,M).
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One may easily extend the definition of Hi(g, M) to the case that M is not
a single module, but a complex M· of g modules. For this one passes to the
“total complex” of M·⊗

∧·
g, by taking together the Mi⊗

∧j
g with the same

value of i + j. Then if M· → N· is a quasi-isomorphism, i.e. if it induces iso-
morphisms Hi(M·)→ Hi(N·), one gets isomorphisms Hi(g, M·)→ Hi(g, N·).
In other words, the usual machinery of homological algebra (projective res-
olutions, spectral sequences, . . . ) applies.

As the cohomology of a compact Lie group was the first example of a
Hopf algebra, it is not surprising that H·(g) is a Hopf algebra too. If g is
finite dimensional over R, the structure theory of Hopf algebras thus predicts
that H·(g) is an exterior algebra on odd dimensional generators, known as
primitives. See [1].

It is similarly not surprising that g acts trivially on H ·(g).
There is a dual theory of Lie algebra cohomology , computing the groups

Exti
U(g)(k,M) with a similar “Koszul complex”. For finite dimensional M

and g one simply has H i(g, M∗) = Hi(g, M)∗ where ∗ refers to the linear
dual.

2 Examples

2.1 Semi-simple case. Let g be a semi-simple Lie algebra. Note that the
computation of Lie algebra homology commutes with extension of the base
field, so that we may freely pass from R to C or to a convenient real form of g.
By Cartan’s theorem the computation of H·(g) amounts to the computation
of the Betti or de Rham cohomology of the corresponding compact Lie group
G. One may also try to compute directly by way of the Koszul complex.
Borel did the computation in the topological setting and Koszul did it with
the Koszul complex. Either way is non-trivial. For the case of the general
linear groups things become a little more manageable, see Fuks. We postpone
giving the answer, as it is best discussed in the context of spectral sequences.

Staying with our semi-simple Lie algebra, we can point out more struc-
ture. First of all H0(g, M), which in general is the module of co-invariants Mg,
is now also the module of invariants M g, provided M is finite dimensional.
(Infinite dimensional counterexample: The universal enveloping algebra it-
self, which has coinvariants k via the augmentation map, has no invariants
by Poincaré–Birkhoff–Witt. Note that the augmentation map also gives an
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example of a g module map which does not split.)
More generally, one has

Hi(g, M) = Hi(g, Mg)

for finite dimensional M , by the following reasoning. The center Z(g) acts
on g modules by module endomorphisms, so if M is an irreducible left g

module and N is an irreducible right g module, we get two actions of Z(g)

on Tor
U(g)
i (N, M), one according to the central character of M , the other

according to the one of N . But elements of the center pass through the
tensor product over U(g), so these two actions must agree. It follows that all

Tor
U(g)
i (N, M) vanish unless the characters agree.
Thus we see that to understand Hi(g, M) for finite dimensional M , the

case that matters is Hi(g) itself. We can say that H1(g) vanishes because
g = [g, g], and that H2(g) vanishes because it classifies central extensions of
g. (It is well known that such extensions split for semi-simple g.) But H3(g)
does not vanish, for the simple reason that one easily writes down a cocycle
which is not a boundary, in terms of the Killing form and the Lie bracket.
This will be an exercise as soon as one has made the following observations
(cf. Bourbaki, Kostant). Let us work over R. The Killing form puts a non-
degenerate inner product on the

∧i
g, so we can imitate Hodge–de Rham

theory by defining an adjoint d of ∂, then a Laplace operator ∆ = d∂ + ∂d,
then harmonic forms as those in ker ∆. It is not difficult to see that a form
is harmonic if and only if it is invariant under the adjoint action. And, as
is to be expected, on the subalgebra of harmonic forms the differential ∂ is
trivial, while the inclusion (

∧
g)g →

∧
g is a quasi-isomorphism. So

Hi(g) = (
i∧

g)g,

and the problem is to compute those invariants in
∧i

g.

2.2 Unipotent case. Now let us work over C, and let u be the Lie algebra
of the unipotent radical U of a a Borel subgroup B = TU , of which I think as
an algebraic group, as is my want. There is a pairing between the universal
enveloping algebra U(u) and the ring k[U ] of polynomial functions on U ,
assigning to the pair (D, f) the value of Df at the identity e. This makes
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the standard injective k[U ] in the category of (algebraic) representations of
U into the T finite dual of the standard projective U(u) in the category of u

modules = U(u) modules. (The T finite dual is the largest subspace of the
dual on which T acts as an algebraic group. It is just the sum of the duals
of the weight spaces.) We are now interested in the computation of H·(u, M)
when M is a (finite dimensional) simple G module with highest weight λ.
Even though this confuses me, we order the weights so that the roots of
B are negative. The result is given by Kostant’s generalized Borel–Weil–
Bott Theorem. Kostant himself computed with the Koszul complex. For a
good exposition of this approach see Vogan’s book. (One must pick out the
components with trivial central character . . . ) Instead of staying with the
Koszul complex we prefer to take the T finite dual which reduces the problem
to that of computing H ·(U,M∗). That group can be understood rather well
with the help of induction of representations from one algebraic group to
another, as treated in Jantzen’s book [5]. But again spectral sequences are
used, so we postpone this too.

2.3 Lie super algebras. There is an analogue of the Koszul complex for
Lie super-algebras. Recall, cf. Fuks, that a Lie superalgebra is a Z mod 2
graded vector space g = g0⊕ g1, where g0 is called the even part, g1 the odd
part, together with a commutation operation [ , ] which satisfies

[g1, g2] = −(−1)p1p2 [g2, g1],

(−1)p1p3 [[g1, g2], g3] + (−1)p2p1 [[g2, g3], g1] + (−1)p3p2 [[g3, g1], g2] = 0

for gi ∈ gpi
. The Koszul complex is now based not on

∧
g, but on its

superanalogue
∧

g0 ⊗ Sg1, and the differential has a formula which is quite
similar to the one for ordinary Lie algebras. It is too long and boring to
reproduce here. See Fuks.

3 Spectral sequences

3.1 Homology of a filtered complex. Let

(C·, d) = 0
d← C0

d← C1
d← · · ·

be a complex, of g modules say, and let it be filtered by a decreasing sequence
of subcomplexes which we call C≥p

· . Put C≥∞
· =

⋂
p C≥p

· and C≥−∞
· =
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⋃
p C≥p

· and assume C≥∞
· is the zero complex while C≥−∞

· = C·. In fact we
wish to assume the following condition of finite convergence: For fixed degree
n the filtration on Cn is finite, i.e. there is t so that C≥−t

n = C≥−∞
n = Cn,

C≥t
n = C≥∞

n = 0. If i ≤ j, we write C
i/j
· for the quotient complex C≥i

· /C≥j
·

and we filter the homology groups Hp(C
i/j
· ) by putting Hp(C

i/j
· )≥q = image

of Hp(C
q/j
· ) in Hp(C

i/j
· ).

Now one has a spectral sequence

E2
pq = Hp+q(C

q/q+1
· )⇒ Hp+q(C·)

which tries to give an organized link between the homology of the succes-
sive filter-quotients C

q/q+1
· and the successive filter-quotients Hp+q(C·)

q/q+1

of the homology Hp+q(C·) = Hp+q(C
−∞/∞
· ). There is a plethora of long exact

sequences trivially associated with this situation, and the spectral sequence
makes an intelligent choice of notation in all this mess.

More specifically, if one puts Er
pq = (Hp+q(C

q−r+2/q+r−1
· ))q/q+1, then there

is a natural differential dr of total degree −1 on the bigraded group Er, r ≥ 2,
so that the “term” Er+1 is just the homology H(Er, dr). This differential is
induced by the original differential of C· and one has dr : Er

pq → Er
p−r,q+r−1.

For fixed p, q the Er
pq may be identified with E∞

pq for r sufficiently large.

And E∞
pq = Hp+q(C·)

q/q+1 clearly gives information about the abutment

Hp+q(C·) = H(C
−∞/∞
· ).

What is called a spectral sequence is this collection of bigraded groups
and differentials. (Plus some isomorphisms like the one between Er+1 and
H·(E

r, dr).)
One can do something entirely similar for cohomology instead of homol-

ogy: The morphisms are reversed and Er
pq becomes Epq

r .

3.2 The Hochschild–Serre spectral sequence. Let us just describe
it for the case of a Lie algebra l = g ⊕ u where u is an ideal in l, and g

is a complementary subalgebra. The Koszul complex for l has an obvious
filtration by subcomplexes: Put (

∧n
l)≥−r =

∑r
j=1

∧j
g ⊗

∧n−j
u. We thus

get a spectral sequence with Ẽ2
pq = Hp+q(

∧−q
g⊗

∧·
u), where

∧−q
g⊗

∧i
u

sits in degree i − q. As that leads to a rather stupid and unconventional
indexing, we put Er

pq = Ẽr+1
2p+q,−p, and get the better looking

E2
pq = Hp(g, Hq(u))⇒ Hp+q(l).
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Now suppose l is finite dimensional and g is semi-simple. Then E2
pq =

Hp(g, Hq(u)g), and because taking g fixed points is exact on finite dimen-
sional modules, Hq(u)g = Hq((

∧
u)g). This makes us suspect that we should

consider the subcomplex (
∧

g)⊗ (
∧

u)g of the Koszul complex of l. Inciden-
tally, this subcomplex is in fact a subalgebra, and what we are doing here is
exploiting the multiplicative structure on the terms of the Hochschild–Serre
spectral sequence. The subcomplex inherits a filtration from the one on

∧
l

and one thus gets a morphism of spectral sequences which visibly induces an
isomorphism at the E2 level. But then it must also induce an isomorphism
of abutments. The upshot is the theorem of Hochschild–Serre

H·(l) = H·(g)⊗ (H·(u))g,

as the right hand side is easily seen to be the homology of our subcomplex.

3.3 A Grothendieck spectral sequence. The Hochschild–Serre spec-
tral sequence above can also be understood as a Grothendieck spectral se-
quence for composite functors. Namely Hi(l, M) is the i-th derived functor
of M 7→ Ml, while M 7→ Ml is the composite of the functors N 7→ Nu

and L 7→ Lg. We may compute Hi(u) as the i-th homology of the complex
C· = (P·)u, where P· is a projective resolution of k as U(l) module, and thus
also a projective resolution of k as U(u) module. Not that the Cn are pro-
jective U(g) modules, so that one does not need to resolve C· to compute
Hi(g, C·). One has Hi(g, C·) = Hi((C·)g) = Hi((P·)l) = Hi(l). This will
explain the abutment of our spectral sequence. To get the levels, we put a
homological filtration (cf. “truncation” or “t-structure”) on C·:

C≥q
n =

{
0 if n < q
ker d if n = q
Cn if n > q

Then C
q/q+1
· is quasi-isomorphic to a complex that is concentrated in

degree q, which explains the E2 term in

E2
pq = Hp(g, Hq(u))⇒ Hp+q(l).

For the general level we simply imitate the earlier formulas: Er
pq =

(Hp+q(g, C
q−r+2/q+r−1
· ))q/q+1. As this example shows, those earlier formu-

las are just one case of a more general construction, which is incidentally
best understood in terms of the exact couples of Massey.
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4 Computations

4.1 Semi-simple case. We return to the problem of computing H·(g)
for semi-simple g. We recommend [4], [1] and [2] for further information.
There are two related approaches, both leading to the answer that H·(g) is a
tensor product of exterior algebras on primitive generators xi, with xi living
in homological degree 2mi + 1 where mi is the i-th exponent of the Weyl
group. Indeed xi arises as the transgression (=image under a differential
which starts at Er

0,r and ends at Er
0,r−1) of the generator in degree mi +1 (see

[3]) of the invariant ring (S·(t))W . The homological degree of the t in (S·(t))
happens to be 2, so the homological degree of the generator is 2mi +2, which
explains why xi has homological degree 2mi + 1.

In the case of Koszul, the spectral sequence in which all this happens is
the one associated to a filtration of the “Weil algebra”, which is a differential
graded algebra, quasi-isomorphic to k, with underlying algebra (

∧·
g)⊗(S·g),

with the first g in degree 1, the second in degree 2. One encounters (S·(t))W

in the guise of (S·(g∗))g. All this is very algebraic.
In Borel’s computation the spectral sequence is the Leray spectral se-

quence
Epq

2 = Hp(BG, Hq(G))⇒ Hp+q(EG) = Hp+q(point)

for the cohomology (we have dualized) of the principal fibration EG → BG =
EG/G where EG is the universal bundle of the compact Lie group G, and
BG is the classifying space of G. He needs to compare it with the analogous
spectral sequence for a maximal torus T of G, and this involves a study of
G/T , the fiber of BG → BT . (One uses that G/T has cohomology only in
even degrees, which follows for instance from the fact that it can be viewed
as a complex flag variety. This “odd vanishing” enables one to determine
the character of H ·(G/T ), as a W module, by means of the Lefschetz fixed
point formula.) The connection with exponents then comes through the fact
that H ·(BT ) is a polynomial algebra on which the Weyl group acts, with
H ·(BT )W mapping isomorphically to H ·(BG). We can not give more details
here.

4.2 Kostant’s generalized Borel–Weil–Bott theorem. Now let G,
B, T , U be algebraic groups, and let a notation like H ·(G, M) now refer to
Ext·G(k,M), the ext groups in the category of (algebraic) representations of
G. So H ·(G) no longer refers to de Rham cohomology like it did up till now.
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Recall we are interested in H ·(U,M) where M is an irreducible, hence finite
dimensional, G-module.

A key tool here is the notion of induction which is appropriate in this
theory. Unlike induction in the representation theory of discrete groups,
induction is now the right (not left) adjoint of restriction. Thus Frobenius
reciprocity now reads:

HomH(ResK
H M, N) = HomK(M, IndK

H N),

or more generally

HomH(ResK
H M, N ⊗ ResK

H L) = HomK(M, (IndK
H N)⊗ L),

where HomK refers to the group of homomorphisms of (algebraic) K modules.
If N is finite dimensional, IndK

H N is constructed as the module of global
sections over the coset space K/H of the unique K equivariant vector bundle
L(N) whose fiber over the point H/H is N . In particular, if P is a minimal
parabolic subgroup containing B, then P/B is a projective line, so IndP

B k =
k. (Similarly IndG

P k = k.) It follows that IndP
B ResP

B = id. This makes that
IndG

B = IndG
P IndP

B = IndG
P IndP

B ResP
B IndP

B = IndG
B ResP

B IndP
B or, if we drop

ResP
B from notations,

IndG
B = IndG

B IndP
B .

This leads to a Grothendieck spectral sequence to study the derived functors
Ri IndG

B in terms of themselves and the much simpler Ri IndP
B. (They are

much simpler because we are talking cohomology on a projective line P1.)
From Frobenius reciprocity we know that if λ is a character of B (or T ),
then IndG

B λ 6= 0 if and only if there is a G module with highest weight λ.
(In fact IndG

B λ is then the irreducible G module with high weight λ.) On
the other hand we know that Ri IndG

B is zero for i > dim(G/B). Combining
these observations with the study of the Ri IndP

B for all minimal parabolics
leads to an easy proof (due to Demazure) of:

Borel–Weil–Bott Theorem.
Let λ be dominant.

Ri IndG
B(w · λ) =

{
IndG

B(λ) if i = `(w)
0 otherwise

Here w · λ = w(λ + ρ)− ρ, as usual.
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The appearance both of ρ and of the reflections is explained here by Serre
duality on the projective line: If α is the simple root which is a root of P ,
with corresponding simple reflection s, then it turns out that the “canonical
line bundle” of 1-forms is just L(−α) on P/B and Serre duality thus becomes

Ri IndP
B µ = (R1−i IndP

B(−α− µ))∗.

If R1 IndP
B µ 6= 0 this means that −α−µ is dominant with respect to the Levi

factor, say SL2, of P , so (−α− µ, α) > 0 and (R1 IndP
B µ)∗ is the irreducible

SL2 module with highest weight −α − µ. Thus R1 IndP
B µ is the irreducible

SL2 module IndP
B(s(−α− µ)) with highest weight s(−α− µ). That is,

R1 IndP
B µ = IndP

B(s.µ).

We see here how a reflection in the “dot action” corresponds with a degree
shift in sheaf cohomology. For further details on this proof of the Borel–
Weil–Bott Theorem we refer to Jantzen’s book [5].

Returning to our problem of computing H ·(U,M) we observe that by
Frobenius reciprocity NU = (IndG

U N)G so that we have a Grothendieck spec-
tral sequence

Hp(G, Rq IndG
U M))⇒ Hp+q(U,M).

The algebraic representation theory of G enjoys complete reducibility, so the
spectral sequence simplifies (“degenerates”) to

(Rq IndG
U M)G = Hq(U,M).

Further Rq IndG
U M = Rq IndG

B IndB
U M for similar reasons: IndB

U is an exact
functor because B/U = T is an affine scheme, or more concretely, because
IndB

U N =
∑

λ λ ⊗ N as vector spaces, and even as B modules if N is the
restriction of a B module. (The summation is over all weights.) Taking
all this together we come to the following computation: H i(U,M) is the
sum over all dominant λ and all w ∈ W with `(w) = i of the (IndG

B(λ) ⊗
M)G = HomG(M∗, IndG

B(λ)) = HomB(M∗, λ). Clearly the only λ which can
contribute is the highest weight of M∗. Thus

Kostant’s Theorem.

Let M be an irreducible G module. Then

dim H i(U,M) = #{w ∈ W | `(w) = i}
and the total dimension of H ·(U,M) is the order of the Weyl group.
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Remark. Kostant not only treats the Lie algebra of the unipotent radical
of B, but of any parabolic subgroup. We could have done the same, but for
general Levi factors L the decomposition [5, II 4.20] of the regular represen-
tation in the algebra of “representative functions” k[L] is not as trivial as for
a torus. (“Peter-Weyl theory”.)
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