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1 Introduction.

In [MS, Theorem 1], M. P. Murthy–R. G. Swan have shown that a stably
free projective module over a two-dimensional affine variety A over an al-
gebraically closed field k is free. (The example of the tangent bundle over
the real two sphere shows that the condition that the base field is alge-
braically closed is necessary.) They showed that every unimodular vector
(a, b, c) ∈ Um3(A) could be transformed to a unimodular vector of the form
(x2, y, z), and that a unimodular vector of the form (x2, y, z) over any com-
mutative ring A can always be completed to an invertible matrix. In [Su1]
A. Suslin generalised this by showing that a unimodular vector of the form
(a0, a1, a

2
2, . . . , a

r
r) over any commutative ring A can always be completed to

an invertible matrix; from which he deduced that a stably free projective
A-module of rank ≥ dim(A) is free where A is an affine algebra over an al-
gebraically closed field k. In [Su2] Suslin generalised this further by proving
that stably free projective A-modules of rank ≥ dim(A) are free when A is
an affine algebra over a perfect C1 field k. (Whenever we speak of “perfect
C1 field”, which is admittedly not a very useful combination outside charac-
teristic 0, the more technical conditions in 3.1 actually suffice.) In this note
we prove a K1 analogue of Suslin’s result. We prove that:

Theorem 1 (cf. 3.4) Let A be a non-singular affine algebra of dimension
d ≥ 2 over a perfect C1-field k. Then

SLd+1(A) ∩ Ed+2(A) = Ed+1(A)



i.e. a stably elementary σ ∈ SLd+1(A) belongs to Ed+1(A). Consequently, the
natural map

SLr(A)/Er(A) −→ SK1(A)

is an isomorphism for r ≥ d+ 1.

A beautiful theorem of L. N. Vaserstein [SV, Corollary 7.4], identifies
Um3(A)/E3(A), the coset space of unimodular 3-vectors Um3(A) modulo
action of the Elementary matrices E3(A), with the Symplectic Elementary
Witt group WE(A) when dim(A) ≤ 2. The correspondence

V : Um3(A)/E3(A) → WE(A)

which he has defined for any commutative ring A, is known as the Vaserstein
symbol. As a consequence of the above theorem we obtain that the Vaserstein
symbol is also an isomorphism if A is a three dimensional non-singular affine
algebra over a perfect C1 field k.

We present an example, based on the Hopf map S3 → S2, to show that
some condition on the field is again necessary.

For higher dimensional rings it was shown by the second author that one
still has an (abelian) group structure on the orbit set Umd(A)/Ed(A), even
though one no longer possesses such a nice interpretation as in Vaserstein’s
theorem. Following Suslin [Su4] one would now like to have a homomor-
phism from SLd(A) to this group WMSd(A) ≈ Umd(A)/Ed(A). It was shown
in [vdK2, Prop. 7.10] that this will not work in general, but as another
byproduct of the above we show that things improve over perfect C1 fields.

Theorem 2 Let A be a non-singular affine algebra of dimension d ≥ 3 over
a perfect C1-field k. Then the “first row map”

SLd(A) → WMSd(A)

is a homomorphism. Taking its cokernel provides a group structure on
Umd(A)/SLd(A).

If in our C1 field −1 is a square, one sees from [Ra2, (1.3)] that the row
(a0, a1, a

2
2, . . . , a

d−1
d−1)—completable by Suslin—represents the (d − 1)! power

of the class of (a0, a1, a2, . . . , ad−1). So the group Umd(A)/SLd(A) in the
theorem is a torsion group of exponent at most (d− 1)! This makes us hope
that it will be manageable in some cases.
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2 Preliminaries on the Vaserstein symbol.

All rings considered are commutative with 1. The set Mr,s(A) consists of all
matrices of size r × s over A. Write Mr(A) = Mr,r(A).

A vector v = (v1, v2, . . . , vr) ∈ Ar is said to be unimodular if there are
elements w1, . . . , wr in A such that v1w1 + . . . + vrwr = 1. The set of all
unimodular vectors v ∈ Ar will be denoted Umr(A). The standard basis of
Ar is written e1,. . . ,er.

The group SLr(A) of invertible matrices of determinant 1 acts on Ar in
a natural way:

σ : v 7→ vσ,

if v ∈ Ar, σ ∈ SLr(A). This map preserves Umr(A), so SLr(A) acts on
Umr(A).

Let Er(A) denote the subgroup of SLr(A) consisting of all elementary
matrices, i.e. those matrices which are a finite product of the elementary
generators Eij(λ) = Ir + eij(λ), 1 ≤ i 6= j ≤ r, λ ∈ A, where eij(λ) ∈Mr(A)
has entry λ in its (i, j)-th position, and all other entries zero. Thus Er(A)
acts on Umr(A); if v,w ∈ Umr(A), let v ∼E w mean that v = wε for some
ε ∈ Er(A). Let Umr(A)/Er(A) be the set of equivalence classes of vectors
v ∈ Umr(A) under the equivalence ∼E; and let [v] = [v1, . . . , vr] denote the
equivalence class of v = (v1, . . . , vr).

If α ∈ Mr(A), β ∈ Ms(A), then α ⊥ β denotes

(
α 0
0 β

)
∈ Mr+s(A).

An alternating matrix φ has diagonal entries 0 and is skew-symmetric, i.e.
transpose(φ) = −φ. We can define inductively an alternating matrix ψr ∈
E2r(Z), by setting, for r ≥ 2,

ψ1 =

(
0 1
−1 0

)
, ψr = ψr−1 ⊥ ψ1.

For an alternating matrix φ ∈ M2r(A) its determinant det(φ) is a square
(pf(φ))2 of a polynomial pf(φ) (called the Pfaffian) in the matrix entries with



coefficients ±1. An odd sized alternating matrix has Pfaffian 0, and, clearly,
on even sized alternating matrices it is defined up to a sign, to fix which
we insist that pf(ψr) = 1, for all r. For instance, if v = (v0, v1, v2), w =
(w0, w1, w2), then

V (v,w) =


0 v0 v1 v2

−v0 0 w2 −w1

−v1 −w2 0 w0

−v2 w1 −w0 0


has Pfaffian v0w0 + v1w1 + v2w2. In particular, if v0w0 + v1w1 + v2w2 = 1,
then V (v,w) has Pfaffian 1.

If α ∈ M2r(A), and φ, θ are alternating matrices, then it can be checked
that pf(αtφα) = pf(φ) det(α), and that pf(φ ⊥ θ) = pf(φ) pf(θ).

Two alternating matrices α ∈ M2r(A), β ∈ M2s(A) are said to be equiv-
alent w.r.t. E(A) if there is a ε ∈ E2(r+s+l)(A), for some l, such that

α ⊥ ψs+l = ε(β ⊥ ψs+l)ε
t.

It can be seen, cf. [SV, p. 945], that ⊥ induces the structure of an
abelian group on the set of all equivalence classes of alternating matrices
with Pfaffian 1. This group is called the Symplectic Elementary Witt group
and is denoted by WE(A).

The Vaserstein symbol V = VA : Um3(A)/E3(A) −→ WE(A) is the map

[(a, b, c)] 7→ [V (v,w)],

where v = (a, b, c), w = (a′, b′, c′) with aa′ + bb′ + cc′ = 1. In [SV, Theorem
5.2], L. N. Vaserstein has shown that this map is well defined (i.e. it is
independent of both the choice of representative v in [(a, b, c)], as well as the
choice of a′, b′, c′ such that aa′ + bb′ + cc′ = 1).

Recall that sdim(A) stands for the stable range dimension of A, i.e. one
less than the stable rank sr(A) of [Va2]. For noetherian A it does not exceed
the Krull dimension dim(A).

Lemma 2.1 Let A be a commutative ring for which Umr(A) = e1Er(A), for
r ≥ 5. Then VA is surjective. If, moreover, SL4(A) ∩ E(A) = E4(A) then
VA is bijective. In particular, if sdim(A) ≤ 3, and SL4(A)∩E5(A) = E4(A),
then VA is bijective.



Proof: L. N. Vaserstein in [SV, Theorem 5.2(c)] has shown that VA is
surjective. Apply [SV, Lemma 5.1] to conclude that VA is injective if
SL4(A) ∩ E(A) = E4(A). L. N. Vaserstein’s stability estimate for the linear
group in [Va1] settles the last assertion. 2

3 Decrease in the injective stability estimate for K1 of
a regular affine algebra over a C1 field

In [Va1] L. N. Vaserstein shows that

SLr(A)

Er(A)
=

SLr+1(A)

Er+1(A)
= · · · = SK1(A),

where SK1(A) is the Whitehead group of A, when r ≥ max{3, d + 2}, d =
sdim(A).

The reader may construct or find examples (cf. [vdK2, Prop.
7.10]) of regular affine algebras A over the real numbers R for which
SLd+1(A) ∩ Ed+2(A) 6= Ed+1(A). This means that the natural map
SLd+1(A)/Ed+1(A) −→ SK1(A) is not injective for such rings A.

In this section we show that if A is a regular affine algebra over a perfect
C1-field then

SLd+1(A)

Ed+1(A)
−→ SK1(A)

is an isomorphism, where d = Krull dimension of A.
We start with a result of Suslin, slightly modified to suit our needs.

Namely, we use the observation by P. Raman that one may bypass Suslin’s
hypothesis that the ring is an affine algebra of an irreducible affine variety
that is nonsingular in codimension 1.

Proposition 3.1 (cf. [Su3]) Let A be an affine algebra of dimension d over
a field k satisfying: For any prime p ≤ d one of the following conditions is
satisfied:
(a) p 6= char k, c.d.pk ≤ 1.
(b) p = char k and k is perfect.
Then Umd+1(B) = e1SLd+1(B).



Proof: We still have to explain how P. Raman reduces this to the proof given
by Suslin. Here is her argument: First assume k is perfect. We may assume
A is reduced, because a row which is completable modulo the nilradical
is completable. If k is finite, one uses Vaserstein’s result ([SV, Ch. III])
that sdim(A) < d. Now let k be infinite and let u be a unimodular row
over A of length d + 1. Let J be the ideal defining the singular locus of
A. Since A/J has dimension at most d − 1, by general stability, u may
be elementarily brought to e1 mod J . Modifying u we may thus assume
that u = (u1, . . . ud+1) such that u1 is 1 mod J and other ui are 0 mod J .
Then applying Swan’s version of Bertini as quoted in [KM], a general linear
combination u1+ suitable multiples of uj added on gives a new u1 which is
still 1 mod J and so that A/(u1) is smooth outside the singular set of A. But
since u1 is congruent to 1 mod J , A/(u1) is smooth of dimension at most
d− 1. Now use standard Bertini and complete with Suslin’s argument. Note
that Suslin never needs that by repeated application of Bertini’s theorem
one gets down to an irreducible smooth curve; just a smooth curve C will
do. As nilpotents do not matter for SK1(C), it would in fact be enough to
have a curve which is smooth by nilpotent, i.e. whose underlying reduced
curve is smooth. If k is not perfect and a curve C is geometrically smooth
by nilpotent, then one may choose a finite purely inseparable field extension
l of k so that l ⊗ C is smooth by nilpotent. Under our hypotheses this
extension has degree prime to d!, so by a transfer argument vanishing of
SK1(l ⊗ C)/d!SK1(l ⊗ C) implies vanishing of SK1(C)/d!SK1(C). 2

Remark 3.2 By [Se, Ch. II Section 3.2] any C1 field k satisfies the conditions
c.d.pk ≤ 1.

Proposition 3.3 Let A be an affine algebra of dimension d over a field k
satisfying the conditions mentioned in Proposition 3.1. If v ∈ Umd+1(A) is
congruent to e1 modulo (t) for some t ∈ A, then v can be completed to a
σ ∈ SLd+1(A) with σ ≡ Id+1 modulo (t).

Proof: Put B = A[T ]/(T 2 − Tt). Then B is an affine algebra of dimension
d over the field k. Write v = e1 + tw with w ∈ Ad+1. Lift it to u(T ) =
e1 + Tw ∈ Umd+1(B). (Yes, it is unimodular!) So u(t) = v and u(0) = e1.
Now 3.1 allows us to find α(T ) ∈ SLd+1(B) with u(T ) = e1α(T ). The matrix
α(0)−1α(t) does the trick. 2



Theorem 3.4 Let B be an affine algebra of dimension d over a field k sat-
isfying the conditions mentioned in Proposition 3.1, and let σ ∈ SLd+1(B) be
a stably elementary matrix. Then σ is isotopic to the Identity. Moreover, if
B is regular and d > 1 then σ ∈ Ed+1(B).

Proof: By stability for K1(B), σ ∈ Ed+2(B). Therefore, there is an isotopy
τ(T ) ∈ Ed+2(B[T ]) with τ(0) = Id+2, τ(1) = {1} ⊥ σ. Take A = B[T ], t =
T 2−T , and v = e1τ(T ), in Proposition 3.3 to get a χ(T ) ∈ SLd+2(B[T ], (t)),
with v = e1χ(T ). Therefore, e1τ(T )χ(T )−1 = e1, and so

τ(T )χ(T )−1 = ({1} ⊥ ρ(T ))
d+2∏
i=2

Ei1(λi),

for some λi ∈ A, ρ(T ) ∈ SLd+1(B[T ]). Clearly, ρ(T ) is an isotopy of σ with
Id+1.

Now let B be regular, and d > 1. By T. Vorst’s K1-analogue in [Vo]
of H. Lindel’s theorem in [Li], SLd+1(Bp[T ]) = Ed+1(Bp[T ]) for any prime
ideal p ∈ Spec(B). By the “Local–Global Principle” for Er(B[T ]) (r ≥ 3)
in [Ra1], ρ(T ) ∈ ρ(0)Ed+1(B[T ]), and so ρ(T ) ∈ Ed+1(B[T ]) as ρ(0) = Id+1.
But then σ = ρ(1) ∈ Ed+1(A). 2

Corollary 3.5 Let A be a regular affine algebra of Krull dimension 3 over
a C1 field k which is perfect if its characteristic is 2 or 3. Then the Vaser-
stein symbol V : Um3(A)/E3(A) −→ WE(A) is an isomorphism. Further, if
v ∈ Um3(A) has a completion which is stably elementary then it also has a
completion which is elementary.

Proof: We are in the situation that lemma 2.1 applies. If v ∈ Um3(A) has
a completion which is stably elementary, then this completion is in E4(A),
so Vaserstein’s lemma [Su3, 2.2] applies. 2

4 An example.

The purpose of this section is to show that the first part of corollary 3.5 fails
when the C1 field is replaced by R.

Question Are there also examples of 3 dimensional algebras where the
second half of 3.5 fails?



4.1 Let S3 be the unit three–sphere embedded in 4 space in the standard
way. Let C3 be the ring of real valued continuous functions on S3 and let
P3 be the subring of polynomial functions on S3. Thus P3 = R[x, y, z, t]
with x, y, z, t satisfying the relation x2 + y2 + z2 + t2 = 1. Observe that
sdim(C3) = 3 by [Va2] and observe that P3 has Krull dimension 3, so that
sdim(P3) ≤ 3. (In fact one must have sdim(P3) = 3 too, as otherwise one
could not have proposition 4.2 below). We want to show that the Vaserstein
symbol is not injective, so we must be able to distinguish two orbits. To
show that orbits [v], [w] ∈ Um3(C3)/E3(C3) are not equal, it suffices to show
that the corresponding homotopy classes of maps from S3 to S2 differ. (See
for instance [vdK2, 7.6]). Now this can be decided by computing a Hopf
invariant, as is explained in detail in [BT].

Proposition 4.2 The ring P3 is a 3 dimensional ring for which the Vaser-
stein symbol

V : Um3(P3)/E3(P3) → WE(P3)

is not injective. For C3 even the universal weak Mennicke symbol is not
injective.

Proof: For rings with sdim at most 3, the universal weak Mennicke symbol
is surjective (cf. [vdK2, 4.29, 4.30]). The failure of injectivity for C3 is thus
just the last example of [vdK2]. (The indication of proof in that example
is rather sketchy. We will compensate for that by being more explicit for
the other ring). The word “even” in the proposition is explained by the
following lemma, which was part of the motivation for introducing weak
Mennicke symbols.

Lemma 4.3 For any commutative ring A the Vaserstein symbol

V : Um3(A)/E3(A) → WE(A)

is a weak Mennicke symbol.



Proof We have to show that

V [q, a, b] = V [r, a, b] + V [1 + q, a, b]

whenever the unimodular rows are such that r(1 + q) ≡ q (mod (a, b)).
By Vaserstein’s rule [SV, 5.2(a2)] , we can compute the right hand side as
follows. Choose c, d with ac+ bd+ (1− r)(1 + q) = 1. Then the right hand
side equals

V [( r a )

(
1 + q
−c

)
, ( r a )

(
a

1− r

)
, b] =

V [r(1 + q)− ac, a, b] = V [q, a, b].
2

Remark 4.4 Recall that the definition of the universal Mennicke symbol
Umn(A)/En(A) → MSn(A) is built on relations that are valid in SK1 of
any commutative ring. In the same vein one may build the definition of
Umn(A)/En(A) → WMSn(A) on the relations given in Lemma 5.4 of [Va3],
valid in the symplectic K1 of any commutative ring.

4.5 Two orbits. To proceed with the proof of the proposition, we give
two orbits [v], [w] ∈ Um3(P3)/E3(P3) that differ in their Hopf invariant (by
a sign), but have identical image under the Vaserstein symbol V .

Recall that the Hopf map may be obtained as follows. The action by
conjugation of the unit quaternion q = x + yi + zj + tk on the real vector
space of pure quaternions, i.e. the map p 7→ qpq−1 is given by the matrix−t2 + x2 + y2 − z2 −2tx+ 2yz 2ty + 2xz

2tx+ 2yz −t2 + x2 − y2 + z2 −2xy + 2tz
2ty − 2xz 2xy + 2tz t2 + x2 − y2 − z2


with respect to the real basis i, j, k. That matrix may be viewed as an
element of SL3(P3). Its first row v = (−t2+x2+y2−z2,−2tx+2yz, 2ty+2xz)
may be viewed as an element of Um3(P3), or as a map h : S3 → S2. That
is the Hopf map, i.e. it generates π3(S

2). (We do not care whether the map
we just described has Hopf invariant 1 or −1.) Indeed one easily checks that
(1, 0, 0) is a regular value whose inverse image under h is a circle. Similarly



(−1, 0, 0) is a regular value whose inverse image is a circle, and these two
circles are linked (simply) in S3. This proves h generates π3(S

2) (see [BT]).
If we send z to −z, thus reversing the orientation on the 3-sphere, we

replace the Hopf map by its negative in π3(S
2), which is different. That

means that if w = (−t2 +x2 +y2−z2,−2tx−2yz, 2ty−2xz), then [v] 6= [w].
Now let us show that nevertheless the images of v, w in WE(P3) are the
same.

The first entries of v, w agree, so we may use Vaserstein’s rule [SV,
5.2(a2)] for multiplying (or dividing rather) the images of two rows with an
equal entry. We first complete (−2tx+ 2yz 2ty + 2xz ) to an element of
SL2 modulo −t2 + x2 + y2 − z2. Note that we are computing in P3, so that
−t2 + x2 + y2 − z2 = 1− 2t2 − 2z2 = 2x2 + 2y2 − 1. As completion we take(
−2tx+ 2yz 2ty + 2xz
−2ty − 2xz −2tx+ 2yz

)
, with inverse

(
−2tx+ 2yz −2ty − 2xz
2ty + 2xz −2tx+ 2yz

)
. In

WE(P3) we have by Vaserstein’s rule

V ([w])− V ([v]) =

V [2x2 + 2y2 − 1, (−2tx− 2yz 2ty − 2xz )

(
−2tx+ 2yz −2ty − 2xz
2ty + 2xz −2tx+ 2yz

)
]

= V [2x2 + 2y2 − 1, 4t2x2 + 4t2y2 − 4x2z2 − 4y2z2, 8tx2z + 8ty2z]

= V [2x2 + 2y2 − 1, 2t2 − 2z2, 4tz]

= V [1− 2t2 − 2z2, 2t2 − 2z2, 4tz],

which vanishes by an easy computation or by the Suslin–Quillen solution of
Serre’s conjecture. All in all, the images did not change in WE(P3) when we
reversed z, so that the Vaserstein symbol is not injective. 2

5 Trivial module structure on WMSd.

In this section we show that the module structure on WMSd(A), discussed in
[vdK2], trivializes entirely for smooth affine algebras A of dimension d over a
perfect C1 field (or a field as in 3.1). In particular this gives a homomorphism
SLd(A) → WMSd(A).



Theorem 5.1 Let A be a smooth affine algebra of dimension d ≥ 3 over a
field as in 3.1. Let 1 ≤ k ≤ d. Let v = (v1, . . . , vd) ∈ Umd(A) and let T be
a k by k matrix over A with first row u = (u1, . . . , uk) such that det(T ) is a
square of a unit in A/(vk+1, . . . , vd). Then

[(v1, . . . , vk)T, vk+1, . . . , vd] = [v] + [u, vk+1, . . . , vd]

In particular, taking k = d, we have [vg] = [v] + [e1g] for g ∈ SLd(A).

Proof: The conclusion is the same as in [vdK2, Thm. 5.9], which is proved
by induction on k. We can use the same proof, except for k = 2. For
k = 2 the problem is that the row (u2, . . . , uk, v2, . . . , vd) does not have
at least d + 1 entries, as would be required to make it easily unimodular.
Take k = 2. Using the k = 1 case we easily may assume that det(T ) = 1
in A/(v3, . . . , vd). If d = 3, we may by 3.5 identify WMS3(A) with WE(A)
through the Vaserstein symbol. Then the result follows from Vaserstein’s rule
[SV, 5.2(a2)]. If d > 3, we note that (det(T )v1, det(T )v2, v3, . . . , vd) is uni-
modular, so that by adding general position multiples of det(T )v1, det(T )v2,
v3 to (v4, . . . , vd) we may achieve (Bertini again!) that A/(v4, . . . , vd) is
smooth of dimension 3. From the result in WMS3(A/(v4, . . . , vd)) it now
follows that the required relation holds in WMSd(A). (Use the obvious ho-
momorphism WMS3(A/(v4, . . . , vd)) → WMSd(A).) 2

Theorem 2 now follows easily. 2
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