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Introduction

An adjoint semi-simple grou@ has a “wonderful” compactificatiok, which
is a smooth projective variety, containifg as an open subvariet¥x is acted
upon byG x G and, B denoting a Borel subgroup @, the groupB x B has
finitely many orbits inX. The main results of this paper concern the intersection
cohomology of the closures of the x B-orbits. Examples of such closures are
the “large Schubert varieties,” the closuresxirof the double cosetBwB in G.

After recalling some basic results about the wonderful compactification, we
discuss in Section 1 the description of thex B-orbits, and establish some basic
results.

In Section 2 the “Bruhat order” of the sét of orbits is introduced and
described explicitly. As an application we obtain cellular decompositions of the
large Schubert varieties.

Let H be the Hecke algebra associateddoit is a free module over an
algebra of Laurent polynomial{x, u~1]. As a particular case of results of [MS],
the sphericalG x G-variety X defines a representation of the Hecke algebra
associated t@ x G, i.e. H ®y, ,~1; H, in a free moduleM over an extension
of Z[u,u1], with a basis(m,) indexed byV. The definition of M is sheaf-
theoretical, working over the algebraic closure of a finite field. This is discussed
in Section 3. On the model of [LV] a duality map is introduced onM, coming
from Verdier duality in sheaf theory. The matrix coefficientstfelative to the
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basis(m,) are discussed at the end of Section 3. They bear some resemblance to
the R-polynomials of [KL].

In Section 4 it is shown that the intersection cohomology of an orbit clasure
leads to “Kazhdan—Lusztig” elementsM. The results about matrix coefficients
of Section 3 together with results of [MS] imply the evenness of local intersection
cohomology, and the existence of Kazhdan—Lusztig polynomials.

We also prove evenness of global intersection cohomology of closures
The results on intersection cohomology, proved in the first instance in positive
characteristics, then also follow in characteristic 0, and &er

Section 5 contains a brief discussion of the extension of results of the previous
sections to intersection cohomology of an orbit clogyr®r certain non-constant
sheaves on.

We have formulated the constructions of the paper (e.g. oftlse-module
M) in such a manner that they also make sense for general Coxeter groups.
Section 6 contains some remarks about the constructions for such groups.

Computation by hand of our Kazhdan—Lusztig polynomials turns out to be
quite cumbersome, the only manageable case (for the author) Gein@GL,.

The Appendix A by W. van der Kallen gives a number of numerical examples,
obtained by computer calculations.

1. Preliminaries

In the sequelG is a connected, adjoint, semi-simple group over the alge-
braically closed fieldk. We denote byB and T a Borel group and a maximal
torus contained in itR is the root system ofG, T) andR™ the system of posi-
tive roots of R defined byB. The Weyl group ofR is W. Forw € W we denote
by w a representative in the normaliz€(T).

We denote bys the set of simple reflections defined By, and byD the set
of simple roots. Fol c D let W; ¢ W be the parabolic subgroup 8f generated
by the reflections in the roots @f We write S; = SN W;.

Denote by W/ = {x € W | x(I) C R*} the set of distinguished coset
representatives ofV/ W; and bywg ; the maximal element oW;. On W and
its subsetd¥; andW! we have the usual Bruhat orders.

1.1. We introduce the “wonderful” compactificatiox of G. We recall a number
of results, established in [DS,B1]. (In [DS] it is assumed that @)a# 2. This
restriction is necessary in the general situation discussed there, but is unnecessary
for the compactification of;.)

X is anirreducible, smooth, projective x G-variety. It contaings as an open
G x G-stable subvariety (the action beitg /).x = gxh 1, forg, h, x € G). The
G x G-orbitsX; in X are indexed by the subseatof D.



T.A. Springer / Journal of Algebra 258 (2002) 71-111 73

Let P; be the standard parabolic subgroup defined/ iy D, the notation
being such that the Levi subgrodp containing? has root system with basis
We denote byC; the center ofL;, by G; = L;/C; the corresponding adjoint
group, byB; c G, the image ofB N L;, and byT; the image ofl. ThenB; is
a Borel group ofG; andT; a maximal torus. Notice that; is connected (it is
the intersection of the kernels of the simple rootd iand these form part of the
basisD of the character group df).

Let B~ O T be the opposite oB and P, > B~ the opposite ofP;. Notice
thatZ; is a Levi subgroup of bott®; and P, .

The G-orbit X; is aG x G-equivariant fiber space ovér/P;” x G/P;, such
that the fiber ove,” x P; is G,. In fact,

X1=(G xG) xp-p Gi, (1)
P, x Py acting onG; via its quotientG; x G,. Similarly,
X;=(G xG) Xp=xpy G.

We may viewG to be the wonderful compactification 6f; .
X contains a unique base point such that

(@) (B x B7).hyisdense inXy,
(b) there is a cocharacter of T with h; = lim;_oA(¢) (see [B1, Proposi-
tion Al]).

Under the identification (1}, is the image inX; of (1, 1, 1). We haveip = 1.

If H is an algebraic group denote By, (H) its unipotent radical and bifiag
the diagonal o x H. It follows from (1) that the isotropy group @f; in G x G
is the semi-direct product at, (P; ) x R, (P;) and(L)diag-(Cs x {1}) (cf. [B1,
Proposition Al]).

If I ¢ Dwedefinel* C Dby I* =—wq p(I). Then(I*)* =1.If Aisasubset
of W we putA* = wop pAwo p.

1.2. Lemma.
(i) The isomorphisrg — g~1 of G extends to an isomorphissof the variety
X suchthatforg,he G, x € X
a.((g, h).x) =(h, g).(0.x).
(i) o(X1) =X+
(III) oh; = (wo,D, woyD).h[*.

Proof. For (i) see [S, 1.2]; (ii) readily follows from the proof of (i); and (iii) is a
consequence of the characterization of the pdintgiven above. O
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Forw € W/ put; (w) = wo pwwo ;. Theny; is a bijection of W/ and
(e (w)) =1(wo,p) — l(wo,7) — (). (2

B x B has finitely many orbits inX. They are described in the following
lemma.

1.3. Lemma.
(i) TheB x B-orbitsin X; are of the form
O=(B x B).(x,w).hy, 3)

with unique elements € W, x € W/.

(i) dim O =1(wo,p) — I(x) +1(w) + |I].

(i) 0.0 = (B x B).(t;+(y™), 17+ (x*))(wo, 1+ (z*) Lwo, 7¢).h 7+, wherey € W/,
ze Wy, andw = yz.

(iv) The isotropy group ofx, w).h; in B x B is the semi-direct product of
a connected unipotent normal subgroup and the isotropy group in T,
which consists of the, ') € T x T with x " 1(0).w ()1 e ;.

Proof. The B x B~-orbits in X; are of the form

(Bx B7).(v,y).hy =(B x B7).(x,w).hy,

wherex, y e W/, z e W;,andv =xz~1, w = yz (by [B1, 2.1]). Hence th& x B-
orbits are of the form

(B x B).(x,wo,pyz).hy.

This proves (i).
Forv=xz"! we have

O1=(B x B7).(v,y).h; = (B x B7).(x,y).(Br x By).(L,z Y.hy (4)
(see [B1, p. 151)). It follows that
dimOy =dimBxP; +dimB~yP; +dimB;z *B; .

Now BxP;, = wopB t;(x)P;, whence dinBxP, = I(t;(x)). Similarly,
dimB~yP;r =1(;(y)). We conclude that

dimO1 =1(;(x)) + (7 () + L(wo,1) — (z) + dim By.
By the proof of (i) we have
dimO =dim(B x B_).(vwoJ, L1(y)).h1.

The formula of (ii) follows from the previous formula and (2).
By Lemma 1.2 we have.O = (B x B)(wwo,p, xwo,p).hir+. Now

wwo, p = wo pw* =1+ (y")wo, 1+2%,
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and similarly forxwo, p. The formulas imply (iii), using thatu*, u*) fixesh - if
ueWwr.

Finally, (iv) follows from the description of the isotropy group/ofin G x G
which was given above.O

Let V be the set oB x B-orbits in X. Forv € V we writed (v) = dimv. We
denote the orbit of (3) by/, x, w] or [1, x, w]g. Thus, the elements df are
parametrized by triples ¢ D, x e W/, andw = yz € W (with y e W/, z € W;).
By Lemma 1.3(ii)

dim[Z, x, w]=I(wo,p) —I(x) + 1 (w) + |I]. (5)
It follows from Lemma 1.3(iii) that
o.ll,x,yzl = [I*, 1= (%), () wo 1+(2%) " Lwo 1+ ]-

For I = D, [D,w,1] is the double coseBwB. Its closure inX is the large
Schubert varietys,,.

The combinatorial setup introduced in [RS] carries over—at least partly“—to
and the subset§; C V of B x B-orbits inX; (I C D).

Let M be the monoidM (W x W) (see [RS, 3.10]). It operates dn. Let
t = (s,1) or (1,s) be a simple reflection oV x W and putP;, = B U BsB
(a minimal parabolic subgroup 6&f). If v € V thenm (¢).v is the operB x B-orbit
in (Py x {1).vif t = (s, 1), and similarly forr = (1, s). This defines an action of
M on V, stabilizing all V;(I ¢ D). If m(t).v # v thend(m(t).v) =d(v) + 1
(cf. [RS, 7.2)).

In [MS, 4.1] an analysis is made of the action of a minimal parabolic group
on the orbits of a Borel group in a spherical variety. This applies to the present
situation, for the grouy = G x G and its spherical variety. We use obvious
notations likeB = B x B, etc.

In general there are four possible cases, labeled I, I, 1, IV in [MS, 4.1].
However, in the present case the situation is rather simple, as follows from the
next lemma.

Recall that ifx ¢ W/ ands < S there are three possibilities:

(A) sx >x andsx € W/;
(B) sx > x andsx = xt with ¢t € Sy;
(C) sx < x inwhich casex € W/.

1.4.Lemma. Letv € V and leto € S be a simple reflection di .

(i) P,.visthe union of twaB-orbits.

@iy fm(o).v#£vthenP,.v=vUm(o).v.

(i) In the situation of(ii) the action map induces an isomorphism of the fibre
product(P, — B) xp v ontom(o).v.
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Proof. Letv = [/, x,w] and putw = yz, wherey € W/, z € W;. Then (cf. [B1,
p. 151])

v = (B x B).(x,y).(Br x B))(1,z7%).;

= (B x B).(x,).(Bx B)(1,z7Y).hy.

Assume that = (s, 1)(s € S). Then

Py.v=(Ps x B).(x,y).(B x B)(1,z7%).h.
By familiar Tits system propertie®;.BxB = BxB U BsxB. It follows that
P,.v=vU", where

v = (B x B).(sx,y).(Bx B)(1,z7Y).hy.
In the cases (A) and (C) for ands we havev’ = [, sx, w]. In case (B)

VUV = (B x B).(x,y).(P x B).(Lz Y.hy =vU[L, x, swl,
and (i) follows. (iii) is also a consequence of these arguments and (ii) follows
from the definition ofn(o).v.

We have proved the lemma fer= (s, 1). Foro = (1, s) (s € S) the proof is

similar.
From (iii) it follows thatv ando are in the case Il of [MS, 4.1.4].0

15.Lemma. Letse Sandv=[I,x,w] € V;.

(i) m((s,1)).v # v if and only if we have forx and s case(C) or (B) with
wt > t. In these cases we have, respectively(s, 1)).v = [/, sx, w] and
m((s,1).v=[1I,x, wt].

(i) m((1,s)).v#vifandonlyifsw > w, inwhich casen((1,s)).v =11, x, sw].

Proof. This is a consequence of the proof of Lemma 1.41

Next we describe, following [B2, 3.1], a transversal sliEdn y = (X, w).h;
to the B x B-orbit [1, x, w]. Recall that this means (see [MS, 2.3.2]) tliatis
a locally closed subvariety df containingy, of dimension

dimX —dim[/, x, w]=1I(wo p) +1(x) —I(w) +|D — I|,

such that the action map defines a smooth morpltism X~ — X.
The closurel’ of T in X is a smooth toric variety, containirig . Let

212{167’}11 EC].Z}.
Then X, is a transversal slice t@.h; in T, isomorphic to affine space of

dimension D — I|.
PutU = R,(B), U~ = R,(B™) and lety be the morphism

(U_ ﬁxe_l) X (U_ ﬁwU_w_l) xXr—>X
sending(g, &, z) to (gx, hw).z.
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1.6. Proposition.
(i) The imageX of ¢ is a transversal slice iy to [1, x, w].
(i) There is a cocharacter df which contractsS to y.

Proof. This is a version of [B2, Theorem 3.1]. The proof is as in [B2]. It also
follows that X' is an attractive slice in the sense of [B2], which implies the
property of (ii) (defined in [MS, 2.3.2]). O

We end this section with some facts on local systems or{Bhg B)-orbits,
needed in Section 5. A is a torus denote by (A) its character group and by
X (A) the tensor producX (A) ®z, (Zp)/Z), whereZ,) is the localization at the
prime ideal(p) of Z, p being the characteristic. The grolfA) parametrizes
the (tame) local systems ohwhich have rank one, see [MS, 2.1].

If Y(A) is the group of cocharacters df we have, similarly, a grouif(A).
BetweenX (A) andY (A) there is a pairing, ), with values inZ,)/Z.

Since G is adjoint the character grou(7) has basisD. Likewise, X (T;)
has basid, whence an injectioiX (T;) — X (T), which is the homomorphism
induced byT — T;. Clearly, X (T7) is a direct summand oX (7'), from which
we see that the induced homomorphi&hT;) — X (T) is injective (cf. [MS,
2.1.5], recall that the kernél; of the homomorphisrii’ — T; is connected).

We shall identifyX (7;) with a subgroup of = X(T). In the sequel we shall
write X = 55(T) andX; = f(T,).

1.7. Let v € V. If v € v the unipotent radical of the isotropy grodp x B);
is connected by Lemma 1.3(iv). The projection@ x B); ontoT x T is
independent of the choice ofby [MS, 2.2.5]. We denote it byT’ x T'),. Denote
by ¢, the homomorphisri x T — T; sending(x(r), w(¢')) to t(')~1C;. Then
¢, induces an isomorphisiT x T)/(T x T), >~ T by Lemma 1.3(iv).

By [MS, 2.2.3] the rank one local systems onwhich have a weight for
the B x B-action are of the formp,& (¢ € X(T})), whereg, is the induced
homomorphism’)?(Tl) — X(T x T). Let A, (py) be the composite o, and
the injections — (¢, 1) (respectively — (1,7))of T intoT x T.

1.8. Lemma. Letv = [, x, w], & € X;. Theniy(§) = x L&, 5o (€) = —w L,
and¢v = (Ay, /6:))

Proof. The proof is straightforward. O
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2. TheBruhat order

OnV and its subset¥; we have a “Bruhat order¥, defined by the inclusion
of orbit closures. We discuss it in this section. The orderoand its subset®¥;
andw/! is the usual one.

2.1.Lemma. Letv,v' € V andletr € S. Then

@ v<m@).v;

(b) if v < vthenm(r).v' < m(t).v;

(c) if v < v thend(v') <d(v), with equality if and only iy = v';

(d) Vi(I c D) has aunigue element of minimal dimension, Biz= [, wo, pwo, 1, 1].

Proof. The last point follows by using the dimension formula (5). (It will follow
from the next lemma thaB; is also the unique minimal element of the Bruhat
order.) The other points are proved as similar results in [RS, 712].

From Lemma 1.5 we see th&} is an M-set whose order is compatible with
the M-action in the sense of [RS, Section 5].

22.Lemma. Let/ c D,x,x' e W!, w,w’ € W. Then[I, x',w'] < [I, x, w] if
and only if there exists € W; such thatvu =1 < x/, w'u < w.
Proof. We have

dim[Z, x, w] —dim By =l(xwo,;wo,p) + [(w).

Let (t1,...,#) be areduced decomposition @fwo jwo,p, w) € W, ther; being
simple reflections oW . It follows, by repeated application of Lemma 1.5(ii), that

[, x,w]l=m(t1)...m(t;).B; = m((xwo,Iwo,D, w)).Bl.
By familiar arguments (cf. [BT, 3.13]) one shows that

[17X7W]=P[1...P[I.BI,

from which one concludes that, x, w] is the union of the orbitg:((c, d)).By,
wherec < xwg, jwo,p andd < w.

Let [Z,x’,w'] < [I,x,w] and takec,d as before such that/, x’, w'] =
m((c,d)).B;. Write ¢ = c'uwo jwo,p, with ¢’ € W/, u € W;. Thenc'uwg; >
xwo, 7 and

[, x',w'] = m((c,d)).B; =m((c'uwo,jwo,p,d)).B;
= (Bx B).(c'u,d).h; = [I, c/,du_l].
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We conclude that’ = ¢/, w’ = du~'. Hencew'u < w andxwo ; < x'uwo, ;. It
follows that there exist, u2 € W; such that

xu1 < x/, u < uwo, 7, U2 = wo,J -
Then
xu g xwo,luz_l =xup < x'.
So there exists with the asserted properties. Conversely, if so, then
xXwo, ;= xuiluwoJ < x'uwo g,
and we conclude that there existand d as before, whencgl, x’, w'] <
I, x,w]. O

Let J be a subset ob containingl. Letx,ye W/, ze W, w = yz.

2.3. Lemma. If [J,x,w]N X; # @ thenI C J. If this is so the intersection
is the union of the orbit closureld, xv, wv] with v € W; N W/ and l(wv) =
[(w) + [(v).

Proof. The first point is immediate. By [B1, 2.1, Theorem] we haveifoy €
W', zeWy:

(BxB-).(xz L y)hynX; = J(B x B).(xz v, yv).hy,

wherev runs through the elements &, such thatyv € W/ andi(xz™1) =
I(xz~1v) + I(v). Such av lies in W; N W/, from which one sees also that
I(yvu) =1(y) + I(vu) for u € Wy.

Sincex € W/, we havel(z) = I(z"tv) + [(v). Write xz~v = xqu3, with
x1 € W, uy e Wy and putvy = zflvuIl. Thenxvy € W/ andi(yzv1) =
I(yvug?) =1(y) + I(vug ). We can conclude that

(Bx B7).(x,w).hyNX; = U(B X B7).(xv, wv).hy,

wherev runs through the elements @f; with xv e W/, i.e.v e Wy, n W/ and
[(w) =l (wv) +1(v). Using the relation betweeB x B~-orbits andB x B-orbits
of the proof of Lemma 1.2 we obtain the assertion of the lemnta.

2.4. Proposition. Letx’ e W/, x e W/, w,w’ € W. Then[I,x’, w'] < [J, x, w]
if and only if I € J and there exisu € Wy, v e W; N W! with xvu=1 < x/,
w'u < wv, andl(wv) = I(w) + [(v). If this is so we have’ > x and —I(x') +
I(w') < =1(x)+1(w).

Proof. The preceding lemmas imply the first assertionsu l&nd v with the
asserted properties exist then, sinoe W/,

x> xou L > X.



80 T.A. Springer / Journal of Algebra 258 (2002) 71-111

The last inequality follows from the fact thd-orbit closures inX; intersect
X; properly if I ¢ J (see [B2, 1.4]) and the dimension formula (ii) from
Lemmal.3. O

2.5.Corollary.

() [, x',w]<[J,x,1]ifandonlyif] CJ, w' € Wy andxw’ < x’.

(i) [Z,x',w'] €[D,1,w]ifand only if there existe; < w with wytw’ < x'.
(iii) [I,x,w] < Bifand only ifw < x.

Proof. By the proposition[/, x’, w'] < [J, x, 1] if and only if I € J and there
existu € Wr,v e Wy N W! with xvu=1 < x’ andw’u < v. From the second
relation we infer thatv’ < vu 2. Sincevu—1 € W;, w’ also lies inW;. Moreover,
xw’ < xvu~! < x'. We have established the conditions of (i).

If, conversely, they are satisfied, writey’ = xvu~1 with u € W, xv € W/'.
Thenw’ = vu~1. Sincew’ € W, the same holds far, sov € W; N W . It follows
thatu andv are as required in the proposition, apdx’, w’'] < [J, x, 1]. This
proves (i). The special case= D gives (iii).

By the proposition[I, x’, w'] < [J, 1, w] if and only if I € J and there exist
ueWr,vew’ nw! with vu=! < x"andw’u < wv, [(wv) =I(w)+I1(v). There
existwi < w, v1 < v such thatw'u = wiv1 andl/(wiv1) = [(w1) + [(v1). Then
wytw' = vt <vu! < ¥/, establishing the condition of (ii).

To prove the sufficiency of the condition it suffices to deal with the case that
w1 = w. Sow tw’ < x'. Write w™lw’ = vu~1, with v € W/, u € W;. Then
w'u = wv. There exiswy < w andviug < v (v1 € W/, u1 € Wy) such thaw'u =
wiviuy and l[(wyiviuy) = I(w1) + [(v1) + I(u1). Then w/wlvlqul < wivg,
viwgur <vut < x/, andi(wivy) = [(wr) + [(v1). It follows that[7, x/, w'] <
[D,1, w1] <[D, 1, w]. We have proved (ii). (iii) is also a special case of (iia

The explicit description of the Bruhat order &f given in Proposition 2.4
is a bit cumbersome. We present another description which is somewhat more
transparent.

Define two relations<; and<z onV by [, x', w'] <1 [J, x, w]if I € J and
X' >x,w <w,and[l,x’,w'] <2 [/, x,w] if I € J and there ix € W; with
xz<x'andw’ = wz, [(wz) =1(w) +1(2).

2.6. Lemma.
@A) fv,v eV, vV < v (i =1,2) thenv <.
(i) <1 and<2 are order relations.

Proof. (i) is obvious for<; (takeu = v =1 in Proposition 2.4). It is as in the
definition of <o, write z = vu~1 (v € W/, u € Wy). Thenu andv are as required
in Proposition 2.4.
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That <1 is an order is obvious. The proof thab is an order is straightfor-
ward. O

2.7.Lemma. Letv=[J,x,w], v =[1I,x’, w'], and assume that < v. There is
vteVwithv <0 <.

Proof. By Proposition 2.4 there isw; < w and viu; < v (v1 € W/,
u1 € Wy) with w'u = wiviui, I(wiviug) = [(w1) + [(v1) + [(u1). Then
u/qul = wivt, [(wv1) = [(w1) + [ (v1), andxvuiu~! <vu~1 < x'. It follows
thatv' <2 [J, x, w1]. Moreover,[J, x, w1] <1 v. Hencev = [J, x, w1] iS as re-
quired. O

2.8. Proposition. < is the order generated by, and <.

Proof. By definition, the order oV generated by<; and <, is such that’
is majorized byv for that order if and only if there exists a chaig = v/,
v1, ..., vy = v Of elements ofV such that for =1, ..., s eitherv;_1 <1 v; or
vi—1 <2 v;. By the preceding lemmas it is immediate that this ordeg.is O

In Section 4 we shall find the M6bius function of our order, see the remark
after Proposition 4.6.
If xe W putl(x)={axeD|x.accR"}andforx,we W put

Xy w= U [1,x,w].

ICI(x)

2.9. Lemma.
() [, x,wl<[I(x),x,wl;
(i) Xxw=[Ux),x, wl
(iii) Alarge Schubert variet§,, = Xp 1., is a disjoint union of setX, ,.

Proof. It is immediate that[/, x, w] <1 [/ (x),x,w]. (i) then follows from
Proposition 2.8, (ii) is a consequence of (i), and (iii) follows from Corollary
2.5(i). O

2.10. Proposition. X, 4, is a locally closed subvariety df isomorphic to affine
space of dimensiol(wo,p) — /(x) + [(w) + |1 (x)].

Proof. For« € R let U, be the one-parameter additive subgroupGotiefined
by a. If y € W let U, be the subgroup generated by the with « € R,
y~l.a € —R™. Itis a subgroup of the unipotent pdrtof B.

We have[l, x, w] = (B x U).(x, w).h;. The isotropy groupk of (x, w) in
B x U is the set oftu, u’) € B x U with

()'c_ltu)'c, u')_lu/u')) = (clv, V),
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wherec e Cy,le Ly, ve R, (P, ), v € R,(Pr) (see [B1, Proposition Al]).
The morphism

u,u', tCp) = (u,u').(x, w).t.hy

Of Uywg p, x Uw x T/Cy to[1, x, w]is bijective. This follows from the observation
that (Uxw, , x Uw) NK = {1}.
We infer that

o) Xew = (x—lwaony,w—luww)( U T.h,)
I1CI(x)

Cc (UxU™).T.hp.
Using the results of [DS, 3.7-3.8], we see that

(xluwa,Dx,wluww)( U T.h1>

I1CI(x)

is a closed subspace @ x U~).T.hp isomorphic to an affine space. Using (5)
we see that its dimension is as stated. Observing(itiak U ~).T.hp iS open
in X, the proposition follows. O

2.11. From the description o¥, ,, given in the proof of Proposition 2.10, it
is immediate that there is a cocharacterTok T, independent ok, w, which
contractsX, ,, to the fixed point(xB~,wB) € Xy of T x T in X. Hence
the cellular decomposition ok is a Byalinicki-Birula decomposition of the
smooth varietyX. (Our decomposition is closely related to the Byatinicki—Birula
decomposition of [B1, 3.3].)

Itis known that the union of the cells of dimensiqn is closed inX. It follows
that a large Schubert variety,, which is a union of cells by Lemma 2.9(iii),
enjoys the same property. It is well known that this implies that the odd
cohomology ofS,, vanishes and that its th Betti number equals the number of
i-dimensional cells. This leads to the following resultXlfs an algebraic variety,
we denote by

Px(t)=> dimH (X)'
i>0

its Poincaré polynomial, with constant coefficients [iadic cohomology, or in
classical cohomology it = C).

2.12. Corollary. The Poincaré polynomidPs, equals
Z 2 (wo,p)=l(@)H D)+ (@)])

[1(a),a,b]1<[D,1,w]
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Corollary 2.5(ii) makes the summation more explicit.
In the particular case = 1, we haveS; = B. Then the formula simplifies by
Corollary 2.5(iii) to

Py =3 20D @HO @),
b<a

For G = PGL, the right-hand side is % 2 + t* and for G = PGLs it is
14 262 + 4% + 715 + 48 4 110,

In the particular case = wo, p, one obtains a known formula féty (see [DP,
7.7)).

Another consequence of Proposition 2.10 is that the Chow grou) is
freely generated by the clasges, ], which is a reformulation of a result due to
Brion (see [B1, 3.3]).

3. A Heckealgebra representation

3.1. Let ’H be the Hecke algebra &¥. It is a free module over the ring of Laurent
polynomialsZ[u, u—1], with a basis(e,,)wew. The multiplication is defined by
the rules

Csw if sw>w,
(X4 = .
stw (u2 — 1)ew +uleg, if sw<w,

wherew € W,s € S.

The varietyX is a spherical variety fo6 = G x G. We now invoke the results
of [MS], where for any spherical variety a moduld over a Hecke algebra is
constructed (on the model of the work of Lusztig and Vogan in [LV] in the case
of symmetric varieties). In our case this is the Hecke algebra associa¥gdite.
H ®Z[u,u—1] H

There are several technicalities which have to be taken care of. In the first
place, one takes the base fidido be an algebraic closure of a finite fielq,
and assumes all ingredients of the constructions to be definedfpv@evhich is
possible, as there are only finitely many such ingredients). The mddukefree,
with a basis indexed by the st of orbitsv of B in X. In the general situation
considered in [MS], the basis elements also involve local systems on the orbits.
In the present section we consider the case that all local systems are trivial (that
this is possible is a consequence of the fact that, with the notations of [MS, 4.1.4],
in X only the case Il occurs). A more general situation, where non-trivial local
systems on the orbits are taken into account, will be taken up in Section 5.

In the setup of [MS] a basis elememt, defined byv € V comes as a class
in a Grothendieck group. More precisely, Jék be the category of constructible
Qs-sheavesS on X, provided with an isomorphism : F*S — S (whereF is
the Frobenius morphismjS, @) and (S, @) are identified if®"” = (&')" for
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somen. Some further conditions are imposed, which need not be spelled out. The
pairs are the objects of an abelian categdry, whose Grothendieck group is
denoted byC(Ayx).

Put E = Q; and denote fop € V by E, the sheaf orX which restricts to the
constant sheaf on v and to 0 on the complement of Now m, € K(Ay) is
the class of(E,, ¢), where¢ is the Frobenius map, corresponds teg , of
[MS, 4.3] ande; to €q ).

Another technicality is that the base rirju,x 1] has to be extended
(provisionally) to a ringR, the group rindZ[C] of a groupC deduced from the
eigenvalues of Frobenius endomorphisms acting on the stalks of certain sheaves.
C is a subgroup of the multiplicative group of non-zero algebraic numbers modulo
roots-of-unity. TherZ[u, u ] is the group ring of the group generated by the
imageu of g%/2.

To definethe Hecke algebra action the extensiorfRds not needed. But if
one is after more delicate properties.bf, such as the existence of a Kazhdan—
Lusztig basis, the introduction of the ring extension can not be avoided.

If v=1[I,x,w] (as before) we writen, = mj . The next lemma describes
the’H ® H-action onM. In (i) we have the three cases (A)—(C) foands; see
Lemma 1.5. In case (B) we psit = xo.

3.2.Lemma. Letx e W/, we W,reS.

(i) Ifr=(s,1), e;.myx €quals
(@) (U2 —D)ymy yp+ umy gy in case(A);
(b1) my x wo in case(B) if wo > w;
(b2) u?— Dmyxw+ u2m1,x,w(, in case(B) if wo < w;
(c) my sx.w in case(C).
(i) 1fr=(1,5), e;.my . €quals eithem; . g, if sw>w, or u? — Dymy .0+
u2m1,x,sw if sw<w.

Proof. The formulas are proved as in [MS, 4.3.4, 4.3.9], taking into account
Lemmas 1.4(iii)) and 1.5. O

3.3. There is an action oW on V (see [K]). Since only case Il occurs the action
can easily be described (for example, using [MS, Remark, p. 78]). Notice that if
t € S andm(z).v # v we haver.v =m(z).v.

Explicitly, the action is given by(s, 1).[1, x, w] equald[/, sx, w] in the cases
(A) and (C) and Z, x, wo] in case (B) (notations being as in Lemma 3.2). Also,
(4, 8).[1,x,w]=1[1, x,sw] in all cases.

Notice that the formulas of Lemma 3.2 can be rewritten as

| me if d(t.v) >d (), 6
er.my = (u2 - l)mv +ulm,, ifdv) <d@). (6)



T.A. Springer / Journal of Algebra 258 (2002) 71-111 85

The construction of our representation given in [MS] is non-elementary, it uses
[-adic sheaves. One can verify in a more elementary way that the formulas of the
proposition define a representatiorféfz H (see Section 6.1).

But we now shall need the sheaf theoretical approach. Verdier duality theory
leads to an involutorial map of M, which is semilinear ifR relative to the
involution defined by the inverse in the grodpand satisfies

Ale,.m)=e LA(m) (teS, meM), (7)
(see [MS, 3.3.2, 4.4.7], wher# is denoted byD).

3.4. Lemma.
(i) There exist elements, ,, € R such that

A(my) = MﬁZd(v) Z bw,vmw'

weV

(i) by #Oifandonly ifw <vandb, , =1

Proof. A formula similar to (i) is in [MS, 3.4]. However, in that formula other

terms could appear, corresponding to non-constant local systems on thewrbits

But by the last line of [MS, 3.4.1] only the constant local system ovill appear,

since in our situation all mapEJ are injective (as a consequence of Lemma 1.8).
For the proof of (ii) we have to go into the definition af Denote byA(E,)

the Verdier dual of the shedf,, an object in a derived category. By [MS, 3.3],

buy=Y (=1 (me,ip,-), (8)
i Pi

wherep; runs through the images @ of the eigenvalues of the Frobenius map of
the stalkH’ (A(E,)), of the cohomology shedf’ (A(E,)) in a pointa € v(F,),
them,, ; denoting multiplicities.

By general facts about Verdier duality’ (A(E,)). is the dual of the local
cohomology groupH[;]’ (X, E,). By Proposition 1.6(i), there exists a transversal
slice S at a to the orbitw. Then, locally ina for the étale topologyX is the
product ofw andS. Hence

Hiy(X. Ey) = H ;2" (S Ey).

By Proposition 1.6(ii) there is a cocharacter BfcontractingS to a. Then by
[MS, Remark after 2.3.1}1[2](& E,) is isomorphic to the cohomology group
with proper support/ (S, E,) = H.(S Nv, E). Now S Nv # @ if and only if

w C v. If this is so, it follows from (8) thab,, , # 0. In fact, up to a power of
the right-hand side of (8) equals the numbefgfrational points ofS N v which

is # O (after enlarging?,, if necessary).



86 T.A. Springer / Journal of Algebra 258 (2002) 71-111

We have shown thdt,, , # 0 if w < v. The converse follows from the fact that
the dualA(E,) is zero outside. Finally, b, ,, = 1 follows from the fact thab is
smooth in the pointsof. O

3.5. Proposition.
(i) If by #0, itis a polynomial inZ[x?] with leading term(—u?)4®—dw),
(i) (—u?)? =4y (U™2) = by,y (u?).

Proof. Letv € V and assume that thererig S such thati(t.v) < d(v), whence
by (7)

A(my) = efl.A(m,,v).

Writing this out in terms of thé’s and using
et_l = u_z(e, —u?+ 1),

we obtain ford (r.v) < d(v):

b _ bt.w,t.v if d(t.w) <d(w), 9
00 Z N (L= uR)by ey + uPbpgs i dtaw) > d(w). ©)

Using these formulas, a straightforward induction shows that the proof of part (i)
is reduced to the casé(r.v) > d(v) for all r € §. Thenv is of the form
[J, wo,pwo, s, 1] by Lemma 2.1.

Putb,, , = u—4@+dwyp . Then (9) shows that

s b ~ N if d(t.w) <d(w),
buw = { ("‘71 - “)bw,t.v + b (Fdtw)>dw). (10)

1_ 4, henceis

Using these formulas, by inductidn, , is a polynomial inu—
invariant under the change— —u 1. Then (ii) follows from (i).

It remains to deal with the case = [J, wo,pwo,s, 1]. In the sequel the
R-polynomials of Kazhdan-Lusztig (see [KL, Section 2]) will appear. They lie

in Z[u?]. They are defined in terms of the Hecke algekrhy
e;}l =u"?W Z(—l)l(x)il(y)Ry,x (uz)ey,
y
wherex, y € W. From (7) we deduce
bD.1yLD.1x] = (DO TR,

We haveR, . =0 if y £ x and R, , = 1. The R-polynomials satisfy the
following recursive relations (wherve y € W, s € S). Together with the boundary
conditionsR, 1 = §,.1, these relations define tiR-polynomials uniquely.

Ry x if sx >x, sy<y,
Ry,sx =

(uz — 1R, + u?Ryy» if sx>x, sy > y. (11)
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We have similar relations to the right action of a simple reflection. Moreover, if
Ry« # 0, it has leading term2( )=/,

We return to the determination of tldg, , for v = [J, wo, pwo, s, 1]. First let
J = D. Thenv =[D,1,1] is the B-orbit B C G. By Proposition 3.5(i) and
Corollary 2.5(iii), by v # 0 if and only if w = [I, a, b], with I € J andb < a.
Write ﬂa p»=bl1ap[p,11. O

36.Lemma. g/ , = (—1)/ @O (1 —u?)P=IIR, ,(u?).

Proof. Lets € S. Then
€(s,1)-Mp,1,1=¢€(5)-Mp,11=MmMp 1.

This implies, using (7):

€(s,1)- (Z ﬂé,bml,a,b> = 6(1,@-(2 ﬂé,bml,a,b>-

Fixa € W/ and assume € S is such thata > a. Using Lemma 3.2 we determine
the coefficients ofn; , ;, on both sides of the preceding equation. We obtain

ﬂl _ ,BJS if sb<b,
b1 (1—u?)Bl, +u?Bl, ifsb>D.

Moreover, we see from Lemma 3.4(ii) th@t , = 5,.181,. Comparing the
preceding formulas with the inductive formulas (11) for tReolynomials we
conclude that

ﬂé’b — (_1)l(a)+l(b)Rb,a (MZ),BJI_,]_

It remains to determinﬂ{,1 = by11.11.(p.1.1)- Let T be the closure of in X. It
contains the poink = i, of [/, 1, 1]. We use again that by [B2, 3.1, Theorem]
there exists a contractible transverse slcat to [, 1, 1]. It follows from [B2]
that S can be taken to be a transverse sliceTirat i to T;.h. From the proof

of Lemma 3.4(ii) we see how to determn;ﬁé1 we have to studys N B and
the action of the Frobenius map on its cohomology. Now B = SN T is a
torus isomorphic ta”;. From familiar results about the Frobenius action on the
cohomology ofF,-split tori we then obtain tha! , = (1 — u?)!P~!, finishing

the proof of Lemma 3.6. 0

Fix J and putvy =[J, wo,pwo.j, 1]. Letl € J.

3.7.Lemma. Letae W/, be W,;, andwo pwo sb <a. Then

= (- 1)l(a)+l(b)+l(U)o DpWo,J) (1

AN A
b[l a,b], ) Rwo,pwo,]b,a'
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Proof. By Corollary 2.5(i) we know thaby; 4,7,,, # 0 if and only if I € J,
b e Wy, and wo pwo,sb < a. Write a = aic, with a; € W', ¢ e Wy. The
preceding inequality can only hold #1 = wo pwo s and thenb < c. Since
ae W' we haver e W; N W!. By [KL, 2.1(iv)], applied forW andW,,

Rwo.uwo.Jb,a = Rwo.uwo.Jb,wo,Dwo.JC = Rp,c.

Now [7, wo, pwo,sc, b] lies in X; and is, in fact, theB; x B;-orbit[J, ¢, blg, .
The statement of the lemma then asserts that

bi1,wo, pwo,se.blg.1T.wo,pwo.s. g = blL.e.blg, 11111, - 12)

We have the Hecke algebtd, of W; and theH ; ® H/inodule/\/l,, with basis
(m{)), wherev runs through the3; x By-orbitsinY = X, i.e. theB x B-orbits
in Y. There is an injective module homomorphism

aMjy—> M,

with «(my , ) = m1.ug pug_sa.b-
Denote byA; the duality map ofM ;. The equality (12) will follow from

aoAj=Aoaq. (13)

To prove (13) notice that under the fibration mé&p-> G/P, x G/Py, the orbit
[J, wo.qwo, s, 1] is mapped onto a point. The fiber over that point is isomorphic
to Y, whence aB x B-equivariant closed embeddirigY — X, with i(By) =
[/, wo,qwo, s, 1.

Denote byAx andAy Verdier duality in the derived category badic sheaves
on X, respectivelyy. We then have

ixo Ay = Ax oy,

because is a proper morphism. Eq. (13) is a consequence of this equality,
observing thatr comes fromi,. O

Lemma 3.7 provides the finishing touch to the proof of part (i) of Proposi-
tion 3.5. Part (ii) follows from [KL, 2.1(i)]. Lemma 3.7 is a particular case of
the formula of the following lemma (which was pointed out to me by W. van der
Kallen). Notations are as before.

3.8.Lemma. Letxe W/, I CJ,be W;. Then

J—1
bir bl = (~1@HOHO @ 2) Ry (u?), (14)

Proof. Recall that by Lemma 3.4(ii) and Corollary 2.5(i) the left-hand sidg &
ifandonlyif/ C J, b € W;, andxb < a. We prove (14) by descending induction
onl(x). If x is the maximal element o’/ the formula holds by the previous
lemma.
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Assume (14) holds far and thats € S, sx < x. Thensx € W/. From (9) we
see that

b, Lablilx1  1Td((s,1).[1,a,b]) <d(I,a,b]),
bi1,ab1,sx,11= 3 (1— Mz)b[l,a,b],[l,x,l] + Mzb(s,l).[l,a,b],[J,x,l]
if d((s,1).[1,a,b]) >d(I,a,b)).
For the action ofs, 1) see Section 3.3. We put

-1
Dlrablgor1) = (—DI@HOH® (1 uz)

Cx,a,b-

We then have to prove that , , = Ryp.4. In @applying the formulas there are four
cases to be dealt with.

(1) sa > a andsa € W!. Thencg, a.p = cx.5a.0 = Rib.sa DY induction. Since
sxb < xb, sa > a this equalsk;,p o by the first formula (11).

(2) sa =ar with t € Wy andbt < b. NOW ¢y 4. = Cx,a.bt = Rxpr.q. By the first
formula (11) for right action of and left action of,

Rxbt,a = Rxb,at = Rxb,sa = Rsxb.a-
(3) sa < a. Inthis case
Csvah = (U2 = L)cx.ap + u%cx sap = (U? — 1) Rep.a + u?Rep sa-
This equalsR,,p o by the formulas (11).
(4) sa = ar with t € Wy andbt > b. Now

Csx,a,b = (uZ - 1)Cx,a,h + uzcx,a,bt = (MZ - 1)Rxb,a + MZRxbt,a

= Rxb,at
by the second formula (11) for right actionofMoreover,
Rxh,at = Rxh,sa = Rsxh,a
by the first formula (11). O

3.9. Remark. In fact, (14) holds for every € W/,

We claim that ifx ¢ W/ ands € S are such thatx < x, validity of (14) for
sx implies validity forx. By the lemma, validity of (14) fox implies validity for
x = 1. The claim will then imply validity for any € W/.

To prove the claim we use the notations of the proof of Lemma 3.8. Assume
that (14) holds forsx. We consider the four cases of the proof of Lemma 3.8.
In case (1)csx,a.b = Cx.sa,b- ASSUMING thaty 4.5 = Rsxb.a, WE havec, o5 =
Ryb.sa» Whencecy 4.5 = Ryp 4 O sa < a.

In case (2) a similar argument shows tle@l, 5 = Rxbr.a, Whencecy 4.» =
Ryp.q if bt <b.

In case (3) we find, using the result of case (1),

2 2 2 2
Csx,a,b = Rsxb,a = (Li - 1)Cx,a,h +ucy sa,p = (u - 1)Rxb.a + U=Cx sa,b-
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From (11) we see that, ;4.5 = Ryp.sa, Whencecy 4 pRyp.q if sa > a. Case (4) is
dealt with in a similar manner.

We conclude this section with some additional results about the polynomials
by (v,weV).

3.10. Lemma.
(l) bw,v(l) = 5w,v-
(i) by, ,(1) = —1if there is a reflectionr € W (not necessarily simp)ewith
w=r.v <.
(i) Letv=1[J,c,d], w=[I,a,b]. Thenb), ,(1)=-1ifI1CJ,|J—1I =1,
and there existg € Wy witha =cf, b =df.
(iv) Inthe cases not covered i) and(iii)), we haveb;, ,(1) = 0.

Proof. It follows from (9) that ifr € S we haveb,, ,(1) = b; . 1.,(1). Letv =
[J,c,d], I =[1,a,b]. Using the preceding formula the proof of (i) is reduced
to the case =d = 1. In that case (14) shows thay}, , = 0 unless/ = J and
a=>b=1. (i) follows.

We prove the other assertions by inductiondim). It is a bit easier to work
with theb,, , (introduced in the proof of Proposition 3.5). Using (i) one sees that
b, (1) =2b}, ,(1).

Lets e S, t=(1,s). It follows from (10) that ifd (z.v) < d(v)

5= bl oD if d(t.w) <d(w),
W —2by (D) 4B, (D) i d(tw) > d(w).

taw,t.v

Ij w = t.v < v we haveb,, ;, =0 by Lemma 3.4(ii), and then (i) shows that
b, , = —2, proving (ii). If w # ¢.v the preceding formulas imply that

w
By (D =] 4y, (D).

By induction, the proof of (ii)—(iv) is then reduced to the case 1. In that case
we have the explicit formula (14) fdr, ,. It implies that forl = J
by (1) =Ry, 4 (D).

ch,a

It is known (see [GJ, 2.2]) that far, z € W we haveRr, (1) = 0, except when
there is a reflectiom € W with u = r.z < z, in which caseR;’z(l) = 1. This

implies that forl = J,d =1, Ew,v = 0 unless there is a reflectione W with
rc¢ =ba~1, which means thatr, 1).v = w, proving (i) and (iv) if I = J.

In the casel Cc J, I # J,d =1, it is clear from (14) thab,, (1) =0 if
|J —1I|>1.1If|J —1I|=1, (14) gives thab;, ,(1) = 0 unlessa = cb, in which
case it equals-1, in accordance with (ii) and (iv). This concludes the proof of
Lemma 3.10. O
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4. Intersection conomology of B x B-orbit closuresand Kazhdan-L usztig
polynomials

4.1. The notations are as in the preceding section.iFerV let 7 = 7, be the
intersection cohomology complex of the closurei.e. the irreducible perverse
sheaf onX supported by whose restriction te is E[d(v)]. It defines an element
of M:

Cy = u4® Z Cwphy With ¢y = Z(_l)i <Zmi,m /01'>,
weV i Pi

where thep; run through the images i@l of the eigenvalues of the Frobenius map

of the stalk®'(Z,)q in a € x(F,), them, , denoting multiplicities (see [MS,

3.1.2]). We have, , =1, andcy, , =0 if w € v.

4.2. Theorem.
() Thecy,, are polynomials ini? with positive integral coefficients
(i) Ziseven,ieH' (Z)=0ifi+d(v)isodd.

Proof. Again we use the result from [B2, 3.1, Theorem] that in a point of an
orbit v there is a contractible transversal slice. By [MS, 2.3.3] it then follows
thatZ is punctually pure, i.e. that all eigenvalues of the Frobenius map of a stalk
H' (Z,)q (a € (F,)) have absolute valueg’+¢)/2, The fact that the, , are
polynomials, proved in Lemma 3.4, implies (i) and (ii). We refer to [MS, 3.4.3
and proof of 7.1.2(ii)]. O

Now assume that we work over an arbitrary algebraically closed field.
4.3. Corollary. 7 is even.

Proof. Since this is true whert is the algebraic closure of a finite field by
the theorem, it is true for any by a familiar reduction procedure (see [BBD,
Section 6]). It also follows that the result holds ov&rrelative to the classical

topology. O

We can now discard the big rirg. View thec,, , as polynomials ini2. They
are the “Kazhdan-Lusztig polynomials” farl, characterized by properties of the
usual kind.

4.4. Proposition. The(cy v)x.vev are the uniquely determined polynomials with
the following properties

(@) cvy=1andcy , =0if w L v;
(b) if w < v theu-degree ot , (u?) is < d(v) — d(w);
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©) u™®Y" ey (@?)my, is invariant underA.

Proof. Our polynomials:,, , have these properties. For (a) this is clear, and (b),
(c) reflect properties of the perverse sh&afviz. the support conditions and
duality.

The uniqueness follows from the following identity (cf. [KL, 2.2]):

u_d(”)+d(w)6‘w,v (MZ) _ ud(v)_d(w)cw,v (M—Z)

— Z Md(v)+d(w)—2d(y)cy’v(u—Z)wa (MZ)

w<y<v
This can be written in a somewhat less cumbersome form. Write
Cyo() = Md(v)id(w)cw,v(uiz)a I;w,v(u) = uid(v)+d(w)bw,v(u2)~

For w # v, ¢y, IS @ polynomial inu without constant term, an integral linear
combination (with coefficients: 0) of powersu/ with j + d(v) + d(w) even.
Moreover,l;w,v is a Laurent polynomial im, a linear combination of powers af
satisfying the previous parity condition. The preceding formula can be rewritten
as

Ew,v(u_l) — Cy(u) = Z Ey,v(u)l;w,y(u)~ (15)

w<y<v

It follows from Proposition 3.5(ii) that the Laurent polynomf@;,v(u) is of the
form f(u —u~1), wheref € Z[T]. O

4.5. The formula (15) leads to an inductive procedure to determine the Kazhdan—
Lusztig polynomials,,,, via the Laurent polynomialg, ,. Namely, the right-
hand side of (15) is a Laurent polynomial without constant term-a&, is its
polynomial part. One needs to know the Laurent polynonﬁ@[§. They can be
determined inductively, as in the proof of Proposition 3.5: reduce to the case that
v=[J, x, 1] by using (10) and then apply Lemma 3.8.

The procedure has been implemented by W. van der Kallen in a Mathematica
program. Among other things, he computeddhe in the case that is simple of
rank two and that = [D, 1, 1], i.e. the Borel subgroup of G. See Appendix A
for more details.

The computations give that in typd, (i.e. for G = PGLs) we have
crx,y,B =1 unlessl =¥ and eitherx =st, y =¢t,1 orx =sts, y =s,t,1
(wheres andr # s are simple reflections). In these casg@s. y.p =1+ u?,
except when = sts, y = 1, in which case this polynomial id + u?)2.

IngeneralP, , = cip.r.y).5 (v < x) is a polynomial inu? whoseu-degree is<
2(r +1(x) —1(y)), wherer is the rank ofG (by Proposition 4.4(b) and (5)). These
polynomials remind one of the usual Kazhdan—Lusztig polynomials, introduced
in [KL]. One can wonder whetheP, , also have some bearing on representation
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theory. It would be interesting to have a more direct combinatorial definition of
these polynomials.
We next give some other consequences of (15).

4.6. Proposition.

(i) If w < vthency,,, has constant terrt.
(i) cw.p#Z0ifand only ifw < v.
@ii) Fw<v thenzwgvgv(—1)d(«")_d(w) =0.

Proof. (i) is equivalent to the statement that the polynomialu(irt) &, ,(u™1)
has leading term(u—1)d®=4®)_Now ¢, , is a polynomial inu without
constant term ify < v andl?w,y is a Laurent polynomial i« with lowest term
(™14 =d@) it follows that forw < y < v, &y,yby,y is @ Laurent polynomial
in u whose lowest term isu—1)" with m < (d(y) — d(w)), equality occurring
only if y = v. This implies that the left-hand side of (15) has lowest term
(u~1)?@=dw) This lowest term must occur i, , and (i) follows.

(ii) is a consequence of (i) and Proposition 4.4(a).

To prove (iii), consider the leading coefficientinin both sides of (15). By
(i) this is —1 in the left-hand side. In the right-hand side the leading coefficient
IS Y, <p (1 740), as follows from Proposition 3.5. The formula of (iii)
follows. O

Remark. (i) implies that the Mdbius function of the ordered détis given by

w(w, v) = (=1)4W—dW) 4y, < v). This is similar to a result of Verma for the
Bruhat order ofW. In [KL, 3.3(b)] Verma’s result is deduced from properties of
Kazhdan—Lusztig polynomials. It can also be proved along the lines of the proof
of Proposition 4.6(iii).

If w=[I,a,b]andl C J we putr; j(w) =[J,c,d], wherec € W’ is such
thata € cW; andd = be~1a. We denote byrR (W) the set of reflections ifi .

4.7. Proposition. Letv € V and assume thatis rationally smooth. Then for any
w<v

‘{reR(W)|w<r.w<v}‘+’{JCD‘ng, |J—1|=1, n1,/(w)<v}’
equalsd (v) — d(w).

Proof. That v is rationally smooth means that the intersection cohomology
complexZ, is E;[dimv] or, equivalently, that,, , = 1 forw < v. Thenc,, , (1) =
u?@=dW) for y < v. Inserting this into (15) and taking derivatives of both sides
for u = 1, one obtains fow < v

—2(dw) —dw) = > ((d) —d(y))bw.y(1) + b, (D).

w<y<v
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The asserted equality is now a straightforward consequence of Lemma 3110.

Remark. It was pointed out by M. Brion that the right-hand side of the formula
of Proposition 4.7 can be interpreted as the numbérot T),,-stable curves in
the slice tov alongw, see [B2, 1.4, Corollary 2].

An application of Proposition 4.7 is the following result due to Brion, proved
in a somewhat different mannerin [B2, 3.3].

4.8. Corollary. Assume that; is simple. Ifw € W the large Schubert variety
Sw = BwB is rationally smooth if and only i; ~ PGLy or w = wo_p.

Proof. Take in the propositionn = BwB = [D,1, w] and w = [@, wo, p, 1].
By Corollary 2.5(iii), w < [D, 1,1] < v (w is the uniqueB x B-fixed point
in Sy). We haved(v) =d + r + I(w), whered = [(wo p) andr is the rank
of G. If s is any reflection inW then (s, 1).w = [@, swo.p, 1] and (1,s).w =
[4, wo.p, s]. From Corollary 2.5(iii) we then see that alle R(W) satisfy
w<rw<[D,1,1]<v. Further, ifa € D and s € S is the corresponding
simple reflection themy 1oy (w) = [{a}, wo, ps, s]. By Corollary 2.5(iii) we have
g,y (w) < v if s <wo ps. If this is not the case and > 1, we must have
wo,ps € Wp_ia}. Sincel(wo,ps) =d — 1, wo ps has to be the longest element
of Wp_4}. This implies thatr ¢ WP~{®} whences.p € R* for all simple roots
B # a, which is impossible if > 1 andR is irreducible G being simple).

It follows that if » > 1 the number given by the displayed formula in the
Proposition is at leastd?+ r. Sinced (v) — d(w) =d +r + I(w), Proposition 4.7
gives that ifr > 1 rational smoothness &f, implies

r+d+1l(w)=2d+r,

which can only be ifw = wo p.

Conversely, ifw = wo p then S,, = X is smooth. To finish the proof of
Corollary 4.8 it remains to be shown thatGf = PGLy, B is rationally smooth.
The wonderful compactificatiol of PGLy is isomorphic to projective spade®,
viewed as the set of lines in the space ok 2-matrices. It follows thaiB is
isomorphic toP2, hence is smooth. (Rational smoothnessdh this case can
also be proved by hand, using (15).)0

4.9. Global intersection cohomology. We next establish parity of global
intersection cohomology of orbit closures.Xfis any irreducible variety, define
its global intersection cohomology groups by

IH'(X) = H' (X, Zx[— dimX]),

the hypercohomology of a shift of the intersection cohomology conipieaf X.
The shift is added in order to recover ordinary cohomology i€ smooth.
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As before, we work over the algebraic closure of a sufficiently large #&ld
over whichX is defined. LetXo be the underlyingF,-variety. ThenZy comes
from a perverse shedl on Xo. Moreover,Zg is pure of weight O (see [BBD,
5.3.2]). We have a Frobenius endomorphignof the intersection cohomology
groups. IfX is projective andH’(X) = 0, all absolute values of the eigenvalues
of F on alH!(X) areq'/?, as follows from [BBD, Section 5].

Now let X = v, wherev e V.

4.10. Lemma. The eigenvalues df on a nonzero intersection cohomology group
are integral powers o§.

Proof. Let A be the shifted intersection cohomology comple){ — dim X]. Put

Xn= U w,

weV, wv,
dimw<n
which is a closed subset of, coming from anF,-subvariety(X,)o of Xo.
Clearly, Xgim» = X. We show by induction on that for eachn the eigenvalues
of F on a nonzero hypercohomology grotf)(X,, A) are integral powers af.
We have exact sequences of hypercohomology groups

> Hi_l(Xn—la A) — Hé(Xn - Xu-1,A) —> Hi (Xn, A)
— H' (Xp-1,4) > -,
the arrows commuting with the respective Frobenius endomorphisms. Moreover,

Xo—Xpa= ] w
dimw=n
A straightforward argument now shows that it suffices to prove that the
eigenvalues of on a nonzero groupt,.(w, A) are integral powers af.
We have a spectral sequence

Hi(w, H (A)) = HH (w, A),

from which we conclude that it suffices to prove a similar assertion for the groups
H!(w, H/(A)). The restriction of the locally constant shéaf (A) tow is B x B-
equivariant. Since the isotropy groupsBnx B of the points ofw are connected
(see Lemma 1.3(iv)) this restriction is constant. By Theorem 4.2{iijA) = 0

if j is odd and it follows from Theorem 4.2(i) (cf. the descriptioncgf, given

in Section 4.1) that all eigenvalues Bfon the stalki/ (A) (x € w(F,)) areq’.

This reduces the proof to showing that the eigenvalues @ H!(w, E) are
powers ofg. This follows from the fact thatv is isomorphic overF, to the
product of a torus and an affine spacen

4.11. Theorem. IH!(X) =0if i is odd.
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Proof. All absolute values of an eigenvalue Bfon a nonzero groufH (X) are
¢'/2. By Lemma 4.10 this must be an integral powegofvhich can only be if
is even.

Again, the parity result is true in any characteristic and dven the classical
context. O

The arguments of the proof can be extended a bit, so as to give a description of
the intersection cohomology Poincaré polynomiakot v.

4.12. Corollary. » dimIH (X)#' = > 2dimw (g fz)“”‘cw,v(tz).
i

w<v

Proof. It follows from the theorem that all eigenvalues Bfon IH% (X) areq’.
A being as in the proof of Lemma 4.10, it also follows that

> dimIHZ (X)g' =) "(-1) Tr(F. H (X, A)).
i>0 i
By a result of Grothendieck, the right-hand side equals
Z (=D Tr(F, H' (A)y).
xe€B(Fy), i
Now o(F,) = ]_[wng(Fq), and the number of points ofv(F,) equals

q9mw (1 — g=Hll Moreover, for allx € w(F,)

D (=1 Tr(F, H (A)y) = cu.o (@)

We conclude that the difference of the two sides of the asserted formula vanishes
for r = ¢1/2. But it then also vanishes for all poweigs/2)", hence the difference
is identically zero. O

Example. Let G = PGLz, v = B. The Kazhdan-Lusztig polynomials were
described in Section 4.5. Cut the sum of Corollary 4.12 into pieces corresponding
to the cells of Proposition 2.10. A straightforward computation gives for the
intersection cohomology Poincaré polynomial&f

1+ 4% + 9* + 918 + 4¢8 + 110,

For some other cases the polynomials are given in Appendix A.

It was pointed out by M. Brion that the description of global intersection
cohomology can also be obtained as an application of the results of [BJ].
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5. Nonconstant local systems

In this section we discuss the generalization of Theorem 3.2 to the case of
intersection cohomology complexes for not necessarily constant local systems on
the B x B-orbitsv in X. These are the local systems having a weight for the
B x B-action (see [MS, 2.2]).

If v=1[I,x,v] (as before), we writd = I,,.

5.1. Assume thak is the algebraic closure of a finite fielld,, over which all
objects which occur are defined. L& be as in Section 3. Following [MS]
we introduce the freeR modulej\/ W|th basismg , wherev e V and & €
X(T x T/(T xT)y) = X(T, ) = X, cX (see Section 1.7). Theng , is the
class in the Grothendieck group(Ayx) (see Section 3.1) ofSe v, ¢), where
S, Is the sheaf which restricts o on v and to 0 on the complement of ¢
being a Frobenius map. The modulé of Section 2 is the submodule with basis
my =moy (VEV).

Let K be the algebra oveE[u, u~1] with basis (eg,,,), wherew € W and
£eX=X(T), the multiplication being defined by the following rules (see [MS,
4.3.2 and 3.2.3)):

ez xeyy =0 for&#yun,
andfors € S, & =y.n:

€n.sy if sy >y,
€t s€n,y = (u? = D)ey.y +uPey sy ?f sy <yand(yn,a)=0,
Mzen,sy if sy <yand(yn,a)#0.

a is the element” ® 1 of ?(T) =Y(T)® (Zp)/Z), wherex" is the cocharacter
defined byw.
Moreover (see [MS, 3.2]),

eg 16,y = 8¢ y.nen,y-

If £ € X we denote byR: the closed subsystem & consisting of the roota
with (&, ) = 0. Its Weyl group isWe. It is a normal subgroup of the isotropy
groupWé of £in W.
By [MS, 3.2] we have a structure &f ®y, ,-1) K-module onV. The next
lemma, which generalizes Lemma 3.2, describes the module structure.
Letv=[Il,x,w]eV.For&e X, we putme 1 xw = me ». In (i) we use the
notations introduced before Lemma 3.2.

52.Lemma. Letxe W/, we W,& e X;,neX,ands €.

(i) €n.(s,1)- Mg [ x,w = 0if n # x_l'é anden,lmé,l,x,w = Sn,x.émé,l,x,w-
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(i) If n=x"L.&, the product of(i) equals
(@) u?— Dme 15w —i—uzmg,[,sx,w in case(A) if x.a € R, anduzmg,mx,w
otherwise
(b1) meg 1,x,wo in case(B) if wo > w;
(b2) w?— Dme 1y w+ uzmg,m,w(, in case(B) if wo < w, w.a € Rg, and
uzmg,hx,wg if wo <w, w.a & Re;
() mg 1,5x,w in case(C).
(i) ey, (L,s)-Me Lxw = Qif n # —w_l.&‘.
(iv) If n = —w~1.&, the product of(iii) equalsme j x s if sw > w. If sw <
w it equals (u2 — Dmg 1 xw+ uzmg,Lx,sw if wa e R, and Mzmg,[,x,sw
otherwise.

Proof. The first point of (i) follows from [MS, 3.2.3] and the second point is an
easy consequence of the definitions of [MS, 3.2.1].

The formulas of [MS, 4.3.1] for the cases lla and IlIb (proved in [MS, 4.3.4,
4.3.9]) give formulas like those of (ii), except that at first sight on the right-hand
side other elements of; might appear. Consider, for example, case (a) with
x.a € Re. Then [MS] shows, using Lemma 1.8, that theré&’isuch that

Cx—lg s ME T x,w=Mg [ s5xw-

It follows from the definition ofg, (see Lemma 1.8) thaf 1), = ¢y o (5, 1),
whenceg ;. 1), = (5. 1) o ¢,. By the results of [MSkh.1) () = (s, 1).¢y (£).
By Lemma 1.8

yLE =penaE)=mE) =y L,

whenceé’ = . In the other cases the proof that orflywill occur is similar.
This will prove (ii). The proofs of (iii) and (iv) are similar to the proof of (i),
respectively (i)). O

Lemma 5.2 shows that the; , with a fixedé € X span a submodul®1; of
N which is stable under the action &f ® H. Clearly, / is the direct sum of
the M.

5.3. As for the moduleM, there exists a semilinear involutorial endomorphism
A of N, coming from Verdier duality, see [MS, 3.3]. It will follow from
Lemma 5.4¢(ii) thatA mapsM; onto M _¢.

Forse S, & e X, meN we have

u_z(e,g’(s,l) + (1— uz)e_gyl).A(m) if s € W,

16
u_ze,g.(s’l).A(m) if s ¢ We, (16)

Aleg (5,1)-m) = {

and similarly foreg (1 5). See [MS, 5.1].
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5.4. Lemma.
(i) There exist elements, ..z, € R such that

A(me y) =y %W Z by wie,vMyw-

wevV, 7765(\110

(ii) 1f by e.o #0thenw < v ande,.n = —¢,.£. Moreoverb ¢ ¢, = 1.

Proof. The proof of (i) is like the proof of Lemma 3.4(i). The first point of
(i) follows from the fact that the Verdier dual (S ,) is zero outsides. The
restriction ofA(Sg ) to v is —¢ shifted by 2/(v), which implies the last statement
of (ii). The second one follows from [MS, 3.4].0

5.5. Proposition.
(i) Theb, ¢, are polynomials irZ[u?]. R
(i) If by y:e,0 #0thené = —p. In particularé € X,

Proof. The proof of (i) is along the lines of the proof of Proposition 3.5(i). We
shall not spell out the details. Let=[1, x, w] € V and assume that theretig S

with d(t.v) < d(v). Using Lemma 5.2 and (16) one reduces the proof to the case
thatv = [J, wo, pwo, s, 1]. (The important fact for the proof of (i) is that by the
formulas of Lemma 5.%,, ;.me¢ , lies in Mg.)

Assume that has this form, and assume also thlat D. Sov = B. We
then have to compute thg [; 1 13.¢, g. First note that by Lemmas 5.4(ii) and 1.8,
byi11:6 0,10 =01ifn#-§.

Assume thah = —&. Thené € X;. Proceeding now as at the end of the proof
of Lemma 3.6, we see that we have to compute the cohomology of the torus
Tp—; with values in the restriction t&p_; of the local systen§ on T'. But the
restriction mapX — X(Tp_;) has kernelX;, so containg. It follows that the
restriction ofé to Tp_; is the trivial local system, and the computation is then
as in Lemma 3.8, showing that ¢ [;,1,15;¢, is @ nonzero polynomial im? if
EeXy.

It remains to deal with the case that [J, wo pwo, s, 1] with J arbitrary. This
is done by using an analogue of (13)

5.6. Intersection cohomology. For v € V and ¢ € YIU denote byZg , the
intersection cohomology complex of the closuarefor the local systen§ on v,

i.e., the irreducible perverse sheaf ahwhich is zero outsides and whose
restriction tov is £[d(v)]. As in Section 3.1, it defines an element/d¢f

—d(v
Cey=1Uu @) E Cpw;&,vMn,w,
weV,ne)?Iw

thec, .z, being elements dR.
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5.7. Theorem.

(i) Thecy w;e,» are polynomials ini2 with positive integral coefficients
(ii) If ¢pwie.0 #0thens = —p; in particular, & € X, .
(i) Zg o is even.

Proof. The proof of (i) and (iii) is similar to the proof of the analogous results of
Section 4.

(ii) follows from Proposition 5.5(ii), using the inductive description of the
cp.x:¢,0 CONtained in [MS, 3.4.2, 3.4.3]. It follows from (iii) that the restriction
of Z¢ , to X is zero ifé ¢ X;.

(ii) remains true over any algebraically closed field (cf. Section 3.8).

6. Arbitrary Coxeter groups

This section deals with a tentative extension to arbitrary Coxeter groups of the
constructions of the preceding sections.

6.1. We first give a more intrinsic description of the modul¢ of Section 2. We
now identify D andS. For I C S let M; be the submodule o spanned by the
m, With I, = I. Denote byH; the Hecke algebra of the subgroufy generated
by I. Itis a subalgebra df{s = H. Denote byj; the isomorphism of{; sending
ey(w € wr) 10 ey wuwg -

Leti be the endomorphism o¥1 sendingn; y » tom, , ,-1. Then

((h, By, m) > hm.h' =i((h@h").i(m)) (h,h' € H, m e M)

defines a structure afH, H)-bimodule onM. In particular, we can viewM as
an(Hy, H)-bimodule.
If V' is a (left)H;-module, denote by, N the’H;-module\ twisted by j;.

6.2. Lemma.
() M=B,;cs M.
(ii) There is an isomorphismp of (H, H)-bimodules ofM; onto the twisted
induced module (H ®7, (j,;H)).
(iii) ¢ commutes with right{-actions.

Proof. For (iii) notice that the induced modul&” of (ii) has a natural right
‘H-action.

(i) is clear. For the proof of (ii) notice th&t is a free right module oveki;
with basise, (x € W). It follows that(ex ® m) ey e pq IS @ basis ofV.

Now defineg by

¢(m1,x,w) =e,(x) ey,
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wheret; (x) = wo, pxwo,s, as in Lemma 1.3. A straightforward check shows that
forse S
_ e+ 1)-O(myxw) if sx € W/,
¢(€(‘S,l)-ml,x,w) {e”(x) ®ewovlawoy16w if o :x—lsx cW.
This proves (ii).
The proof of (iii) is easy. O

Now assume thatW, S) is an arbitrary Coxeter group (with a finite set of
generatorss). As in Section 3, we writ?dV =W x W, S =S x §.

ForI C S let, as beforeW; be the subgroup generated bandW! the set of
distinguished coset representatives oy, i.e. the set ofc € W with xs > x for
allsel.

Let V be the set of triple§l, x, w] with I € S, x € W/, w € W. We introduce
the freeZ[u, u=1]-module M with basis(m,),cv. Forv = [1, x, w] we write
my =mj xw-

As before M is a direct sum of submodules(; (I C S).

6.3. Proposition. The formulas of Lemn&2define a structure dft ® H-module
on all M;.

Proof. Itis straightforward to verify that fore S,v e V
e,z.mv = (u2 — l)et.mv + uzmv.

To prove Proposition 6.3 it remains to verify that for’ € S, the endomorphisms
e; ande; of M verify the appropriate braid relations. This is immediate if one
of #,¢" is of the form (1, s) with s € S. So assume that= (s, 1), ' = (s',1)
(s, s’ € S). We may assume that s’. If a braid relation is to be verifieds’ has
finite order. Putting/ = {s, s’} the groupW} is finite.

Fix v=[/,x,w] € V. LetN be the submodule of1 spanned by the:; ,/
with x’ € W;x, w’ € wW;. We may assume that is the unique element of
w!inw7’)~1 lying in W,;xW;. One knows that thefV; N x~1W,x = Wk,
whereK =1 Nnx~1.J (see[C, p. 65]). Now the’ which occur will lie in a fixed
coset moduldWk . Takingw € WX we see that\V' can be viewed as a module
like M, for the Hecke algebra{; of the finite Coxeter groupy,;. But for such
a group we have again the result of Lemma 6.2, which implies that the formulas
of Lemma 3.2 define a representation?g§ in A/. This implies that the braid
relations hold for the action iM of e(; 1) ande(y 7). O

6.4. Theset V. Suggested by the results of Section 2 we introduce some structure
on the setv.

(a) Suggested by (5) we define a dimension functiam V by
d(l,x, w]) = —I(x) +1(w) +|1].
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Note that if W is infinite the value of/ can be any integer.

(b) We have an action ol of W = W x W, described as in Section 3.3. That
we do have &V -action follows from Proposition 6.3, specializingo 1.
We also have an action of the monadiiWw x W) onV.

(c) We next introduce an order relation &h A simple way of doing this is
suggested by Proposition 2.8. L€t and <, be defined as in Lemma 2.6.
These are orderings. Denote {ythe ordering generated y; and<».

6.5. Lemma.
@) If [, x",w]<[J,x,w]thenx <x’and—I(x") +1(w") < —1(x) + ().
(i) Segmentsiv for the ordering< are finite.

Proof. To prove (i) it suffices that the properties of (i) hold fgg and <». For
<1 this is immediate. Ifi7, x", w'] <2 [/, x, w] there isz € W; with v’ =wz,
l(w) =1l(w) +1(2), xz < x’. Moreover,] € J. Then

—I() + W) = —1(x) +1(x2) — 1(x) + 1(w) < —1(x) + [(w).

Also, x < xz < x'.
To prove (i), let

[H,x", w1 <[ x",w]<[J,x,w].
By (i) we havex’ < x” and
I(w') < =1(x) + 1(w) + 1(x") <I(w) +1(x").

These inequalities imply that the segment¥ifior < are finite, proving (ii).
We prove that Corollary 2.5(i) carries overd

6.6. Lenma. Letx €e W/, a e W! b e W. Then[I,a,b] <[J,x, 1] if and only
if ICJ,beW;,andxb <a.

Proof. If these conditions are satisfied, it is immediate fHat, b] <2 [/, x, 1],
whenceg/, a, b] < [J, x, 1]. Conversely, let this be the case and assume that

vo=I[1,abl, vy, ..., vy=[J,x,1]

is a sequence of elements Bf such that fori = 1,...,s eitherv,_1 <1 v; or
vi—1 <2 v;. If s =1 the condition of the lemma is easily seen to hold. So assume
thats > 1. By induction we may assume thet is of the form[K, ¢, d], with
KCJ,deWy,andxd <c. If vg<1v1 thenxb <xd <c < a. Sinced € Wy
andb < d,we haveh € W;. Moreover,] C K C J. This shows that the conditions
of the lemma hold.

If vg <2 v1,thereisz € Wi with b =dz, 1(b) =1(d) +1(z), andcz < a. Then
xb=xdz <cz<a.Moreover,] C K CJ andb=dz e Wy, sinced € W; and
z € Wg C Wy. The lemma follows. O
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The next lemma is a partial analog of Lemma 2.1(b).

6.7. Lemma. Let[I,x’,w'] <[J,x,w] and assume that € S is such that
sw>w,sw >w'. Then[l,x', sw'] <[J, x, sw].

Proof. Take a chaiwg = [I,x’, w'], v1, ..., v, = [J, x, w] such that fori =
1,...,reithervi_1 <1 v; orvi_1 <o v;.

First, letr = 1. If vg <1 v1, it is immediate tha{l, x’, sw’'] <1 [/, x, sw].
If vo <2v1 andz is as in the definition of<, (before Lemma 2.6) then
may also serve to show thék, x/, sw'] <2 [J, x, sw]. Now letr > 1. Assume
thatvy =[K,c,d]. If sd > d, we may assume by induction thgk', ¢, sd] <
[/, x,sw]. By the caser = 1 we know that[/, x", sw'] < [K, c, sd], and the
assertion follows.

If sd <d andvg < v, we havew’ < d. But then we must havew’ < d,
whence

[1,x",sw]1<1[K,c,dl<[J,x,w]<1[J,x,sw].
If sd <d, we cannot haveg <» v1. For if w’ =dz, I(w') =1(d) + I(z) then

sw’' > w’ impliessd > d.
We have proved the lemman

6.8. The map A. The results of Section 3 suggest the introduction of a map
semilinear with respect to the automorphisn¥f, « ~1] sendings to 1, such
thatforve vV

A(my) = u72d(v) Z bx,vaa
xeV

satisfying

(A) Ale;m)=e L.Am) (t€S, meN),
(B) br1,a.p117.1,11= (—1)l(a)+l(b)(1— MZ)\J—Ile’a (MZ), forae Wl be Wy, and
b<a.

(A) is formula (7) and (B) is the particular case= 1 of (14). The target space
M of A should be a completion 0¥, as infinite sums arise.

6.9. Proposition.
(i) There exists a uniqua satisfying(A) and(B).
(i)) by, =0ifw L.
(i) If w < v thenb,,, is a polynomial irZ[x?] with leading term(—u?)¢®—4w),

Proof. The formulas of Lemma 3.2 imply that

-1
ml,x,w = e(x—l 1)'e(1,w)'ml,1,l'
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If A exists, it follows that
A(ml,x,w) = e(x,]_).e(_]}w,l).A(WZ],L]_), (17)

showing thatA is uniquely determined by (A) and (B).
We defineA by (17). Then we have to prove (A).
If s €S, sw> w,then by Lemma 3.2:

Alew,s)-myx,w) = Almyxsw) :e(x,l)'e(ililw—ls)'A(mJ,l,l)

-1
= e(l’S)A(mJ,x,w)a

establishing part of (A). The case that < w is dealt with similarly, as well as
the cases of = (s, 1) with sx € W7
There remains the case that (s, 1) andsx = xo with o € W;. Then

A(e(s, 1)~ml,x,w) A(my x wo) _e(l (wo )1y Almyxw)-

For (A) to hold this should be equal HP A(my x.w). Using (17) we see that it
suffices to deal with the case that= 1. In that case we have to prove

es,1)-Almyx 1) = e,0).AMmy x 1).

Now the arguments of Remark 3.9 show that (B) implies the validity of (14) in
the present situation. The equality to be proved then follows by using properties
of R-polynomials, as in the proof of Lemma 3.8.

We prove (ii) by induction on(w). For w = 1 the assertion is true by
Lemma 6.6. Letw # 1 and takes € S with sw < w. Formula (9) holds in our
situation and implies

b[l,a,sb],[l,x,sw] if sb <b,

bir.a,p1.10,xw) = i
(L.a.bllJ.x.w] (l— uz)bu,a,h],[/,x,sw] + Mzb[l,a,sb],[l,x,sw] if sb>b.

If brrap.irxw 70 andsb < b then we can conclude by induction that
[1,a,sb] < [J,x,sw]. Application of Lemma 6.7 shows thih, a, b] < [/, x, w].

If br1,a,61,17.x,w1 7 0 @andsb > b then induction gives thatl, a, b] < [J, x, sw]
or[l,a,sb] <[J,x,sw]. In the first case we hajg, x, sw] <1 [/, x, w] and in
the second case we must hdavea, b1 <1 [/, a,sb]1 <[/, x,sw] <1 [/, x, w]. In
both case$l, a, b] < [J, x, w]. This establishes (ii).

The proof of (iii) is like the proof of Proposition 3.5(i).0

6.10. From Lemma 6.5(ii) and Proposition 6.9(ii) we infer thaf is a module
homomorphism\t — M, given by

Az(mv) = Z( Z M2d(v)Zd(z)bw,z(uZ)bz,v(uz))mw.
weV wz<y

The results of Section 3 suggest the conjecture ffat 1. But so far | have not
been able to prove this.
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If A%2 =1, one can show that there exist Kazhdan—Lusztig polynomijals
with the properties of Proposition 4.4. In fact, the existence of such polynomials,
for all v, w € V, is equivalent with the involutive property af.

Some support for the conjecture is provided by calculations made by W. van
der Kallen. With his program for computing the Kazhdan-Lusztig polynomials
of Section 4, he did some experimentation with formula (15) in the case of
affine Weyl groups of small rank and in the case of some non-crystallographic
Coxeter groups. The experiments produced polynomigls with positive
integral coefficients (see Appendix A).

It is natural to ask whether there is some geometric background to the
constructions of the present section.
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Appendix A. (by Wilberd van der Kallen)

We computed the, , of Theorem 4.2 with a Mathematica program. We
obtained them for allv, v whenG is of rank two, and fovo = B =[D, 1, 1] when
G is of rank three. After minor changes in the program, we could also explore a
few affine Weyl groups and a few Coxeter groups that are not Weyl groups.

The setV of B x B orbits has size 1800 for typés and it has size 7056 for
type B3. As memory becomes a problem we had to give up on computing and
storing the entire partial order dn. But note thai;v,w # 0 exactly wherv < w.
Therefore, we replace in recursion (15) the sum

Z : E}EUbwa}’

w<y<v

with a sum overy with w # y andb,, , # 0.

We also need an efficient solution of the word problem in our Weyl groups.
We are primarily interested in very small Weyl groups, so we can simply start
from a faithful representation. (Matrix coefficients have to lie in a ring for
whose elements a normal form has been implemented.) We might have stored
the multiplication table, but we prefer manipulating words. As Mathematica is
very good at replacement rules in terms of pattern matching, we have it look for
rules that make a word go down in length or lexicographic order. Five rules suffice
for Bs. In the main computation these rules are then applied automatically when
reduce is called. Thenitis straightforward to introduce things like distinguished
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coset representatives, the length function, fypolynomials. We use th&-
polynomials also for storing the Bruhat order.

As the partial order orV is not readily available, we do not use directly
thatl?v,w = 0 whenv € w. Instead, we check if the criteria in Proposition 2.4,
Corollary 2.5 guarantee vanishing. To be specific, suppose we want to compute
Bv,w with v =[1, a, b] andw = [J, x, y]. We first check ifv = w. Then we check
if ICJ,a>x,1(b)—1(a)<I(y)—I1(x).Ifnot, thenEU,w certainly vanishes. If
y =1 we checkifb € W;. Apart from these checks, the procedure is as described
in the paper: To computk, ,, one first uses (10) to reduce to= 1, then one
applies the formula in Lemma 3.8.

As we recomputé, ,, each time they are needed, it should not be a surprise
that the program is slow. It took about a week to computecthg for type Bs.
(Actually, at that time we did not yet usk-polynomials.) On a machine with
more memory one could speed things up.

The Mathematica files are available on our web site. Beep: / / ww.
mat h. uu. nl / peopl e/ vdkal | en/ kal | en. ht ml . There one also finds
more of the output, some of it in PostScript, most of it in Mathematica InputForm.

A.l Tables. We putg = u?. In the tables we have left out all cases wheyg,
equals zero or one.

Table 1 Table 2
Type Ay, cy,p forv=[D,1,1] Type By, cy,p forv=1[D,1,1]
C’LU,‘U w C’LU,‘U w

1+¢ [@, s152,1] 1+g¢q [9, 5152, 1]

1+g¢ [@, 5152, s2] 1+gq [@, s152, s2]

1+¢ [@, s2s1, 1] 1+g¢g [9, 5251, 1]

14+¢ [@, 5251, 51] 144 [@, 5251, 1]

1+g¢ [9, s15251, 51] 1+g¢g [@, 515281, s251]

1+g¢ [4, 515251, s2] 1+gq [@, 525152, s152]

142+ q2 [9, s15251, 1] 1+g [9, 51525152, 5152]

Observe there is some duplication caused by 1+q 0. 51525152, 52511

the symmetry which interchanges with s5. 1+q {1}, s2s152, 1]
1+¢q [{1}, s2s152, 511
1+gq [{2}, 515251, 1]
1+gq [{2}, s1s251, 521
1+2q [9, 515251, 51]
14+2g [4, 515251, 521
1+2g [4, 525152, 51]
14+2g [4, 525152, 521
1+3¢ 442 1, s15257, 1]
l+3¢]+£]2 [@, s2s152, 1]
1+3¢+ q2 [4, s1525152, 51]
1439 +4? [9, s1525152, 521

144 + 342 [0, 51525152, 1]
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Table 3
TypeGZv Cw,v forv= [D,1,1]

Cw,v w Cw,v w
1+g¢ [4, s152,1] 1+2¢q [{1}, s1525152, 1]
l+gq [9, 5152, s2] 1+2q [{1}, s1525152, 511
1+gq [9, 5251, 1] 1+2¢4 [{1}, 5251525152, 521
l+gq [9, 5251, 1] 1+2q [{1}, s251525152, 52511
1+g¢ [4, 515251, s251] 1+2¢q [{2}, so515251, 1]
l+gq [9, 525152, s152] 1+2q [{2}, s2515251, 52]
l+gq [9, 51525152, 5251521 1+2¢4 [{2}, s1s2s15251, 511
l+gq [0, 52515251, 5152511 1+2q [{2}, s152515251, 51521
l+gq [9, s152515251, 525152511 1+3¢g [{1}, s2s1525152, 1]
14+¢ [9, 5251525152, $1525152] 1+ 3¢q [{1}, s2s1525152, s1]
1+q  [¥, 515251525152, 51525152] 1+3¢g {2}, s1s2515251, 1]
1+¢ [@, 515251525152, $2515251] 1+ 3¢q [{2}, 5152515251, s2]
l+gq [{1}, s25152, 1] 143¢q +42 [, s15251, 1]
1+4g¢ [{1}, 25152, 511 1+3¢ +42 [4, 525152, 1]
1+g¢g [{1}, s1525152, 521 14+3q+4¢2 [@, 515251525152, $15251]
l+gq [{1}, s1525152, 52511 1+3qg + q2 [4, 515251525152, 525152]
1+gq [{1), 5251525152, 51521 1444 +4° 14, 1525152 511
l+gq [{1}, s2s1525152, s15251] 1+4q +4°? (4, 51525152, 521
1+gq [{2). 52515251, 51] preata 10, 52515251, 52]
1+gq [{2}, s2s15251, s152] 1t+4q+ 7 [, 5152515251, 5152
144 {2}, 5152515251, 52511 1+4a+ 7, [, 5152515251, 5251
14 [(2), 5152515051, $25152] 1+4q+gq [@, 5251525152, $152]

q 152815251, 525152 2

142 @, 515251, 51] 1+4q+gq ) [@, 5951525152, $251]
1424 [0, 515251, 521 1459 +3¢q [@, s1525152, 1]
1424 [0, 525159, 511 1+5¢ +3¢> [8, sps15251, 1]
1+2 (8, 525152, 52] 1+5¢ 4342 [0, 515251525152, s152]
1+2 [4, 51525152, 5152] 1+5¢+3¢% [0, 515251525152, 5251]
142 [0, 51525152, 52511 1+6g + 3112 [4, s152515251, 511
1+2g [0, 52515251, 51521 1+6q +34¢° [4, 5152515251, 521
1+2g [@, 2515281, 52511 1+6qg + 3q2 [@, 251525152, 51]
14+ 2q [@, s152515251, 5152511 1+6qg + 3q2 [@, 251525152, 52]
14+2 [4, 5152515251, 5251521 147q +542 [4, 5152515251, 1]
1+24 [9, 251525152, s15251] 14+7q9+ 5q2 [@, sps1528152, 1]
1+2q (9, 5251525152, 5251521 14+7q +542 [4, 515251525152, 51]

1+7q+ 5q2 [9, 515251525152, 521
1+8q+ 7q2 [4, 515251525152, 1]
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Table 4

Type Az, sample of large, , forv=[D, 1,1]

Cw,v

w

1+7q + 1292 + 448
1+7q + 1242 + 448
1+ 7q +13¢% + 4¢°
1+ 7 + 1392 + 448
14 7g + 1342 + 443
1+ 7q +13¢% + 4¢°
1+8g +19%2 + 1043

[4, 515251535251, 521
[0, 5152535251, 1]
[0, 515251535251, 511
[4, 515251535251, 53]
[@, 5152515352, 1]
[9, s251535251, 1]
[4, 515251535251, 1]

Table 5
Type B3, sample of large, , forv=[D, 1,1]

Cw,u w
14187 + 719% + 733 + 114* [, 5251535251535253, 53]
1+18g + 7192 + 73¢% + 1144 [4, 5152515352515352, 51]
1418 + 74q2 + 75q3 + 11q4 [0, s152515352515352, 53]
1+ 18g + 7492 + 764° + 1344 [0, 5152535251535253, 52
1+18g + 7192 + 7843 + 1544 [4, 5251535251535253, 52
1418 + 71q2 + 78q3 + 15q4 [0, 5152535251535253, 51]
14187+ 7292 + 79q3 + 1544 [0, s15251535251535253, 5153]
1+18g + 7292 + 793 + 1544 [4, 5251535251532, 1]
1418 + 75q2 + 81q3 + 16q4 [0, 5152535251535253, 53]
1+ 18g + 7592 + 8143 + 1644 [4, 5152515352515352, $2]
1419 + 81q2 + 107(]3 + 29q4 [9, 5150251535251535253, 1]
1+ 19 + 8142 + 10743 + 29¢* [0, s951535251535253, 1]

1+19 +85¢2 + 11343 + 3494 + ¢°
1+ 19 + 8592 + 11343 + 3494 + ¢
1+ 19 + 8692 + 11643 + 36g% + 24°
1+ 19 + 86¢2 + 11643 + 3694 + 24°
1+ 209 + 96¢2 + 15343 + 67¢% + 64°

[0, s15251535251535253, 521
[4, s152535251535253, 1]
[9, s15251535251535253, 53]
[4, s152515352515352, 1]
[0, 515251535251535253, 1]

A.2. Poincar é polynomials for inter section cohomology.

Put IPy(g) =3 ;5odimIHZ(0)q'.

Table 6

Poincaré polynomial& P, for type A1

IPy

v

1

1+¢q

1+¢q
1+q+q2
l+2q+q2
1+q+q2+q3

[9,s1,1]
9,1, 1]
(4, 51,51]
(1,11
[4,1,51]
[{1}, 1, 51]
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Table 7

Poincaré polynomialgP, forv=[D,1,1]

IPy Type

1+q+4°2 Aq

1+ 49+ 992 + 943 + 4¢* + ¢° Ay

1+ 6g + 1792 + 24¢3 + 17¢* + 64° + ¢° By

1+ 10g + 3342 + 6443 + 80g* + 64¢° + 338 + 1047 + 48 Gs

1+ 11g + 5642 + 15443 + 2507% + 2504° + 1544% + 5697 + 1148 + ¢° As

1+ 23g + 1812 + 77043 + 2046;* + 361Q;° + 4350;° + 361Q;7 + 2046;8 + 770;°
4181410 4 2311 4 412 B5

A.3. Experimentswith other Coxeter groups.

Table 8
Dihedral group of order 1@y, for v=1[D, 1,1]
Cw,v w Cw,v w
1+g¢ [4, s152, 1] 1+2q [4, 51525152, 51521
l+gqg [8, 5152, 521 1+2 [4, 51525152, 52511
1+gq [0, 515251, 52511 1+2g [{1}, s1525152, 1]
1+¢ [9, 51525152, $25152] 1+2g [{1}, 51525152, 1]
1+¢ [@, s152515251, 5152511 1+3g+ q2 [@, s15251, 1]
1+q [, s1s2515251, s25152] 14+3g+4¢% 45150515251, 5152
1+g¢ [{1}, s2s152, 1] 1+3g+4¢2 [, s152515251, s251]
l+gq [{1}, s25152, 511 1+4q +¢2 [@, s1525152, 51]
144 [{1}, s1s25152, 5] 14 4q + 42 [0, 51525152, 52]
ii gq [{%3?12;21:12; Sﬁsﬂ 145+ 3q§ [0, 51525152, 1]
21822 h 1+5¢ +3q [, s152515251, 51]

1+2% 9. s15251. 521 1+5¢+ 3q2 [9, 5152515251, 521

1+ 6q +5¢° [9, s152515251, 1]
As usual, we deleted all cases wheye, equals zero or one. We also removed all duplication caused
by the symmetry which interchangeg with s and thus{1} with {2}.

Table 9

Affine type A1, a sample

Ccw,v w v
1+49+3¢%+4° [0, 2515251, 11 [{1.2}, 1, s50s1]
1449 +3¢% +4° [0, 52515251, 51] [{L.2}, 1, s152s1]
1+4q+3¢2+24° [0, 51525152, 11 [{1.2}, 1, ss25152]
1+4q +3¢% +24° [0, 51525152, 51] [{1,2}, 1, s1525152]
1+4q +3¢% +24° [0, 51525152, 52] [{1,2}, 1, s1525152]
1+4qg + 3q2 + 2q3 [@, 51525152, s152] [{1, 2}, 1, s1525152]

We restricted the lengths of elements f to four and looked for large,, ,. Again we removed
duplicates. One recovers them by interchangingith s».
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Table 10

Affine type A, sample of large,

Cw,v w v

1+ 6 +5¢2 [0, 525153, 511 [{1,2}, 1, s152s3]
143g+3¢2 443 [0, s3s251, 1] [{1,2,3}, 1, 5153521
14 3¢ +3¢2 4¢3 [@, 535251, 511 [{1,2,3},1, s153s2]

We restricted the lengths of elementsWgfto three.

Table 11

Type H3, sample of intermediate sizg, , for v=[D, 1,1]

Cw,v w

1421 + 62(]2 + 33q3 [{1}, 5152515253525152515352, §152515251]
1+ 237 + 6572 + 333 [{3}, s15253525152515352, 5253521
1423+ 65q2 + 33q3 [{3}, 5152515253525152515352571, 525152535251
1422 + 69q2 + 33q3 [0, 51525152535251525153, §152535251 ]
1422 + 69q2 + 33q3 [D, 52515253525152515352, $253525152]
14 24q + 70q2 + 34q3 [{3}, 51525352515251535251, 52535251]
1+ 24g + 7042 + 3443 [{3}, 5152515253525152515352, 52515253521
1+ 269 + 85q2 + 4Oq3 [0, 52515253525152515352, §152515251]
14269 + 85q2 + 40q3 [0, $3525152515352515253, 5152535251 ]
1+ 26g + 8142 + 4443 [{3}, 52515253525152515352, 515253521
1426 + 81(]2 + 44q3 [{3}, 5251525352515251535251, 5152535251 ]

For somew the computation ot , was not feasible on our machine. Therefore, we just present
afewcy,, , that were still within reach. (It gets more difficult as dim — dim(w) increases.)

Note added in proof

In a recent preprint by Y. Chen and M. Dyer (On the combinatorics ef B-
orbits on group compactifications, J. Algebra, in press) it is shown that the Bruhat
order of Section 2 can be understood in the context of the “twisted Bruhat orders”
on Coxeter groups, introduced by M. Dyer. The Coxeter groups which appear here
are in general neither finite nor affine. The authors also prove the conjecture made
in Section 6.10.
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