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1 Summary

We consider the complexity of a Lenstra Lenstra Lovász lattice reduction
algorithm ([LLL]) in which the vectors are allowed to be linearly dependent
and in which one also asks for the matrix of the transformation from the
given generators to the reduced basis. The main problem will be to show
that the entries of the transformation matrix remain bounded through the
algorithm, with a reasonable bound. Here the difficulty is of course that due
to the dependence of the generators the transformation is not determined by
the basis. To remedy this we work with two inner products and apply the
LLL methods to both.

2 Description of GramLatticeReduce

Let e1,. . . ,en be the standard basis of Rn. The input of GramLatticeReduce
is the Gram matrix gram = (〈ei, ej〉)n

i,j=1 of a positive semidefinite inner
product 〈 , 〉 on Rn. We assume gram has integer entries. We are concerned
with the lattice Zn. The output of GramLatticeReduce is an integer rank
and an integer matrix b of determinant one. To explain its properties we need
some more notation. The ordinary inner product on Rn is denoted ( , ). Call
v isotropic if 〈v, v〉 = 0. Put isodim = n − rank and let b∗i denote the i-th
Gram-Schmidt vector in the following sense. We have b∗i ∈ (bi +

∑i−1
j=1 Rbi)

and if 1 ≤ j < i, j ≤ isodim then (b∗i , bj) = 0, but if 1 ≤ j < i, j > isodim
then 〈b∗i , bj〉 = 0. With those notations the output satisfies:
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1. The first isodim rows bi of b are isotropic.

2. With respect to ( , ) the first isodim rows of b form an LLL reduced
basis of

∑isodim
j=1 Zbi.

3. With respect to 〈 , 〉 the last rank rows of b form an LLL reduced basis
of the lattice they span, and this lattice contains no nonzero isotropic
vector.

4. For 1 ≤ i ≤ isodim, i < j ≤ n we have |(b∗i , bj)| ≤ 1/2(b∗i , bi).

Remark 2.1 Variations are possible, depending on what one is really after.
If one is only interested in the isotropic vectors, one may weaken condition
3 to

3’ The last rank rows of b form a basis of the lattice they span, and this
lattice contains no nonzero isotropic vector. Furthermore, |〈b∗i , bj〉| ≤
1/2〈b∗i , bi〉 for n− rank + 1 ≤ i ≤ n, i < j ≤ n.

Similarly, one may wish to replaces condition 2 with

2’ For 1 ≤ i ≤ isodim, i < j ≤ isodim we have |(b∗i , bj)| ≤ 1/2(b∗i , bi).

These changes do not affect our analysis in any essential way. One just has
to change the wording, not the formulas. And in the algorithm one has to
leave out some swaps.

3 Description of ExtendedLatticeReduce

Given generators b1, . . . , bn of a sublattice of Zm, the algorithm
ExtendedLatticeReduce basically just calls GramLatticeReduce with as in-
put the Gram matrix ((bi, bj))

n
i,j=1.

4 Sketch of the algorithm

We assume the reader is familiar with [LLL] and also with the implementation
of the LLL algorithm in integer arithmetic, as described in [C].

Most of the time we are given

• An integer matrix b of determinant one,
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• Integers k, kmax , 1 ≤ k ≤ kmax ≤ n,

• An integer isodim ≥ 0, so that the first isodim rows bi of b span the
isotropic subspace of

∑kmax
j=1 Rbj.

(Initialize with k = kmax = 1 and isodim = 0.)
Let priso be the orthogonal projection according to ( , ) of Rn onto∑isodim

j=1 Rbj and put

(v, w)mix = (prisov, prisow) + 〈v, w〉.

Let µi,j be defined for i > j so that

bi = b∗i +
i−1∑
j=1

µi,jb
∗
j .

The first standard assumption is then that, with respect to ( , )mix, the
first k− 1 rows of b form an LLL reduced basis of

∑k−1
j=1 Zbj, except that one

does not require
|b∗i + µi,i−1b

∗
i−1|2mix ≥ 3/4|b∗i−1|2mix

when i = isodim +1. And the second standard assumption is that, as in [C],
the first kmax rows of b form a basis of

∑kmax
j=1 Zei.

We run the LLL algorithm with respect to ( , )mix, except that one
never swaps bisodim with bisodim+1. This roughly amounts to running two LLL
algorithms, one for ( , ) and one for 〈 , 〉. That is how one implements
it and that is how we would have told it if we had not needed ( , )mix for
the complexity analysis. One runs LLL until k tries to go to kmax + 1. If
kmax = n we are through. If kmax < n and

∑kmax+1
j=1 Zbj contains no more

isotropic vectors than
∑kmax

j=1 Zbj, then we simply increase kmax by one.
In the remaining case we have to work until we are back in the standard

situation with k = 2 and with both isodim and kmax one bigger. This is what
trickledown is for. We postpone its discussion. At the end of trickledown
we also make that |µi,j| ≤ 1/2 for j < i ≤ kmax . This may not be necessary
(and indeed we did not do this in earlier versions) but it can do little harm
and definitely simplifies the estimates below.
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5 Estimates

We want to give estimates as in [LLL]. Thus let B ≥ 2 so that the entries of
gram are at most B. Our main result is that all through the algorithm all
entries have bit length O(n log(nB)). We do not care about the constants in
this estimate. We leave to the reader the easy task of estimating the number
of operations in the algorithm in the manner of [LLL].

5.1 Determinants

Let grammix be the Gram matrix ((ei, ej)mix) with respect to e1, . . . , ekmax .
Its entries are at most B + 1. With Hadamard this gives

| det(grammix)| ≤ (
√

n(B + 1))n

and the same estimate holds for its subdeterminants. We claim that the
determinant of grammix is an integer, so that we also get this upper bound
for the entries of gram−1

mix. To see the claim, consider as in [P] the inner
product ( , )ε given by (v, w)ε = ε(v, w) + 〈v, w〉. Its Gram matrix has a
determinant which is a polynomial detε of ε with integer coefficients. One
may also compute detε with respect to a basis which is obtained from e1,
. . . , ekmax through an orthogonal transformation matrix. By diagonalizing
the Gram matrix of 〈 , 〉 we see that det(grammix) is the coefficient of εisodim

in detε. 2

Lemma 5.2 For v ∈ Rn one has

(v, v)mix ≤ n(B + 1)(v, v)

and for v ∈
∑kmax

j=1 Rej one has

(v, v) ≤ n(
√

n(B + 1))n(v, v)mix.

Proof

The supremum of { (v, v)mix | (v, v) = 1 } is the largest eigenvalue of the
gram matrix of ( , )mix with respect to e1, . . . , en. The largest eigenvalue is
no larger than the trace of this matrix. So it is at most n(B + 1). Similarly
the largest eigenvalue of gram−1

mix it is at most n(
√

n(B + 1))n. 2
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5.3 Vectors

Now put

disoi =
i∏

j=1

(b∗j , b
∗
j)

for i ≤ isodim and

di =
i∏

j=1

〈b∗j+isodim , b∗j+isodim〉

for i ≤ rank . As far as di is concerned we may compute modulo isotropic
vectors, or also with ( , )mix. Indeed

〈b∗j+isodim , b∗j+isodim〉 = (b∗j+isodim , b∗j+isodim)mix

for 1 ≤ j ≤ rank . Both disoi and dj are integers and they descend when
applying LLL.

One may also compute det(grammix) with the b∗i basis, as the transition
matrix has determinant one. From that one sees that it is just disoisodimdrank .
So we get disoisodim ≤ (

√
n(B + 1))n. In fact, for i ≤ isodim one has the

same estimate
disoi ≤ (

√
n(B + 1))n

because i was equal to isodim earlier in the algorithm and LLL only makes it
go down. Similarly drank ≤ (

√
n(B + 1))n, but actually we know from [LLL]

that
di ≤ Bi.

(This is not spoiled by trickledown which also makes di descend.)

Lemma 5.4 Let 1 ≤ i ≤ kmax. Then

(
√

n(B + 1))−n ≤ (b∗i , b
∗
i )mix ≤ (

√
n(B + 1))n

and if |µij| ≤ 1/2 for 1 ≤ j < i then

(bi, bi)mix ≤ n(
√

n(B + 1))n

2

Remark 5.5 These estimates are not as sharp as those in [LLL] but that can
not be helped: It is no longer true that (b∗1, b

∗
1) ≤ B. Consider for instance

the quadratic form 〈v, v〉 =
∑n−1

i=1 (Nxi − xi+1)
2 for some large integer N .

The shortest nonzero isotropic vector in Zn is (1, N,N2, . . . , Nn).
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5.6 Preserved estimates

Lemma 5.7 The following estimates hold between applications of
trickledown.

1. disoi ≤ (
√

n(B + 1))n for i ≤ isodim,

2. di ≤ Bi for i ≤ rank,

3. (bi, bi)mix ≤ n(
√

n(B + 1))n for i 6= k,

4. (bk, bk)mix ≤ n24n(
√

n(B + 1))3n,

5. |µi,j| ≤ 1/2 for 1 ≤ j < i < k,

6. |µk,j| ≤ 2n−k
√

n(
√

n(B + 1))n for 1 ≤ j < k,

7. |µi,j| ≤
√

n(
√

n(B + 1))n for 1 ≤ j < i > k.

Proof

That these are preserved under LLL follows as in [LLL], so one has to check
that they hold right after trickledown. Given our earlier estimates this is
straightforward. 2

6 Description of trickledown

Before we can do estimates concerning trickledown we must describe it.
One starts with having k = kmax +1 ≤ n. Consider the lattice generated by
b1, . . . , bkmax+1 where bkmax+1 = ekmax+1. By assumption this lattice contains
a nonzero vector v with (v, v)mix = 0. Modulo Rv the vector bk is linearly
dependent on the bi with i < k. Changing the basis of Zbk−1 + Zbk we can
achieve that modulo Rv the vector bk−1 is linearly dependent on the bi with
i < k−1. Then lower k by one and repeat until k = isodim +1, where isodim
is the one from before the present trickledown. At that point bk is itself
isotropic and we increase isodim by one and pass to a new ( , )mix. After
subtracting suitable multiples of bj with j < i from bi for all i we arrive at
the situation where |µi,j| ≤ 1/2 and we leave trickledown with k = 2 (or
k = max(isodim, 2)) and with kmax increased by one.
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7 Estimates during trickledown

We look in more detail. Upon entering trickledown we freeze the old
isodim, kmax and the b∗i , even though the bi will change. We also do
not change ( , )mix. Let µi,0 stand for (ekmax+1, bi) and let µi,j stand for
(b∗j , bi)mix/(b

∗
j , b

∗
j)mix if j > 0. Note that initially |µi,j| ≤ 1 for i ≤ kmax ,

0 ≤ j ≤ kmax . We will estimate |µi,j| as k descends.
Say k > isodim +1 and modulo Rv the vector bk is linearly dependent on

the bi with i < k. Let us compute with bk, bk−1 modulo V = Rv +
∑k−2

i=1 Rbi.
We have bk ≡ µk,k−1b

∗
k−1 and bk−1 ≡ b∗k−1 modulo V . With the extended

euclidean algorithm of [C] we find an integer matrix

(
α β
γ δ

)
of determinant

one so that

(
α β
γ δ

) (
1

µk,k−1

)
=

(
0

−1/rk

)
where rk is the index of Z in

Z + Zµk,k−1. More specifically, one has

(
δ −β
−γ α

) (
0

−1/rk

)
=

(
1

µk,k−1

)
so β = rk and α = −rkµk,k−1. By [C] we have |γ| ≤ |µk,k−1rk| and |δ| ≤ rk.
(Here we assume for simplicity that µk,k−1 is not zero.)

Now put ck−1 = αbk−1 + βbk and ck = γbk−1 + δbk. The algorithm will
tell us to replace bk with ck and bk−1 with ck−1. We want to estimate the
resulting new µi,j, which we call νi,j. For i different from k, k − 1 nothing
changes. Further |νk−1,j| = |αµk−1,j + βµk,j| ≤ rk|µk,k−1µk−1,j|+ rk|µk,j| and
|νk,j| = |γµk−1,j +δµk,j| ≤ rk|µk,k−1µk−1,j|+rk|µk,j|, which is the same bound.

Remark 7.1 During trickledown the di are repeatedly replaced by divi-
sors. As we are recording the µi,j with j > isodim as fractions with a de-
nominator dj−isodim , this means that one has to update the numerators too.
By remembering the rk one can postpone all this updating until the end of
trickledown, processing the product of the corrections, rather than each
correction separately.

Lemma 7.2 As k descends we have

1. |µi,j| ≤ 1 for k > i > j ≥ 0,

2. |µk,j| ≤
√

B(
√

n(B + 1))n/2
∏kmax+1

i=k+1 (2ri) for k > j ≥ 0,

3. |µi,j| ≤ 2nnn/4(B + 1)n for k ≤ i > j ≥ 0.
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Proof

Initially we have k = kmax + 1 and we estimate |µk,j|2 ≤ B(b∗j , b
∗
j)
−1
mix ≤

B(
√

n(B + 1))n. Now assume the estimates are true for the present k.
We get |νk−1,j| ≤ rk|µk,k−1µk−1,j| + rk|µk,j| ≤ 2rk maxj |µk,j| which takes

care of |νk−1,j|. As
∏kmax+1

k=isodim+2 r2
k is the ratio by which drank drops during

trickledown, it is at most Brank . So |νk,j| ≤
√

B(
√

n(B +1))n/22nBrank/2. 2

Remark 7.3 Experiments show it is wise to insert a reduce step to make
that |µk,j| ≤ 1/2 for j 6= 0.

7.4 Increasing isodim

When k has reached isodim + 1 it is time to increase isodim by one and pass
to a new ( , )mix. But first use the estimates of the µi,j to estimate (bi, bi)mix

and (µi,0ekmax+1, µi,0ekmax+1)mix, next (bi − µi,0ekmax+1, bi − µi,0ekmax+1) by
means of Lemma 5.2, and finally (bi, bi).

Now change isodim, kmax , ( , )mix. We have to compute the new
µj,isodim . They can be estimated, as we have an estimate for (bj, bj) and
for (b∗isodim , b∗isodim)−1

mix.
Finally we reduce to the case |µi,j| ≤ 1/2 for i > j. During this reduction

the maximum of the |µi,j| gets at most 2n as large by the argument in [LLL].
We have seen that all the integers that are encountered have bit length

O(n log(nB)).

8 Implementation

For further details of implementation see the Mathematica code
http://www.math.uu.nl/people/vdkallen/LLLsmall.m.gz

or the GP/PARI code
http://www.math.uu.nl/people/vdkallen/extendedlll.gp.gz
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